

 Efficient Mining of Frequent Closed Itemsets without Closure Checking

Chih-Hsien Lee
1
, Kuo-Cheng Yin

1,2
, Don-Lin Yang

1
,

Jungpin Wu

3

1
Dept. of Information Engineering and Computer Science, Feng Chia University, Taiwan

2
Dept. of Information Management, Jen-Teh Junior College, Taiwan

3
Dept. of Statistics and Dept. of Public Finance, Feng Chia University, Taiwan

bartscott@selab.iecs.fcu.edu.tw, inn@selab.iecs.fcu.edu.tw, {dlyang, cwu}@fcu.edu.tw

Abstract

Most existing algorithms for mining frequent closed

itemsets have to check whether a newly generated

itemset is a frequent closed itemset by using the subset

checking technique. To do this, a storing structure is

required to keep all known frequent itemsets and

candidates. It takes additional processing time and

memory space for closure checking. To remedy this

problem, an efficient approach called closed itemset

mining with no closure checking algorithm is proposed.

We use the information recorded in an FP-tree to

identify the items that will not constitute closed itemsets.

Using this information, we can generate frequent closed

itemsets directly. It is no longer necessary to check

whether an itemset is closed or not when it is generated.

We have implemented our algorithm and made many

performance experiments. The results show that our

approach has better performance in the runtime and

memory space utilization. Moreover, this approach is

also suitable for parallel mining of frequent closed

itemsets.

Keyword: Data mining, association rule, frequent

closed itemset, closure checking

1. Introduction

Data mining is an important research field for finding

information in a large volume of data [13]. The function

of data mining is to find important information that can be

used to make decisions and action plans. Data mining has

already been applied extensively in various industries.

Association rule mining is a useful data mining

technique to find frequent itemsets and generate useful

association rules [12]. Generating all frequent itemsets

[1-3], [15-16] in brute force is not an efficient task, so

many closed itemsets [4-10] and maximal itemsets [11]

approaches were derived. However, the information of

maximal itemsets is incomplete such that association

rules cannot be generated directly. Frequent closed

itemsets can solve the problems that frequent itemsets and

frequent maximal itemsets have. A frequent itemset is

closed if none of its proper supersets have the same

support. All closed frequent itemsets contain complete

information to generate association rules.

However, most known frequent closed itemset mining

algorithms must check the closure at the end of the

process or during the process [4-6], especially for the

algorithms using the horizontal dataset directly. The

closure checking examines whether a newly found

itemset is a subset or a superset of an already found

frequent closed itemset with the same support. For this

purpose, it is necessary to create a structure to store all

frequent closed itemsets and closed itemset candidates.

The closure checking step of the existing closed itemset

mining algorithms is computational expensive and

requires additional memory space for generating, storing

and removing non-closed itemsets.

Our work completely eliminates the closure checking

step during the closed itemset generation. We propose an

algorithm called Closed Itemsets Mining with No closure

Checking (CIMNC) to directly produce frequent closed

itemsets without closure checking and unnecessary

storage structure. CIMNC won’t generate unnecessary

conditional FP-trees [4] if possible. We only use an

attribute called record in the node of FP-tree to keep

necessary information in each branch of the tree such that

redundancy can be avoided. Especially, only frequent

closed itemsets are produced and each one is produced

exactly once. Since CIMNC can generate frequent closed

itemsets directly in each processor, it is also suitable for

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
ISSN 2150-7988 Vol.1 (2009), pp. 58–67
http://www.mirlabs.org/ijcisim

parallel mining.

2. Related work

The FP-growth method [2] is a depth-first and

divide-and-conquer algorithm. In this method, a structure

called FP-tree is used to obtain a compact representation

of the original transactions. Every branch of the FP-tree

represents a transaction composed of the subset of

frequent items. The nodes along the branches are stored

in decreasing order of the frequency of all frequent items.

Compression is achieved by overlapping itemsets which

share prefixes of the corresponding branches to build the

FP-tree. The FP-tree has sufficient information to mine

complete frequent patterns. Each node in the FP-tree has

three fields: item-name, count, and node-link. The

frequent itemsets can be found from the FP-tree quickly

without having to scan the database on the disk frequently.

A frequent-item header table is built to make traverse the

tree more easily. All frequent items are stored in the

header table in decreasing order of their frequency. Each

item points to its occurrence in the tree via a head of

node-link. Nodes with the same item are linked via

node-links. Each entry in the header table has two fields:

item-name and head of node-link.

The FP-growth method scans the database only twice.

In the first scan it finds all frequent items and inserts them

into the header table in decreasing order of their counts.

In the second scan, the root of FP-tree is created with

“null.” The set of frequent items in each transaction is

inserted into the FP-tree as a branch. If an itemset has the

same prefix with another itemset already in the tree, this

part of branch will be shared. A count in a node stores the

number of the item which appears in this path. When a

transaction is inserted into a new branch, the count is

updated. After all nodes are linked from the header table,

the FP-tree is completely constructed. The next step is to

find all frequent itemsets. It collects all the patterns which

a node participates by starting from its head in the header

table and following its node-link. The mining process

starts from the bottom of the header table. Paths with the

same prefix item in the FP-tree construct the conditional

pattern base of the prefix item with its support. Frequent

items in the conditional pattern base construct the

conditional FP-tree of the prefix item. It keeps

constructing the conditional FP-tree until a single path is

found. Frequent itemsets with the same prefix are

generated by the single path.

The main work of FP-growth method is traversing

FP-trees and constructing new conditional FP-trees from

the global FP-tree. It needs to traverse the original

FP-tree twice to construct a new conditional FP-tree. The

first traversal finds all frequent items in the conditional

pattern base and constructs a new header table for new

conditional FP-tree. The second traversal constructs the

new tree. FPclose [4] can omit the first traversal by

adopting an FP-array technique.

Fig. 1 An FP-array example.

Fig.2 An FP-tree example.

Using the example of Fig. 1 from [4], an array structure

called FP-array is used in this method. During the second

scan of the database of Fig. 2(a), it constructs the FP-tree

and the FP-array as shown in Fig. 2(b) and Fig. 1

respectively. The mining method of FPclose [4] is

different from CLOSET+ [6]. It won’t do subset checking

to avoid generating redundancies of a prefix, but

generates a lot of candidates to check their closure. A

structure called CFI-tree [4], as shown in Fig. 3, is used to

store frequent itemsets efficiently and to do closure

checking.

Efficient Mining of Frequent Closed Itemsets without Closure Checking 59

Fig. 3 Construction of CFI-tree

The CLOSET+ algorithm [6] is based on the FP-tree

and uses the two-level hash indexed result tree to store

frequent closed itemsets for closure checking. When it

finds a single path in the conditional FP-tree, it must

perform subset checking to check if it should generate the

closed itemset candidate with a prefix itemset from all

known frequent closed itemsets. If the prefix itemset is a

subset of a known frequent itemset and has the same

support, the itemsets of this prefix itemset will not be

generated. On the other hand, the closed itemset

candidates are generated and then it must check the

closure in the result tree to determine if they are really

frequent closed itemsets. CLOSET+ needs to do many

times of subset checking and closure checking. Since the

result tree is searched many times, it takes a lot of time.

The processes of CLOSET+ algorithm have seven

steps.

Step 1:

Scan the database to find the counts of all items in the

database. Find all frequent items by using the min_sup

and sort these items with their supports in decreasing

order. Build the header table with item-name, support

count and head of node link to store the frequent items.

Step 2:

Scan the database again to build the FP-tree, where

each node has the fields of item-name, count, and

node-link, according to the order of the header table.

Each node of the same item-name is linked from the

header table by node-links.

Step 3:

According to the order of items in the header table, it

gets an item as the prefix item each time. Merge the prefix

item and the prefix item of this tree as a prefix itemset.

Check if the prefix itemset with the support of the prefix

item is in the two level hash indexed result tree. If not, get

all paths which contain the prefix item linked from the

header table. Set the support of the prefix node as the

support of all items in the path to form the conditional

pattern base.

Step 4:

Prune the items which are not frequent from the

conditional pattern base. And then use the remaining

items to build the header table. Finally create the

conditional FP-tree with the header table. Set the next

item in the header table as the prefix item. Use Step 5 to

process the conditional FP-tree. And repeat Step 3 and

Step 4 until the last item of the header table is completed.

Step 5:

According to the order of items in the header table of

the conditional FP-tree, it can get an item as the prefix

item each time. Repeat Step 3 and Step 4 to create the

conditional FP-tree for each prefix item until the

conditional FP-tree becomes a single path.

Step 6:

Closed itemset candidates can be generated from the

single path with the prefix items of the conditional

FP-trees which have been processed before. Check if an

itemset is a closed itemset using the two-level hash

indexed result tree method (for simplicity we assume

dense datasets). Store the itemset in the tree if it is closed.

Step 7:

After processing the last item of the original header

table, we can obtain all frequent closed itemsets.

Fig. 4 Bottom-up physical tree-projection [6]

An example from [6] for the bottom-up physical

tree-projection is shown in Fig. 4 where the min_sup is 2.

60 Chih-Hsien Lee et al.

3. Proposed algorithm: CIMNC

A. Main Concept of CIMNC

Mining itemsets in bottom-up order of item supports is

the property of FP-tree. One can not find supersets of the

found frequent closed itemsets by using this property. If it

can avoid generating the subsets of known frequent

closed itemsets, frequent closed itemsets can be

generated directly.

According to the properties of FP-tree and closed

itemset, it is easy to find that if an itemset is a subset of the

other known itemset and both of their prefix items have

the same support, they are both found in the same path.

Therefore, if a branch has more than two items that have

the same support, it may generate subsets with the same

support. In order to avoid generating these subsets, it

should keep off items which have been processed with the

same support in the same path and avoid constructing

them again.

A record is used in CIMNC to identify if an item has

been processed before. If the nodes of an item have the

same item in the record, it means the item has completed

the process. Using this idea, subsets with the same

support won’t be generated. Thus, it can speed up the run

time by not building the conditional FP-tree for invalid

items.

B. The CIMNC Algorithm

Based on CLOSET+, CIMNC algorithm has seven

steps:

Step 1:

Scan the database to find the counts of all items. Find

all frequent items by using the min_sup and sort them in

decreasing order of their supports. Build the header table

with item-name, support count and head of node link

fields.

Step 2:

Scan the database again to build the FP-tree, in which

each node has four fields: item-name, count, node-link

and record, according to the order of the header table.

Each node with the same item-name is linked together.

Step 3:

According to the order of items in the header table,

each item is used as the prefix item one at a time. If all

nodes of the prefix item do not have the same items in

their records, get all paths containing the prefix item

being linked from the header table. When getting a path,

the records in this path are noted if the prefix item is a leaf

of the tree. Then set the support and record of the prefix

node as the support and record of all items in the path to

form the conditional pattern base.

Step 4:

Prune the items which have the same item in their

records and the items which are not frequent from the

conditional pattern base. Then, use the remaining items to

build the header table. Finally, create the conditional

FP-tree with the header table. Set the next item in the

header table as the prefix item. Use Step 5 to process the

conditional FP-tree. Repeat Step 3 and Step 4 until the

last item of the header table is processed.

Step 5:

According to the order of items in the header table of

the conditional FP-tree, each item is used as the prefix

item one at a time. Repeat Step 3 and Step 4 to create the

conditional FP-tree for each prefix item until the

conditional FP-tree becomes a single path.

Step 6:

Note the records for this path and obtain all itemsets

whose prefix items have no item in their records. It can

get closed itemsets from the single path with the prefix

items of the conditional FP-trees which have been

processed before.

Step 7:

After processing the last item in the original header

table, it generates all frequent closed itemsets.

C. Two Lemmas of CIMNC

If the support of a prefix item is equal to the support of

the parent item, they will be constructed completely when

the prefix item generates the conditional pattern base.

After these items have been processed, our method uses

the record of the node to note items that have the same

support as their child items in the same branch. Using an

array as a record in a node of FP-tree will waste much

space. Instead, the linked list technique is used to store

items. When considering an item if it is necessary to build

the conditional FP-tree or to perform closure checking,

one can simply check if the records in all the nodes of this

item have the same item. If they all have the same item,

there is no need to process again because it has been done

before. So itemsets generated from this item are not

closed.

Lemma 1. If all nodes of an item have the same items

in their records, the itemsets generated by this item are

not closed.

Proof: Let X be a prefix item and all the X nodes of the

tree have the same item Y in their records. Assume X may

generate a closed itemset, then the support of the itemset

generated by X will not equal to the support of the

superset generated by XY. Because all records of X

contain Y, the itemsets generated by X must be subsets of

the itemsets generated by XY, and their support must be

Efficient Mining of Frequent Closed Itemsets without Closure Checking 61

the same. It contradicts the assumption. So X can’t

generate any closed itemset. ■

After building the FP-tree, each item is considered as a

prefix item following the order of items in the header

table. When it searches the related paths of a prefix item

by using the node-links of the header table, the records of

these paths are completed.

The way to note the record is shown as follows. When

the node-link of a prefix item is linked to the first node

from the header table, it can find the first path which

contains the prefix item. When searching this path

upward to look for items in the path, it can check if its

child nodes have a total count that is equal to its count. If

their counts are not the same, it won’t note anything.

Otherwise, if the node has only one child node, it can note

the item and record its child node in its record. If the node

has more than one child node, it should check if any node

has the same items in item-name or records. If each

branch has the same items, it will note the item in the

record of the node. Otherwise, nothing is noted. Repeat

this process to the root until every node of the prefix items

of the header table has been processed. If a node of a

prefix item is not at the bottom of the path, it means this

path has been noted before. A simple example is shown in

Fig. 5.

Fig. 5 The recording method.

Fig. 5(a) is a part of the original FP-tree in Fig. 4(a).

When searching the prefix item p, it can find the path

camp. The path is processed as shown in Fig. 5(b). First,

go up and find the item m, then note p in the record of

node m because it has the same support as its child p. The

next item a has two child nodes, where their total support

is equal to the support of a. Since none of their item and

record is the same, it does not note anything. Then it

reaches item c. Because item c has the same support as

item a, its record is updated with a note of item a.

Next, the prefix item m is searched and the result is

shown in Fig. 5(c). Item b is the first item above item m

and its support is equal to the support of item m, so item b

is updated with a note of item m. The next item a has two

child nodes, where their total support is equal to the

support of a. Since they both have a record of m, item m is

noted in node a. Because node a adds a record m, the

parent node c is also updated with a note of m to its node

because the pair has the same support.

The way to use the records is briefly explained as

follows. When searching the paths for a prefix item, it

will set the support and records of the prefix item to all

items in a path. If each record of the prefix item does not

have the same items, the process of this item will continue,

else it will stop.

When getting the conditional pattern base of a prefix

item, it can prune the infrequent items. An item will be

pruned if all of its nodes have the same item(s) in their

records, because they can not generate any closed itemset

by Lemma 1. When getting a single path in the

conditional FP-tree, it is easy to know if the itemsets have

to be generated by the records.

The tree of Fig. 5(c) is used to show a simple example.

With a prefix item m, it can get two paths, cam and cabm.

The conditional pattern base has two prefix paths,

ca:2/p(ca:2 with a record p) and cabm:1. Because no item

has the same records, it can derive m’s conditional

FP-tree, <c:3, a:3>. If the prefix item is a, it can get a path

ca. Because the conditional pattern base only has a path

c:3/m, it is unnecessary to generate a’s conditional

FP-tree.

It is easy to prove that our method won’t generate more

or less itemsets by the following Lemma 2.

Lemma 2. CIMNC won’t generate non-closed

itemsets or miss any closed itemsets.

From Sections 2 and 3.B, one knows the process of

CIMNC is almost the same as the steps of CLOSET+.

CIMNC uses a record to identify if an item with the item

in its record can generate a closed itemset by Step 3 and

Step 4. CLOSET+ checks a prefix itemset from the two

level hash indexed result tree to identify if the itemset can

generate a closed itemset by Step 3 and Step 6. This

shows that CIMNC can generate all closed itemsets as

CLOSET+ does. Since CLOSET+ won’t generate extra

itemsets that are not closed and miss any closed itemsets,

CIMNC should have exactly the same properties as well.

For example, when CLOSET+ processes the prefix

item m in Fig. 4(c), the two level hash indexed result tree

has two paths, <f:2, c:2, a:2, m:2, p:2> <c:3, p:3>. When

it begins to generate the itemsets with the prefix item a, it

checks the prefix itemset am:3 to identify if any path has

this itemset with a support of 3. However, the result tree

62 Chih-Hsien Lee et al.

has no item m with support 3, so itemsets with the prefix

itemset will be generated. The result tree has an

additional path <f:3, c:3, a:3, m:3>. The next prefix item c

will be merged with item m as prefix itemset mc:3, and

mc:3 can be found in the result tree. So it is not necessary

to continue the process. The next item f is unnecessary to

be processed. For CIMNC, the first item a has no record,

so it generates the itemsets with a. For the next item c,

because it has a record a, meaning ac:3 has been

processed, it is unnecessary to be processed again. The

record of item f is not empty, so it is not necessary to be

processed. Although these two algorithms use different

methods to identify the prefix item, their processes are the

same. One can conclude that they all generate the same

result.

D. An Example of applying CIMNC

The database in Table 1 is used to present a simple

example for CIMNC. After scanning the database, it finds

all frequent items with min_sup=2. They are a:3, c:4, f:4,

m:3, p:3, b:3. Then sort these items with support in

decreasing order to get f:4, c:4, a:3, b:3, m:3, p:3. When

transactions are inserted into the FP-tree, items in each

transaction will be sorted by the order as shown in the last

column of Table 1. To find each item in all branches

easily, a header table is created with the sorted items in

Fig. 6.

Table 1 A sample transaction database

Fig. 6 The global FP-tree for Table 1.

After scanning the database again, the global FP-tree is

built in Fig. 6. All nodes which have the same item-name

are linked from the header table. After constructing the

FP-tree, it can be traversed to find all frequent closed

itemsets. According to the FP-growth method, it can take

item p as a prefix itemset to get two paths, fcamp and cbp,

by using the node links of item p in the header table.

When a node is linked, it will search the path to find what

items are in this path. At this time, it will note items in the

record of each node if a node has the same support as the

items below it.

Fig. 7 The recorded global FP-tree.

In Fig. 7(a), it notes p in the record of item m because

item m has the same support as prefix item p in the path

fcamp. Similarly, item c has a record a in its node. In the

path cbp, it notes p in the node b and notes pb in the node

c. The conditional pattern base of prefix item p has

fcam:2 and cb:1 to create the conditional FP-tree shown

in Fig. 8(a). The conditional FP-tree only contains

frequent items and it also has a header table. We can see

only one path in this tree. Following the bottom-up order

in the header table, we first make item m as a prefix item,

and find what items are above it. At this time, we note the

record in each node of this tree, as shown in Fig. 8(a). It

can find a frequent closed itemset cfamp:2 in this tree

with prefix m. Then it makes item a as a prefix. Because it

has an item m in its record of the only one node, one

knows it has been mined with prefix m. It won’t generate

itemsets with prefix pa. Similarly, the prefix pf won’t be

used neither. Finally, item c is the last item and its record

is empty. So we can find cp:3 as a frequent closed itemset.

Because c is the last item and the support of c is equal to

the support of p, p:3 is not a closed itemset. At this time,

all frequent closed itemsets with prefix p have been

found.

Efficient Mining of Frequent Closed Itemsets without Closure Checking 63

Fig. 8 The conditional FP-tree.

Then it makes item m as a prefix of the global FP-tree.

When searching the linked node of item m, it notes the

records for nodes with item m having no child. There are

two paths with prefix m, fcam and fcabm. In Fig. 7(b), the

node m in path fcam has a child, so it is unnecessary to

note records in this path. In path fcabm, it notes m in node

b, notes a in node c and adds m to node c. The conditional

pattern base containing fca:2/p and fcab:1 can form a

conditional FP-tree as shown in Fig. 8(b). Then note the

records in the tree when it makes item a as a prefix item. It

can find a frequent closed itemset fcam:3, and itemsets

with prefix items c and m are not generated. Because f is

the last item and the support of f is equal to the support of

m, m:3 is not a closed itemset. At this time, all frequent

closed itemsets with prefix m have been found.

The third item b is used as a prefix item. It can get three

paths, fcab, fb and cb. Each one of the paths fcab and cb

has a child and the supports in path fb are not the same, so

it is unnecessary to note records of the tree. The

conditional pattern base, fca:1/m, f:1 and c:1/p, builds the

conditional FP-tree as shown in Fig. 8(c). According to

the header table, item c is the first prefix item. It is

unnecessary to note records here because no support is

the same in each path. It can find two paths fc:1 with

record m and c:1 with record p. Only item c is frequent

and the records of two paths are not the same, so cb:2 is a

frequent closed itemset. Since f is the last item of the

header table and it has no record, fb:2 is a frequent closed

itemset. Because f is the last item and the support of f is

not equal to the support of b, b:3 is a frequent closed

itemset. At this time, all frequent closed itemsets with

prefix b have been found.

Because prefix item a has only one path and it has a

record m, it is unnecessary to create the conditional

FP-tree with prefix item a. The prefix a will not generate

any closed itemset.

For prefix item c, it has two paths, fc and c. The

conditional pattern base, f:3/am, and the other path have

nothing, so it is unnecessary to create the conditional

FP-tree for prefix item c with item f. And c:4 is a frequent

closed itemset.

Finally, the last item f has no record, so f:4 is a frequent

closed itemset. At this time, the mining process is

completed.

E. Parallel Method

Since FP-tree can be used in the parallel environment,

CIMNC is suitable to mine frequent closed itemsets in a

parallel manner. In addition, CIMNC can generate

frequent closed itemsets directly; the mining process can

speed up very well by using parallel techniques.

Each computer handles some items as prefix items in

the parallel environment. When the application sends the

data and commands to each computer, the percentage of

continuous frequent items is allocated for each computer

in the command. After the FP-tree is completed in each

computer, it can traverse the FP-tree once to note records,

or only check its child notes if they have the same support

to decide the search range as an optimal way. If a child

node is not one of the items allocated to this computer, it

needs to note records if it is a valid item which

corresponds to CIMNC. Otherwise, it has been noted

before. After the downward noting process is done, the

upward noting process starts until the root is reached.

After all nodes of this prefix item have been processed, it

begins building the conditional FP-tree repeatedly until

deriving all frequent closed itemsets with this prefix item.

When all items which are allocated to this computer are

processed, all frequent closed itemsets with these prefix

items are all generated. When all computers send back

their results to the application, it is unnecessary to check

the closure. This can save a lot of time. For an algorithm

which needs to do closure checking, it would have to wait

for each other because one does not know which

computer will finish first. The closure checking in the

parallel environment needs to do either subset checking

or superset checking. It can derive all frequent closed

itemsets with closure checking after all computers finish

their work.

For example, assume three computers, namely A, B,

and C, are used in the parallel environment and A is the

slowest one of three computers. The runtime of CIMNC

is the same as the runtime of computer A since CIMNC

does not require closure checking after collecting

information from all three computers. This is shown in

formula (1). For a method requiring closure checking, the

runtime is expressed in formula (2) where time closure

checking is the time of closure checking after collecting the

result from all three computers.

64 Chih-Hsien Lee et al.

Run time CIMNC= run time CIMNC (A) (1)

Run timenon-CIMNC = run timenon-CIMNC (A)+

timeclosure checking (2)

Performing the closure check in each computer is not

efficient because it may involve a lot of itemsets.

However, it takes a lot of time to do closure checking

after obtaining all itemsets from the three computers. Our

method can generate closed itemsets directly, and it does

not require time closure checking. The time saved with CIMNC

can be expressed in formula (3):

Saved time = run timenon-CIMNC(A)+timeclosure checking -

run time CIMNC(A) (3)

4. Experimental results

A. Environment and Datasets

Our method uses the horizontal database and FP-tree to

find closed itemsets. CLOSET+ and FPclose are two

popular algorithms that are appropriate to compare with

our method. We know the purpose of using FP-array in

FPclose is to accelerate the generation of FP-tree. Since

arrays take up a large amount of space, FPclose is not a

good candidate for comparison. Therefore, CLOSET+ is

the most suitable one.

The CIMNC algorithm was implemented with Java

programming language. In order to compare it with the

CLOSET+ algorithm, we also implemented CLOSET+ in

Java. Our experiments were performed on a personal

computer of Intel Pentium 4 640 series, 3.2GHZ

processor and DDR2 533MHz 2GB main memory. The

experiments’ datasets are produced by the IBM dataset

generator [17]. We list the parameters in Table 2. We can

generate datasets by selecting these parameters to

evaluate the performance of our algorithm.

Table 1 Parameters used in the IBM dataset generator.

D Number of transactions

T Average size of transactions

I
Average size of maximal potentially-large

itemsets

L Number of potentially-large itemsets

N Number of items

In order to show the difference between CLOSET+ and

our method, we generate the databases by setting the

number of items N = 50, the number of potentially-large

itemsets L = 1000, and use the settings of the parameters

T10I4D10K to generate the test data. We set the average

length of the transaction T = 10, the average size of

maximal potentially-large itemsets I = 4 and the number

of transactions D =10000.

B. Experiment Result and Discussion

The dataset T10I4D10K was used to run two

algorithms CIMNC and CLOSET+. The results of setting

the average sizes of the potentially large itemset as 4 with

the minimum supports from 0.4% to 2% are shown in Fig.

9(a) while the results for the minimum supports from 2%

to 20% are shown in Fig. 9(b).

T10I4D10K

0

1

2

3

4

5

0.4 0.8 1.2 1.6 2

Minimum Support(%)

T
im

e(
s)

CLOSET+

CIMNC

 (a)

T10I4D10K

0

0.2
0.4

0.6
0.8

1
1.2

1.4

2 5 10 15 20

Minimum Support(%)

T
im

e(
s)

CLOSET+

CIMNC

(b)

Fig. 9 The experiment results on T10I4D10K. (a) with smaller

min_sup. (b) with larger min_sup.

In Fig. 9(a), one can see the execution time of our

method is better than CLOSET+. When the minimum

support is lower, the performance of our method gets

better than CLOSET+. Because the number of closed

itemset candidates is very big when the minimum support

is very low, CLOSET+ needs more time to compare a lot

of itemsets for closure checking. Since CIMNC does not

need to compare many itemsets, it can get better

performance in lower minimum supports. When the

support increases, the number of candidates becomes

smaller. Then the run time of CLOSET+ approaches the

run time of CIMNC.

Efficient Mining of Frequent Closed Itemsets without Closure Checking 65

In Fig. 9(b), one can see the performance of CLOSET+

is better than CIMNC when the minimum support is near

10%. Because the number of candidates is very small and

most itemsets are 1-itemset and 2-itemset, the time for

closure checking becomes much less. Since CIMNC still

needs to generate the records, it would take a little more

time than CLOSET+. We know the time of generating

records is based on the size of tree. Since the tree

becomes smaller as the minimum support is larger than

10%, the performance of CIMNC is very close to

CLOSET+.

T10I4D10K

0

5

10

15

0.4 0.8 1.2 1.6 2 5 10 15 20

Minimum Support(%)

M
em

or
y(

M
B

)

CLOSET+

CIMNC

Fig. 10 Memory consumption on T10I4D10K.

Fig. 10 shows the memory consumption on

T10I4D10K. The performance of CIMNC is 1.3 times

better than CLOSET+ on average. Because CIMNC does

not need to store candidates, it takes less memory space.

Although noting records take up some memory space, it is

still less than the space of storing all candidates. Besides,

the storage used to store candidates may be larger than the

original FP-tree in the worst case. Since not every record

needs to note items, CIMNC takes less space than

CLOSET+. In this figure, the line drops fast when the

minimum support is from 5 to 10 and 15 to 20. This is

because that the frequent items are reduced quickly, so

the tree becomes very small. When the minimum support

reaches 20, the required memory space drops to near 0.

The reason is that the number of frequent items becomes

very small and only frequent 1-itemsets can be found,

such that less memory space is needed for the FP-tree.

5. Conclusions and future work

In this paper, an efficient approach called CIMNC is

proposed to mine frequent closed itemsets without the

need of closure checking. CIMNC has several advantages

over other approaches. First, it is not necessary to do

closure checking. However, it still can achieve the effect

of subset pruning and reducing the number of conditional

FP-trees. Because CIMNC doesn’t generate any

candidates, it is not necessary to store itemsets in the

memory. It can output frequent closed itemsets directly

and is suitable for parallel mining.

After implementing the CIMNC algorithm, we have

studied its performance to compare with CLOSET+ for

large databases. The results of performance study show

that our method outperforms this well-known approach.

Further improvements on the record mode are in the

list of our future work. A simple format will be used to

note the records to avoid keeping a long string in the

record, and check if they have the same items quickly.

Acknowledgement

This work was supported partially by the National

Science Council, Taiwan, under grant numbers

NSC95-2221-E-035-068-MY3 and NSC97-3114-E-007

-001.

References

[1] R. Agrawal, and R. Srikant, "Fast Algorithms for Mining

Association Rules," Proc. of the 20th International

Conference on Very Large Data Bases (VLDB), 1994, pp.

487-499.

[2] J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns

without Candidate Generation," Proc. of the ACM

SIGMOD International Conference on Management of

Data, 2000, pp. 1-12.

[3] D. Lin and Z. M. Kedem, "Pincer-search: an Efficient

Algorithm for Discovering the Maximum Frequent Set,"

IEEE Transactions on Knowledge and Data Engineering,

Vol. 14, No. 3, 2002, pp. 553-566.

[4] G. Grahne, and J. Zhu, "Fast Algorithms for Frequent

Itemset Mining Using FP-Trees," IEEE Transactions on

Knowledge and Data Engineering, Vol. 17, No. 10, 2005,

pp. 1347-1362.

[5] J. Pei, J. Han, and R. Mao, "Closet: An Efficient

Algorithm for Mining Frequent Closed Itemsets," Proc. of

the 5th ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, 2000, pp. 11-20.

[6] J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the

Best Strategies for Mining Frequent Closed Itemsets,"

Proc. of the 9th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2003, pp.

236-245.

[7] Mohanmmed J. Zaki, and C.-J. Hsiao, "Efficient

Algorithms for Mining Closed Itemsets and Their Lattice

Structure," IEEE Transactions on Knowledge and Data

Engineering, Vol. 17, No. 4, 2005, pp. 462-478.

66 Chih-Hsien Lee et al.

[8] C. Lucchese, S. Orlando, and R. Perego, "Fast and

Memory Efficient Mining of Frequent Closed Itemsets,"

IEEE Transactions on Knowledge and Data Engineering,

Vol. 18, No. 1, 2006, pp. 21-36.

[9] C. Liu, H. Lu, X. Yu, W. Wang, and X. Xiao, "AFOPT:

An Efficient Implementation of Pattern Growth

Approach," Proc. of IEEE ICDM'03 Workshop on

Frequent Itemset Mining Implementations (FIMI'03),

2003, pp. 1-10.

[10] L. Ning, N. Wu, and J. Zhang, “A New Technique for Fast

Frequent Closed Itemsets Mining,” IEEE International

Conference on Systems, Man and Cybernetics, Vol. 4,

2005, pp. 3640-3647.

[11] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T.

Yiu, "MAFIA: A Maximal Frequent Itemset Algorithm,"

IEEE Transactions on Knowledge and Data Engineering,

Vol. 17, No. 11, 2005, pp. 1490-1504.

[12] P.-N. Tan, M. Steinbach and V. Kumar, Introduction to

Data Mining. Addison Wesley, 2006.

[13] U. Fayyad, G. PiatetskyShapiro and P. Smyth, "The KDD

Process for Extracting Useful Knowledge from Volumes

of Data," Communications of the ACM, Vol. 39, No. 11,

1996, pp. 27-34.

[14] D.-Y. Chiu, Y.-H. Wu, and A.L.P. Chen , “An Efficient

Algorithm for Mining Frequent Sequences by a New

Strategy without Support Counting,” Proc. of IEEE

Conference on Data Engineering (ICDE'04), 2004, pp.

375-386.

[15] M. Song, and S. Rajasekaran, "A Transaction Mapping

Algorithm for Frequent Itemsets Mining," IEEE

Transactions on Knowledge and Data Engineering, Vol.

18, No. 4, 2006, pp. 472-481.

[16] M. Seno, and G. Karypis, "LPMiner: An Algorithm for

Finding Frequent Itemsets Using Length-Decreasing

Support Constraint," Proc. of the 2001 IEEE International

Conference on Data Mining (ICDM '01), 2001, pp.

505-512.

[17] IBM Almaden Research Center, "Synthetic Data

Generation Code for Associations and Sequential

Patterns," URL:http://www.almaden.ibm.com/

software/quest/, 2006.

Author biographies

Chih-Hsien Lee received his M.S. degree from the

Department of Information Engineering and

Computer Science at Feng Chia University, Taiwan.

His research interests include data mining and

software engineering.

Kuo-Cheng Yin received his M.S. degree from the

Department of Information Engineering and

Computer Science at Feng Chia University, Taiwan.

He is currently a Ph.D. candidate there and an

instructor in the Department of Information

Management at Jen-Teh Junior College, Taiwan.

His research interests include data mining and image

processing.

Don-Lin Yang received his B.E. degree in Computer

Science from Feng Chia University, Taiwan, in

1973, an M.S. degree in Applied Science from the

College of William and Mary in 1979, and a Ph.D.

degree in Computer Science from the University of

Virginia in 1985. He worked at IBM Santa Teresa

Laboratory from 1985 to 1987 and at AT&T Bell

Laboratories from 1987 to 1991. Since then, he

joined the faculty of Feng Chia University and is

currently a professor in the Department of

Information Engineering and Computer Science.

His research interests include data mining, software

engineering, and computer networks.

Jungpin Wu received the B.S. degree in Applied

Mathematics from Tatung University, Taiwan, in

1988, the M.S. degree in Statistics from the

Graduate Institute of Statistics of National Central

University in 1993, and the Ph.D. degree in

Statistics from the North Carolina State University

in 1998. He was a postdoctoral staff at Academia

Sinica from 1998 to 1999. Since then, he joined the

faculty of Feng Chia University, where he was an

Assistant Professor in the Department of Statistics

from 1999 to 2004. Dr. Wu is currently an Associate

Professor in the Department of Public Finance. His

research interests include spatial statistics,

generalized estimating equations, empirical process

approach, and data mining.

Efficient Mining of Frequent Closed Itemsets without Closure Checking 67

