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Abstract 
 

Most existing algorithms for mining frequent closed 

itemsets have to check whether a newly generated 

itemset is a frequent closed itemset by using the subset 

checking technique. To do this, a storing structure is 

required to keep all known frequent itemsets and 

candidates. It takes additional processing time and 

memory space for closure checking. To remedy this 

problem, an efficient approach called closed itemset 

mining with no closure checking algorithm is proposed. 

We use the information recorded in an FP-tree to 

identify the items that will not constitute closed itemsets. 

Using this information, we can generate frequent closed 

itemsets directly. It is no longer necessary to check 

whether an itemset is closed or not when it is generated. 

We have implemented our algorithm and made many 

performance experiments. The results show that our 

approach has better performance in the runtime and 

memory space utilization. Moreover, this approach is 

also suitable for parallel mining of frequent closed 

itemsets. 

 

Keyword: Data mining, association rule, frequent 

closed itemset, closure checking  

1. Introduction 

Data mining is an important research field for finding 

information in a large volume of data [13]. The function 

of data mining is to find important information that can be 

used to make decisions and action plans. Data mining has 

already been applied extensively in various industries. 

Association rule mining is a useful data mining 

technique to find frequent itemsets and generate useful 

association rules [12]. Generating all frequent itemsets 

[1-3], [15-16] in brute force is not an efficient task, so 

many closed itemsets [4-10] and maximal itemsets [11] 

approaches were derived. However, the information of 

maximal itemsets is incomplete such that association 

rules cannot be generated directly. Frequent closed 

itemsets can solve the problems that frequent itemsets and 

frequent maximal itemsets have. A frequent itemset is 

closed if none of its proper supersets have the same 

support. All closed frequent itemsets contain complete 

information to generate association rules. 

However, most known frequent closed itemset mining 

algorithms must check the closure at the end of the 

process or during the process [4-6], especially for the 

algorithms using the horizontal dataset directly. The 

closure checking examines whether a newly found 

itemset is a subset or a superset of an already found 

frequent closed itemset with the same support. For this 

purpose, it is necessary to create a structure to store all 

frequent closed itemsets and closed itemset candidates. 

The closure checking step of the existing closed itemset 

mining algorithms is computational expensive and 

requires additional memory space for generating, storing 

and removing non-closed itemsets.  

Our work completely eliminates the closure checking 

step during the closed itemset generation. We propose an 

algorithm called Closed Itemsets Mining with No closure 

Checking (CIMNC) to directly produce frequent closed 

itemsets without closure checking and unnecessary 

storage structure. CIMNC won’t generate unnecessary 

conditional FP-trees [4] if possible. We only use an 

attribute called record in the node of FP-tree to keep 

necessary information in each branch of the tree such that 

redundancy can be avoided. Especially, only frequent 

closed itemsets are produced and each one is produced 

exactly once. Since CIMNC can generate frequent closed 

itemsets directly in each processor, it is also suitable for 
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parallel mining.  

2. Related work  

The FP-growth method [2] is a depth-first and 

divide-and-conquer algorithm. In this method, a structure 

called FP-tree is used to obtain a compact representation 

of the original transactions. Every branch of the FP-tree 

represents a transaction composed of the subset of 

frequent items. The nodes along the branches are stored 

in decreasing order of the frequency of all frequent items. 

Compression is achieved by overlapping itemsets which 

share prefixes of the corresponding branches to build the 

FP-tree. The FP-tree has sufficient information to mine 

complete frequent patterns. Each node in the FP-tree has 

three fields: item-name, count, and node-link. The 

frequent itemsets can be found from the FP-tree quickly 

without having to scan the database on the disk frequently. 

A frequent-item header table is built to make traverse the 

tree more easily. All frequent items are stored in the 

header table in decreasing order of their frequency. Each 

item points to its occurrence in the tree via a head of 

node-link. Nodes with the same item are linked via 

node-links. Each entry in the header table has two fields: 

item-name and head of node-link. 

The FP-growth method scans the database only twice. 

In the first scan it finds all frequent items and inserts them 

into the header table in decreasing order of their counts. 

In the second scan, the root of FP-tree is created with 

“null.” The set of frequent items in each transaction is 

inserted into the FP-tree as a branch. If an itemset has the 

same prefix with another itemset already in the tree, this 

part of branch will be shared. A count in a node stores the 

number of the item which appears in this path. When a 

transaction is inserted into a new branch, the count is 

updated. After all nodes are linked from the header table, 

the FP-tree is completely constructed. The next step is to 

find all frequent itemsets. It collects all the patterns which 

a node participates by starting from its head in the header 

table and following its node-link. The mining process 

starts from the bottom of the header table. Paths with the 

same prefix item in the FP-tree construct the conditional 

pattern base of the prefix item with its support. Frequent 

items in the conditional pattern base construct the 

conditional FP-tree of the prefix item. It keeps 

constructing the conditional FP-tree until a single path is 

found. Frequent itemsets with the same prefix are 

generated by the single path. 

The main work of FP-growth method is traversing 

FP-trees and constructing new conditional FP-trees from 

the global FP-tree. It needs to traverse the original 

FP-tree twice to construct a new conditional FP-tree. The 

first traversal finds all frequent items in the conditional 

pattern base and constructs a new header table for new 

conditional FP-tree. The second traversal constructs the 

new tree. FPclose [4] can omit the first traversal by 

adopting an FP-array technique. 

 

 
Fig. 1 An FP-array example. 

 

 

Fig.2 An FP-tree example. 

 

Using the example of Fig. 1 from [4], an array structure 

called FP-array is used in this method. During the second 

scan of the database of Fig. 2(a), it constructs the FP-tree 

and the FP-array as shown in Fig. 2(b) and Fig. 1 

respectively. The mining method of FPclose [4] is 

different from CLOSET+ [6]. It won’t do subset checking 

to avoid generating redundancies of a prefix, but 

generates a lot of candidates to check their closure. A 

structure called CFI-tree [4], as shown in Fig. 3, is used to 

store frequent itemsets efficiently and to do closure 

checking. 
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Fig. 3 Construction of CFI-tree 

 

The CLOSET+ algorithm [6] is based on the FP-tree 

and uses the two-level hash indexed result tree to store 

frequent closed itemsets for closure checking. When it 

finds a single path in the conditional FP-tree, it must 

perform subset checking to check if it should generate the 

closed itemset candidate with a prefix itemset from all 

known frequent closed itemsets. If the prefix itemset is a 

subset of a known frequent itemset and has the same 

support, the itemsets of this prefix itemset will not be 

generated. On the other hand, the closed itemset 

candidates are generated and then it must check the 

closure in the result tree to determine if they are really 

frequent closed itemsets. CLOSET+ needs to do many 

times of subset checking and closure checking. Since the 

result tree is searched many times, it takes a lot of time. 

The processes of CLOSET+ algorithm have seven 

steps. 

Step 1: 

Scan the database to find the counts of all items in the 

database. Find all frequent items by using the min_sup 

and sort these items with their supports in decreasing 

order. Build the header table with item-name, support 

count and head of node link to store the frequent items. 

Step 2: 

Scan the database again to build the FP-tree, where 

each node has the fields of item-name, count, and 

node-link, according to the order of the header table. 

Each node of the same item-name is linked from the 

header table by node-links.  

Step 3: 

According to the order of items in the header table, it 

gets an item as the prefix item each time. Merge the prefix 

item and the prefix item of this tree as a prefix itemset. 

Check if the prefix itemset with the support of the prefix 

item is in the two level hash indexed result tree. If not, get 

all paths which contain the prefix item linked from the 

header table. Set the support of the prefix node as the 

support of all items in the path to form the conditional 

pattern base. 

Step 4: 

Prune the items which are not frequent from the 

conditional pattern base. And then use the remaining 

items to build the header table. Finally create the 

conditional FP-tree with the header table. Set the next 

item in the header table as the prefix item. Use Step 5 to 

process the conditional FP-tree. And repeat Step 3 and 

Step 4 until the last item of the header table is completed. 

Step 5: 

According to the order of items in the header table of 

the conditional FP-tree, it can get an item as the prefix 

item each time. Repeat Step 3 and Step 4 to create the 

conditional FP-tree for each prefix item until the 

conditional FP-tree becomes a single path.  

Step 6: 

Closed itemset candidates can be generated from the 

single path with the prefix items of the conditional 

FP-trees which have been processed before. Check if an 

itemset is a closed itemset using the two-level hash 

indexed result tree method (for simplicity we assume 

dense datasets). Store the itemset in the tree if it is closed. 

Step 7: 

After processing the last item of the original header 

table, we can obtain all frequent closed itemsets. 

 

 
Fig. 4 Bottom-up physical tree-projection [6] 

 

An example from [6] for the bottom-up physical 

tree-projection is shown in Fig. 4 where the min_sup is 2. 

60 Chih-Hsien Lee et al.



 

 

3. Proposed algorithm: CIMNC  

A. Main Concept of CIMNC  

Mining itemsets in bottom-up order of item supports is 

the property of FP-tree. One can not find supersets of the 

found frequent closed itemsets by using this property. If it 

can avoid generating the subsets of known frequent 

closed itemsets, frequent closed itemsets can be 

generated directly. 

According to the properties of FP-tree and closed 

itemset, it is easy to find that if an itemset is a subset of the 

other known itemset and both of their prefix items have 

the same support, they are both found in the same path. 

Therefore, if a branch has more than two items that have 

the same support, it may generate subsets with the same 

support. In order to avoid generating these subsets, it 

should keep off items which have been processed with the 

same support in the same path and avoid constructing 

them again. 

A record is used in CIMNC to identify if an item has 

been processed before. If the nodes of an item have the 

same item in the record, it means the item has completed 

the process. Using this idea, subsets with the same 

support won’t be generated. Thus, it can speed up the run 

time by not building the conditional FP-tree for invalid 

items. 

B. The CIMNC Algorithm 

Based on CLOSET+, CIMNC algorithm has seven 

steps: 

Step 1:  

Scan the database to find the counts of all items. Find 

all frequent items by using the min_sup and sort them in 

decreasing order of their supports. Build the header table 

with item-name, support count and head of node link 

fields. 

Step 2:  

Scan the database again to build the FP-tree, in which 

each node has four fields: item-name, count, node-link 

and record, according to the order of the header table. 

Each node with the same item-name is linked together.  

Step 3:  

According to the order of items in the header table, 

each item is used as the prefix item one at a time. If all 

nodes of the prefix item do not have the same items in 

their records, get all paths containing the prefix item 

being linked from the header table. When getting a path, 

the records in this path are noted if the prefix item is a leaf 

of the tree. Then set the support and record of the prefix 

node as the support and record of all items in the path to 

form the conditional pattern base. 

Step 4:  

Prune the items which have the same item in their 

records and the items which are not frequent from the 

conditional pattern base. Then, use the remaining items to 

build the header table. Finally, create the conditional 

FP-tree with the header table. Set the next item in the 

header table as the prefix item. Use Step 5 to process the 

conditional FP-tree. Repeat Step 3 and Step 4 until the 

last item of the header table is processed. 

Step 5:  

According to the order of items in the header table of 

the conditional FP-tree, each item is used as the prefix 

item one at a time. Repeat Step 3 and Step 4 to create the 

conditional FP-tree for each prefix item until the 

conditional FP-tree becomes a single path.  

Step 6:  

Note the records for this path and obtain all itemsets 

whose prefix items have no item in their records. It can 

get closed itemsets from the single path with the prefix 

items of the conditional FP-trees which have been 

processed before. 

Step 7:  

After processing the last item in the original header 

table, it generates all frequent closed itemsets. 

C. Two Lemmas of CIMNC 

If the support of a prefix item is equal to the support of 

the parent item, they will be constructed completely when 

the prefix item generates the conditional pattern base. 

After these items have been processed, our method uses 

the record of the node to note items that have the same 

support as their child items in the same branch. Using an 

array as a record in a node of FP-tree will waste much 

space. Instead, the linked list technique is used to store 

items. When considering an item if it is necessary to build 

the conditional FP-tree or to perform closure checking, 

one can simply check if the records in all the nodes of this 

item have the same item. If they all have the same item, 

there is no need to process again because it has been done 

before. So itemsets generated from this item are not 

closed. 

Lemma 1. If all nodes of an item have the same items 

in their records, the itemsets generated by this item are 

not closed. 

Proof: Let X be a prefix item and all the X nodes of the 

tree have the same item Y in their records. Assume X may 

generate a closed itemset, then the support of the itemset 

generated by X will not equal to the support of the 

superset generated by XY. Because all records of X 

contain Y, the itemsets generated by X must be subsets of 

the itemsets generated by XY, and their support must be 
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the same. It contradicts the assumption. So X can’t 

generate any closed itemset. ■ 

After building the FP-tree, each item is considered as a 

prefix item following the order of items in the header 

table. When it searches the related paths of a prefix item 

by using the node-links of the header table, the records of 

these paths are completed. 

The way to note the record is shown as follows. When 

the node-link of a prefix item is linked to the first node 

from the header table, it can find the first path which 

contains the prefix item. When searching this path 

upward to look for items in the path, it can check if its 

child nodes have a total count that is equal to its count. If 

their counts are not the same, it won’t note anything. 

Otherwise, if the node has only one child node, it can note 

the item and record its child node in its record. If the node 

has more than one child node, it should check if any node 

has the same items in item-name or records. If each 

branch has the same items, it will note the item in the 

record of the node. Otherwise, nothing is noted. Repeat 

this process to the root until every node of the prefix items 

of the header table has been processed. If a node of a 

prefix item is not at the bottom of the path, it means this 

path has been noted before. A simple example is shown in 

Fig. 5. 

 

 
Fig. 5 The recording method. 

 

Fig. 5(a) is a part of the original FP-tree in Fig. 4(a). 

When searching the prefix item p, it can find the path 

camp. The path is processed as shown in Fig. 5(b). First, 

go up and find the item m, then note p in the record of 

node m because it has the same support as its child p. The 

next item a has two child nodes, where their total support 

is equal to the support of a. Since none of their item and 

record is the same, it does not note anything. Then it 

reaches item c. Because item c has the same support as 

item a, its record is updated with a note of item a. 

Next, the prefix item m is searched and the result is 

shown in Fig. 5(c). Item b is the first item above item m 

and its support is equal to the support of item m, so item b 

is updated with a note of item m. The next item a has two 

child nodes, where their total support is equal to the 

support of a. Since they both have a record of m, item m is 

noted in node a. Because node a adds a record m, the 

parent node c is also updated with a note of m to its node 

because the pair has the same support. 

The way to use the records is briefly explained as 

follows. When searching the paths for a prefix item, it 

will set the support and records of the prefix item to all 

items in a path. If each record of the prefix item does not 

have the same items, the process of this item will continue, 

else it will stop.  

When getting the conditional pattern base of a prefix 

item, it can prune the infrequent items. An item will be 

pruned if all of its nodes have the same item(s) in their 

records, because they can not generate any closed itemset 

by Lemma 1. When getting a single path in the 

conditional FP-tree, it is easy to know if the itemsets have 

to be generated by the records. 

The tree of Fig. 5(c) is used to show a simple example. 

With a prefix item m, it can get two paths, cam and cabm. 

The conditional pattern base has two prefix paths, 

ca:2/p(ca:2 with a record p) and cabm:1. Because no item 

has the same records, it can derive m’s conditional 

FP-tree, <c:3, a:3>. If the prefix item is a, it can get a path 

ca. Because the conditional pattern base only has a path 

c:3/m, it is unnecessary to generate a’s conditional 

FP-tree. 

It is easy to prove that our method won’t generate more 

or less itemsets by the following Lemma 2. 

Lemma 2. CIMNC won’t generate non-closed 

itemsets or miss any closed itemsets. 

From Sections 2 and 3.B, one knows the process of 

CIMNC is almost the same as the steps of CLOSET+. 

CIMNC uses a record to identify if an item with the item 

in its record can generate a closed itemset by Step 3 and 

Step 4. CLOSET+ checks a prefix itemset from the two 

level hash indexed result tree to identify if the itemset can 

generate a closed itemset by Step 3 and Step 6. This 

shows that CIMNC can generate all closed itemsets as 

CLOSET+ does. Since CLOSET+ won’t generate extra 

itemsets that are not closed and miss any closed itemsets, 

CIMNC should have exactly the same properties as well. 

For example, when CLOSET+ processes the prefix 

item m in Fig. 4(c), the two level hash indexed result tree 

has two paths, <f:2, c:2, a:2, m:2, p:2> <c:3, p:3>. When 

it begins to generate the itemsets with the prefix item a, it 

checks the prefix itemset am:3 to identify if any path has 

this itemset with a support of 3. However, the result tree 
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has no item m with support 3, so itemsets with the prefix 

itemset will be generated. The result tree has an 

additional path <f:3, c:3, a:3, m:3>. The next prefix item c 

will be merged with item m as prefix itemset mc:3, and 

mc:3 can be found in the result tree. So it is not necessary 

to continue the process. The next item f is unnecessary to 

be processed. For CIMNC, the first item a has no record, 

so it generates the itemsets with a. For the next item c, 

because it has a record a, meaning ac:3 has been 

processed, it is unnecessary to be processed again. The 

record of item f is not empty, so it is not necessary to be 

processed. Although these two algorithms use different 

methods to identify the prefix item, their processes are the 

same. One can conclude that they all generate the same 

result. 

D. An Example of applying CIMNC 

The database in Table 1 is used to present a simple 

example for CIMNC. After scanning the database, it finds 

all frequent items with min_sup=2. They are a:3, c:4, f:4, 

m:3, p:3, b:3. Then sort these items with support in 

decreasing order to get f:4, c:4, a:3, b:3, m:3, p:3. When 

transactions are inserted into the FP-tree, items in each 

transaction will be sorted by the order as shown in the last 

column of Table 1. To find each item in all branches 

easily, a header table is created with the sorted items in 

Fig. 6. 

 

Table 1 A sample transaction database 

 
 

 
Fig. 6 The global FP-tree for Table 1. 

 

After scanning the database again, the global FP-tree is 

built in Fig. 6. All nodes which have the same item-name 

are linked from the header table. After constructing the 

FP-tree, it can be traversed to find all frequent closed 

itemsets. According to the FP-growth method, it can take 

item p as a prefix itemset to get two paths, fcamp and cbp, 

by using the node links of item p in the header table. 

When a node is linked, it will search the path to find what 

items are in this path. At this time, it will note items in the 

record of each node if a node has the same support as the 

items below it. 

 

 
Fig. 7 The recorded global FP-tree. 

 

In Fig. 7(a), it notes p in the record of item m because 

item m has the same support as prefix item p in the path 

fcamp. Similarly, item c has a record a in its node. In the 

path cbp, it notes p in the node b and notes pb in the node 

c. The conditional pattern base of prefix item p has 

fcam:2 and cb:1 to create the conditional FP-tree shown 

in Fig. 8(a). The conditional FP-tree only contains 

frequent items and it also has a header table. We can see 

only one path in this tree. Following the bottom-up order 

in the header table, we first make item m as a prefix item, 

and find what items are above it. At this time, we note the 

record in each node of this tree, as shown in Fig. 8(a). It 

can find a frequent closed itemset cfamp:2 in this tree 

with prefix m. Then it makes item a as a prefix. Because it 

has an item m in its record of the only one node, one 

knows it has been mined with prefix m. It won’t generate 

itemsets with prefix pa. Similarly, the prefix pf won’t be 

used neither. Finally, item c is the last item and its record 

is empty. So we can find cp:3 as a frequent closed itemset. 

Because c is the last item and the support of c is equal to 

the support of p, p:3 is not a closed itemset. At this time, 

all frequent closed itemsets with prefix p have been 

found. 
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Fig. 8 The conditional FP-tree. 

 

Then it makes item m as a prefix of the global FP-tree. 

When searching the linked node of item m, it notes the 

records for nodes with item m having no child. There are 

two paths with prefix m, fcam and fcabm. In Fig. 7(b), the 

node m in path fcam has a child, so it is unnecessary to 

note records in this path. In path fcabm, it notes m in node 

b, notes a in node c and adds m to node c. The conditional 

pattern base containing fca:2/p and fcab:1 can form a 

conditional FP-tree as shown in Fig. 8(b). Then note the 

records in the tree when it makes item a as a prefix item. It 

can find a frequent closed itemset fcam:3, and itemsets 

with prefix items c and m are not generated. Because f is 

the last item and the support of f is equal to the support of 

m, m:3 is not a closed itemset. At this time, all frequent 

closed itemsets with prefix m have been found. 

The third item b is used as a prefix item. It can get three 

paths, fcab, fb and cb. Each one of the paths fcab and cb 

has a child and the supports in path fb are not the same, so 

it is unnecessary to note records of the tree. The 

conditional pattern base, fca:1/m, f:1 and c:1/p, builds the 

conditional FP-tree as shown in Fig. 8(c). According to 

the header table, item c is the first prefix item. It is 

unnecessary to note records here because no support is 

the same in each path. It can find two paths fc:1 with 

record m and c:1 with record p. Only item c is frequent 

and the records of two paths are not the same, so cb:2 is a 

frequent closed itemset. Since f is the last item of the 

header table and it has no record, fb:2 is a frequent closed 

itemset. Because f is the last item and the support of f is 

not equal to the support of b, b:3 is a frequent closed 

itemset. At this time, all frequent closed itemsets with 

prefix b have been found. 

Because prefix item a has only one path and it has a 

record m, it is unnecessary to create the conditional 

FP-tree with prefix item a. The prefix a will not generate 

any closed itemset. 

For prefix item c, it has two paths, fc and c. The 

conditional pattern base, f:3/am, and the other path have 

nothing, so it is unnecessary to create the conditional 

FP-tree for prefix item c with item f. And c:4 is a frequent 

closed itemset.  

Finally, the last item f has no record, so f:4 is a frequent 

closed itemset. At this time, the mining process is 

completed. 

E. Parallel Method 

Since FP-tree can be used in the parallel environment, 

CIMNC is suitable to mine frequent closed itemsets in a 

parallel manner. In addition, CIMNC can generate 

frequent closed itemsets directly; the mining process can 

speed up very well by using parallel techniques. 

Each computer handles some items as prefix items in 

the parallel environment. When the application sends the 

data and commands to each computer, the percentage of 

continuous frequent items is allocated for each computer 

in the command. After the FP-tree is completed in each 

computer, it can traverse the FP-tree once to note records, 

or only check its child notes if they have the same support 

to decide the search range as an optimal way. If a child 

node is not one of the items allocated to this computer, it 

needs to note records if it is a valid item which 

corresponds to CIMNC. Otherwise, it has been noted 

before. After the downward noting process is done, the 

upward noting process starts until the root is reached. 

After all nodes of this prefix item have been processed, it 

begins building the conditional FP-tree repeatedly until 

deriving all frequent closed itemsets with this prefix item. 

When all items which are allocated to this computer are 

processed, all frequent closed itemsets with these prefix 

items are all generated. When all computers send back 

their results to the application, it is unnecessary to check 

the closure. This can save a lot of time. For an algorithm 

which needs to do closure checking, it would have to wait 

for each other because one does not know which 

computer will finish first. The closure checking in the 

parallel environment needs to do either subset checking 

or superset checking. It can derive all frequent closed 

itemsets with closure checking after all computers finish 

their work. 

For example, assume three computers, namely A, B, 

and C, are used in the parallel environment and A is the 

slowest one of three computers. The runtime of CIMNC 

is the same as the runtime of computer A since CIMNC 

does not require closure checking after collecting 

information from all three computers. This is shown in 

formula (1). For a method requiring closure checking, the 

runtime is expressed in formula (2) where time closure 

checking is the time of closure checking after collecting the 

result from all three computers.  
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Run time CIMNC= run time CIMNC (A)                  (1) 

Run timenon-CIMNC = run timenon-CIMNC (A)+ 

timeclosure checking                                (2) 

 

Performing the closure check in each computer is not 

efficient because it may involve a lot of itemsets. 

However, it takes a lot of time to do closure checking 

after obtaining all itemsets from the three computers. Our 

method can generate closed itemsets directly, and it does 

not require time closure checking. The time saved with CIMNC 

can be expressed in formula (3):  

Saved time = run timenon-CIMNC(A)+timeclosure checking - 

run time CIMNC(A)                           (3) 

4. Experimental results 

A. Environment and Datasets 

Our method uses the horizontal database and FP-tree to 

find closed itemsets. CLOSET+ and FPclose are two 

popular algorithms that are appropriate to compare with 

our method. We know the purpose of using FP-array in 

FPclose is to accelerate the generation of FP-tree. Since 

arrays take up a large amount of space, FPclose is not a 

good candidate for comparison. Therefore, CLOSET+ is 

the most suitable one. 

The CIMNC algorithm was implemented with Java 

programming language. In order to compare it with the 

CLOSET+ algorithm, we also implemented CLOSET+ in 

Java. Our experiments were performed on a personal 

computer of Intel Pentium 4 640 series, 3.2GHZ 

processor and DDR2 533MHz 2GB main memory. The 

experiments’ datasets are produced by the IBM dataset 

generator [17]. We list the parameters in Table 2. We can 

generate datasets by selecting these parameters to 

evaluate the performance of our algorithm. 

 

Table 1 Parameters used in the IBM dataset generator. 

D Number of transactions 

T Average size of transactions 

I 
Average size of maximal potentially-large 

itemsets 

L Number of potentially-large itemsets 

N Number of items 

  

In order to show the difference between CLOSET+ and 

our method, we generate the databases by setting the 

number of items N = 50, the number of potentially-large 

itemsets L = 1000, and use the settings of the parameters 

T10I4D10K to generate the test data. We set the average 

length of the transaction T = 10, the average size of 

maximal potentially-large itemsets I = 4 and the number 

of transactions D =10000. 

B. Experiment Result and Discussion 

The dataset T10I4D10K was used to run two 

algorithms CIMNC and CLOSET+. The results of setting 

the average sizes of the potentially large itemset as 4 with 

the minimum supports from 0.4% to 2% are shown in Fig. 

9(a) while the results for the minimum supports from 2% 

to 20% are shown in Fig. 9(b).  
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Fig. 9 The experiment results on T10I4D10K. (a) with smaller 

min_sup. (b) with larger min_sup. 

 

In Fig. 9(a), one can see the execution time of our 

method is better than CLOSET+. When the minimum 

support is lower, the performance of our method gets 

better than CLOSET+. Because the number of closed 

itemset candidates is very big when the minimum support 

is very low, CLOSET+ needs more time to compare a lot 

of itemsets for closure checking. Since CIMNC does not 

need to compare many itemsets, it can get better 

performance in lower minimum supports. When the 

support increases, the number of candidates becomes 

smaller. Then the run time of CLOSET+ approaches the 

run time of CIMNC. 
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In Fig. 9(b), one can see the performance of CLOSET+ 

is better than CIMNC when the minimum support is near 

10%. Because the number of candidates is very small and 

most itemsets are 1-itemset and 2-itemset, the time for 

closure checking becomes much less. Since CIMNC still 

needs to generate the records, it would take a little more 

time than CLOSET+. We know the time of generating 

records is based on the size of tree. Since the tree 

becomes smaller as the minimum support is larger than 

10%, the performance of CIMNC is very close to 

CLOSET+. 
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Fig. 10 Memory consumption on T10I4D10K. 

 

Fig. 10 shows the memory consumption on 

T10I4D10K. The performance of CIMNC is 1.3 times 

better than CLOSET+ on average. Because CIMNC does 

not need to store candidates, it takes less memory space. 

Although noting records take up some memory space, it is 

still less than the space of storing all candidates. Besides, 

the storage used to store candidates may be larger than the 

original FP-tree in the worst case. Since not every record 

needs to note items, CIMNC takes less space than 

CLOSET+. In this figure, the line drops fast when the 

minimum support is from 5 to 10 and 15 to 20. This is 

because that the frequent items are reduced quickly, so 

the tree becomes very small. When the minimum support 

reaches 20, the required memory space drops to near 0. 

The reason is that the number of frequent items becomes 

very small and only frequent 1-itemsets can be found, 

such that less memory space is needed for the FP-tree. 

5. Conclusions and future work 

In this paper, an efficient approach called CIMNC is 

proposed to mine frequent closed itemsets without the 

need of closure checking. CIMNC has several advantages 

over other approaches. First, it is not necessary to do 

closure checking. However, it still can achieve the effect 

of subset pruning and reducing the number of conditional 

FP-trees. Because CIMNC doesn’t generate any 

candidates, it is not necessary to store itemsets in the 

memory. It can output frequent closed itemsets directly 

and is suitable for parallel mining. 

After implementing the CIMNC algorithm, we have 

studied its performance to compare with CLOSET+ for 

large databases. The results of performance study show 

that our method outperforms this well-known approach. 

Further improvements on the record mode are in the 

list of our future work. A simple format will be used to 

note the records to avoid keeping a long string in the 

record, and check if they have the same items quickly. 
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