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Abstract:  In multi-label text categorization, one or more la-  Virtual Generalizing Random Access Memory Weightless
bels (or categories) can be assigned to a single document. In Neural Networks (VG-RAM WNN, for short) is an effec-
many such categorization tasks, there can be correlation on  tive machine learning technique, which offers fast trajnin
the assignment of subsets of the set of categories. This can and test, and easy implementation [2, 9]. In this paper, we
be exploited to improve machine learning techniques devoted  present a new VG-RAM WNN architecture that exploits the
to multi-label text categorization. In this paper, we exam-  correlation between categories. We named this architectur
inea Virtual Generalizing Random Access Memory Weightless  Data Correlated VG-RAM WNN (VG-RAM WNN-COR).
Neural Network (VG-RAM WNN) architecture that takes ad-  Different from standard VG-RAM WNN's neurons, which
vantage of the correlation between categoriesto improvetext ~ can only assign a single category to a document, in VG-RAM
categorization performance. We compare the performance of WNN-COR each neuron can assign one or more categories
this architecture, that we named Data Correlated VG-RAM  to a document simultaneously.

WNN (VG-RAM WNN-COR), with that of standard VG-RAM  We evaluate the performance of VG-RAM WNN-COR on
WNN and ML-KNN categorizersusing ten multi-label text cate-  the categorization of free-text descriptions of econontic a
gorization performancemetrics. Our experimental resultsshow  tivities. The automation of the categorization of economic
that VG-RAM WNN-COR has an overall better performance  activities of companies from business descriptions intiese
than VG-RAM WNN and ML-KNN for the set of metricscon-  format is a huge challenge for the Brazilian governmental
sidered. administration in the present day. So far, this task has been
Keywords: VG-RAM Weightless Neural Networks, machine learncarried out by humans, not all of them properly trained for
ing, multi-label text categorization, label correlation, categorizatiothe job. When this problem is tackled by humans, the sub-
of economic activities, multi-label text categorization performancgectivity on their categorization brings a problem: diffei

metrics human categorizers can give different results when working
on the same business description. This can cause dist®rtion
|. Introduction in the information used for planning, taxation and other-gov

ernmental obligations of the three Brazilian administeti
Most works on text categorization in the literature are folevels: County, State and Federal. Furthermore, the num-
cused on single-label text categorization problems, whefger of possible categories considered is very large, mane th
each document may only have a single label [16]. How1000 in the Brazilian scenario, which makes the categoriza-
ever, in real-world problems, multi-label categorizatisn tion problem even harder to be solved.
frequently necessary [15, 5, 4, 17, 3, 6, 13, 20, 21]. FromWe analyze the performance of VG-RAM WNN-COR us-
theoretical point of view, single-label categorizationrisre ing ten multi-label text categorization performance nustri
general than multi-label, since an algorithm for singledl one-error [14], coverage[15], ranking loss[14], average
categorization can also be used for multi-label categerizgrecision[10], R-precision[10], Hamming losg14], exact
tion: one needs only to transform the multi-label categomatch[8], precision[10, 16],recall [10, 16], and~; [10, 16].
rization problem inton independent single-label problems,We also compare the VG-RAM WNN-COR performance
wheren is the number of possible labels (or categories) [16)with that of standard VG-RAM WNN and Multi-Label k-
However, this equivalence only holds if thecategories are Nearest Neighbors (ML-KNN) [21] categorizers. Our exper-
stochastically independent, that is, the association @fte-c imental evaluation shows that VG-RAM WNN-COR has an
gory¢; to adocument is independent of the association of awverall better performance than VG-RAM WNN and ML-
other category;;, to the same document, which is frequentlyK NN on the categorization of economic activities for the set
not the case. Fortunately, several techniques for miglla of metrics considered.
categorization have been proposed, such as multi-label dBEris paper is organized as follows. After this introduction
cision trees [4], kernel methods [5, 3] or neural networkSection Il defines the multi-label text categorization prob
[13, 20], and many of them specifically for multi-label textlem. Section Il describes our VG-RAM WNN and VG-
categorization [15, 17, 6, 13, 20]. Multi-label categotiaga RAM WNN-COR categorizers, and Section IV the ML-KNN
systems can take advantage of the correlation between catategorizer. Section V presents our experimental methodol
gories in order to improve their performance.
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ogy, and Section VI our experimental results. Our concluery size of the neurons of WNN becomes prohibitive, since
sions follow in Section VII. it must be equal t@", wheren is the input size. Virtual Gen-
eralizing RAM (VG-RAM) networks are RAM-based neural
networks that only require memory capacity to store the data

[I. Multi-Label Text Categorization related to the training set [9].

Text categorization may be defined as the task of assigning
categories (or labels), from a predefined set of categaies, A- VG-RAM WNN Neurons

documents [16]. In muIti—IapeI text categorization, one oUG-RAM WNN neurons store the input-output pairs seen
more categories may be assigned to a document. during training, instead of only the output. In the test ghas
Let D be the QOmaln of dqcumenté, = {0} @ the memory of VG-RAM neurons is searched associatively
set of pre-defined categories, afid = {d;,...,d|q } an by comparing the input presented to the network with all in-
initial corpus of documents previously categorized mambuts in the input-output pairs leared. The output of each
ally PV a doma".‘ expert int_o .subsets of gatggorieﬁoﬂn VG-RAM neuron is taken from the pair whose input is near-
multi-label Iearn.mg, the training(-and-validation) SEV = o4 15 the input presented—the distance function employed
{dy,....djrv|} is composed of a number of dc_)cumentsby VG-RAM neurons is the Hamming distance. If there
each gssomateq with a subset of categories GfV’ is used is more than one pair at the same minimum distance from
to train and v_alld_ate (actually, to tune gventual paransete_the input presented, the neuron’s output is chosen randomly
of) a categorization system that associates the apprepn%{mong these pairs.

combination of categories to the characteristics of each do
ument in theT'V. The test sef’e = {djrv|+1,...,djo|},

X i lookup table X, X, X3 Y
on the other hand, consists of documents for which the cate- entry #1 1 1 0 | category 1
gories are unknown to the categorization system. Afterdpein entry #2 0 0 1 | category 2
trained and tune oV, the categorization system is used entry #3 0 1 0 | category3
to predict the set of categories of each documeritdn . I I I —
input 1 0 1 category 2

A multi-label categorization system typically implements
real-valued function of the fornf : D x C' — R that returns Figure. 1: VG-RAM WNN lookup table.

a degree of belief for each pajd;,c;) € D x C, thatis, a

number between and1 that, roughly speaking, representsFigure 1 shows the lookup table of a VG-RAM neuron with
the confidence with which the test documelptshould be three synapsesy(;, X, andXs). This lookup table contains
categorized under the categary The real-valued function three entries (input-output pairs), which were stored riyiri
f(.,.) can be transformed into a ranking functiof, .), such  the training phase (entr#1, entry #2 and entry£3). Dur-
that, if f(d;,c;) > f(dj,ck), thenr(d;,c;) < r(dj,ci), Ingthetestphase, whenaninputvector (input) is presented
and if f(dj,c;) < f(dj,ck), thenr(d;,c;) > r(d;,cp). If  the network, the VG-RAM test algorithm computes the dis-
f(dj, ;) = f(d;,cr) we have atie. tance between this input vector and each input of the input-
When there are no ties, i.ef(d;,c;) # f(d;,cx) for all output pairs stored in the lookup table. In the example of
i # k, f(.,.) can be transformed into a ranking functionFigure 1, the Hamming distance from the input to enfry
r(.,.) that is an one-to-one mapping onfa,2,...,|C|}. is two, because bot, and.X; bits do not match the input
However, if there are tiesf(d,,c;) = f(d;,c;) for some Vvector. The distance to ente#2 is one, because(, is the

i # k), the categories can be ranked in many different way®nly non-matching bit. The distance to entg is three,

In this paper, we adopted the ranking method called ordinas the reader may easily verify. Hence, for this input vector
ranking [18], that assigns distinct ordinal ranking pasig the algorithm evaluates the neuron’s outpit,as category

to all categories, including those tied. In this method, thd, since itis the output value stored in en.

assignment of distinct ordinal ranking positions to tieteea

gories is done at random. B. VG-RAM WNN-COR Neurons

Let C; be the set of pertinent categories of the test document . . .
- . . While in VG-RAM WNN each neuron is trained to output
d; andC; the set of categories predicted i@. A success-

o . . a single category for each input vector, in VG-RAM WNN-
ful categorization system will tend to rank categorie<'in COR each neuron may be trained to output a set of categories
higher than those not ii;. Those categories ranked above y P 9

: . for each input vector.
athresholdr; are then predicted to the test documénti.e., Figure 2 illustrates the lookup table of a VG-RAM WNN-

Cjt = A{ailf(dj, ci) = 7} COR neuron with three synapse$,(, X, andX3) and three
entries (input-output pairs) stored during the traininggd
[1l. VG-RAM WNN and VG-RAM WNN-COR (entry #1, entry #2 and entry#3). Similar to VG-RAM
WNN, when an input vector is presented to the network in
RAM-based neural networks [1], also known as weightlesthe test phase, the VG-RAM WNN COR test algorithm com-
neural networks (WNN), do not store knowledge in their conputes the distance between this input vector and each ifiput o
nections but in Random Access Memories (RAM) inside théhe input-output pairs in the lookup table. In the example of
network’s nodes, or neurons. In spite of their remarkabl&igure 2, the Hamming distance from the input to entds
simplicity, WNN are very effective as pattern recognition#2, and#3 is two, one, and three, respectively. As the input
tools, offering fast training and test, and easy implementaf entry #2 is the nearest to the network input, the output
tion [2]. However, if the network input is too large, the mem-of the VG-RAM WNN COR neuron is given by categories
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and3, i.e. the value ot represents both categoridsand3. 0 to 1 and represents the percentage of neurons which pre-
sented the corresponding category as output (the sum of the

values of all elements of this vector is always equal)toln

lookup table | X; | X; | X5 Y this way, the output of the network implements the function
entry #1 L | 1 1 0 |category2 f(.,.), defined in Section II.
entry #2 0 0 1 | category 1,

;3 To categorize text documents using VG-RAM WNN-COR
we use the same setup of the VG-RAM WNN illustrated in
Figure 3. In the training phase, for each document in the
training set, the corresponding vectidris connected to the
input of the VG-RAM WNN COR,N, and the output of its
neurons(), to the set of categories assigned to the document.
Each neuron of the VG-RAM WNN-COR is trained to out-
C. Text Categorization with VG-RAM WNN and VG-RAMut this set with this input vector. During the test phase, fo
WNN-COR each test document, the corresponding vettis connected

To categorize text documents using VG-RAM WNN, Weto the input of the networkN. The functionf(.,.) is com-

represent a document as a multidimensional ve&tor= puted by dividing the number of votes for each category by
(v i}, where each element; corresponds to a the total number of categories outputted by the network. The
Ly YIV|ss )

weight associated to a specific term in the vocabula number of votes for each category is obtained by counting

ry . .
of interest (see Section V-B). We use single layer V/ fﬁewoccurrences in all sets outputted by the network.

RAM WNN (Figure 3) whose neurons’ synapses =

{z1,..., x|} are randomly connected to the network’s in-
putN = {ny,...,ny|}, which has the same size of the vec{V. ML-KNN
tors representing the documents, i|&, = |V|. Note that
|X| < |V] (our experiments have shown that| < |V| pro-

entry #3 0 1 0 | category 1,

i i i i
mput 1 0 1 category 1,3

Figure. 2: VG-RAM WNN-COR lookup table.

The Multi-Label k-Nearest Neighbors (ML-KNN) [21] cate-

vides better performance). Each neuron’s synapserms gorizer is a version of the k-Nearest Neighbors (KNN) [16]

a minchinton cell with the nexty; ;1 (zx| forms a minch- especially designed for multi-label categorization. listh

inton cell with z;) [11]. The type of the minchinton cell categorizer, theé: nearest neighbors af; are identified in

we have used returnsif the synapser; of the cell is con- T'V. The Euclidean distance is used to find the nearest neigh-

nected to an input element whose value is larger than that bors ofd;. Then, for the giverk, the maximum a posteriori

of the element:;, to which the synapse;, is connected (MAP) principle is employed for determining the belief for

(i.e. n; > ny); otherwise, it returns zero. each pair(d;, c;) € D x C using statistical information ob-
tained from the category sets of the neighborg pfi.e., the

(7o) [ o) [ foe) ] [fen) | number of neighboring documents belonging to each possi-

1 ble category.

fG)

Zhang and Zhou [21] evaluated the performance of ML-

neurons O | O, | I O ; i i
o KNN on several multi-label learning problems. In their
m“”h‘i‘;’l‘i ﬁ ﬁ ﬁ ﬁ f‘j ﬁ experiments, ML-KNN achieved higher performance than
) well-established algorithms, such as Boostexter [15], the

synapses X | Xy | Xy || Xy Xp | X | X multi-label kernel method Rank-SVM [5], and the multi-
label decision tree ADTBoost.MH [4]. This has motivated us

inputs N | ng [ [ g [y [ s [ g [y [ [ to use ML-KNN as a baseline in the VG-RAM WNN-COR

evaluation.

| Y | Y2 | s | ! | Y5 | Ys | Y7 | |Z’m

Figure. 3: VG-RAM WNN and VG-RAM WNN-COR text
categorization setup.

documents V

V. Experimental Methodology

During training, for each document in the training setWe employed a series of experiments to compare VG-RAM
the corresponding vectol” is connected to the VG- WWN-COR with VG-RAM WNN and ML-KNN. For that,
RAM WNN’s input N and the neurons’ output® = we (i) used two data sets composed of textual descriptions of
{o1,...,0)0/} to one of the categories of the document. Alleconomic activities of companies categorized manually ac-
neurons of the VG-RAM WNN are then trained to output thiording lawful Brazilian economic activities. We (ii) prep
category with this input vector. The training for this inputcessed these data sets using standard IR techniques, a@nd use
vector is repeated for each category associated with the cée resulting data to (iii) tune VG-RAM WNN-COR, VG-
responding document. During test, for each test docume®RAM WNN, and ML-KNN categorizers and (iv) perform
the inputs are connected to the corresponding vector and teeperiments for comparing VG-RAM WWN-COR with VG-
number of neurons outputting each category is counted. THRAM WNN and ML-KNN using multi-label text categoriza-
network’s output is computed by dividing the count of eacliion performance metrics. The following subsections pnése
category by the number of neurons of the network. This outhe details of the parts (i), (ii), and (iii) of our experintah

put is organized as a vector whose size is equal to the numtealuation of VG-RAM WNN-COR. The experimental re-
of categories. The value of each vector element varies frosults, or part (iv), are presented in the next section.
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A. Data Sets mentwv; corresponds to the weight associated to each word

o . . . of the vocabulary of interest present in the document. This
The categorization of companies according to their eco- . . .
. AN . weight was computed according to the standard normalized
nomic activities is an important step of the process of ob-. Co :
LT . L . tfidf weighting function [16].
taining information for statistical analysis of the econom : : :
o . ; . The average size of the vocabulary of interest is roughly
within a city, state or country. In Brazil, all economic ac-

tivities recognized by law are cataloged in a table calleéﬁog'8 terms (standard deviatiol.17) for EX100, and
“Classifica@o Nacional de Atividades Ecomicas (CNAE) roughly 5377.6 terms (standard deviatior9.45) for AT100.

(National Classification of Economic Activities) [7]. Gov- Table V-B shows the sizes of the vocabularies of interest of

ernment officials must find the semantic correspondence b%xloo and AT100 for the 20 training set/test set pairs.

tween textual descriptions of economic activities of compa

nies and one or more entries of the CNAE table for each new Fold EX100|V|AT100
company or any that changes its set of economic activities. 1 3605 | 5392
To compare the performance of VG-RAM WNN-COR with 5 3614 | 5404
that of VG-RAM WNN and ML-KNN on the categorization 3 3634 | 5406
of economic activities, we employed two data sets, each of 4 3594 | 5386
which composed of textual descriptions of economic activ- 5 3600 | 5363
ities of companies categorized into a subset of CNAE cate- 6 3654 5360
gories by Brazilian government officials trained in thisktas 7 3578 | 5363
The first data set, called EX100, consists @1 docu- 8 3612 | 5386
ments (textual descriptions) categorized int@h different 9 3601 | 5363
economic activities (categories). Each one of these cate- 10 3606 | 5353

gories occurs in exactly00 different documents of this data
set, i.e., there ar@00 instances of documents of each catTable T The size of the vocabulary of interest of each one of
egory; the average number of categories per document tige 20 training set/test set pairs.

roughly 1.52 (standard deviatiof.79). The characteristics

of EX100 allows examining the performance of categorizers

in the case where the categories (or labels) are evenly di§: Categorizers Validation

tributed across the documents. This data set also contai
the official brief description of each one of thé5 CNAE Te VG-RAM WNN-COR, VG-RAM WNN and ML-KNN

. . . categorizers possess parameters that can be optimized for
categories and their corresponding code. achieving best performance in a given data set. To tune (or to
The second data set, called AT100, consistd@f95 doc- 9 P 9 '

. . . validate) these categorizers, we used a single trainindf-a
uments categorized intd62 categories. Each category ap- _. . .
ears inup to 100 different documents, i.e., there are be_vgl!datlon) setTV, for each datq set detailed above. We
P P divided each of these twd'V sets into 10 subsets, and used

tweenl and 100 instances of documents of each category; .. : X
: : e first nine to train and the last one to tune the parameters
the average number of categories per document is rough

1.49 (standard deviatiof1.86). The characteristics of AT100 of the categorizers for each data set according tadhging

- . . loss[14] metric (see Section VI-A). This metric evaluates
allows examining the performance of categorizers lntheca%he fraction of category paif&, cx), ¢; € C; andex € C,
where there are rare categories. This data set also cont gory pairg:, cx), & J F '

ans
the official brief description of each one of tfi62 CNAE {Hat are or may be reversely orderetld;, ci) < f(d;, ck))

. : . in the ranking of categories for the test documéntof a
categories and their corresponding code.

We partitioned EX100 inta0 subsets 0691 documents (the given data set. We chose the metrinking lossfor val-

last one hadi92) and AT100 intol0 subsets ofl049 doc- fv?;ﬁgtigecﬁhuesewmlse ngnirrf]ede:joé)gcggsb Catzebial::egri];o_r
uments (the last one had54) in order to perform 10-fold g gp y g

cross-validation experiments ers, an(_j is.commonly used for evaluating rank-based text
' categorization systems [14, 15, 5, 21].
Figure 4 and Figure 5 present the results of the validation
experiments employed for tuning the number of neurons
We transformed all words in our data sets into their uninand synapses per neuron of the VG-RAM WNN-COR and
flected form (term), i.e., the dictionary form of the wordVG-RAM WNN, and the parameter of ML-KNN, for the
(known as lemma [10]), and then removed all prepositionEX100 and AT100 data sets, respectively. As Figure 4(a)
using the Diadorim electronic dictionary of the BraziliaorP shows, for the EX100 data set, the performance of VG-RAM
tuguese language [12]. After that, we identified all digtincWNN-COR increaseg#nking lossdecreases) with the num-
terms in each training sef'V, i.e., the vocabulary of in- ber of neurons in the x-axis and with the number of synapses
terest. Note that, as we are using 10-fold cross-validatioper neuron represented by each curve, but levels off when the
we have 10 training sets for EX100 and 10 for AT100 andpetwork have abou2 x 32 (1024) neurons ané12 synapses
therefore, 20 vocabularies of interest. Using the vocabyer neuron; while, for the AT100 data set (Figure 5(a)), the
lary of interest associated with each training set, we tranperformance levels off when the network have a3k 32
formed all documents of the 20 training set/test set paid024) neurons and024 synapses per neuron. Therefore, in
into their corresponding multidimensional vector of wdaigh the experimental evaluation of VG-RAM WNN-COR with
V = {v1,...,vv |}, where|V] is the number of terms that EX100 we used2 x 32 (1024) neurons an@12 synapses per
occurs at least once in the current training set. Each elaeuron, while with AT100 we usegR x 32 (1024) neurons

B. Data Preprocessing
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and1024 synapses per neuron. Applying the same reasoning 0.45 X[=956 ——
and using the results shown in Figure 4(b) and Figure 5(b), 0 oxe X|=512

for VG-RAM WNN we chose|O| = 32 x 32 (1024) and S o3 '§|§§8ﬁ3
|X| = 1024 for EX100, and|O| = 32 x 32 (1024) and g o=

|X| = 512 for AT100. Finally, we found that, in the case g '

of ML-KNN, k equal to100 nearest neighbors produces the 0.05 . I

best performance results for both the EX100 and AT100 data

0
sets (see Figure 4(c) and Figure 5(c)). 4x8 Bx8 Bx16 16x1616x3232x32

o]
(a) VG-RAM WNN-COR

0.25 "IX|=256 ——
AR N —
oS Z N : [X[=512 -
'g, 0.15 X|=2048 3 0632 [X[=1024 s
= T - X|=2048 =
£ o1t S 025 !
& 3 Z O
0.05 [t ™ 5
0 i
4x8 8x8 8x16 16x1616x3232x32 0 M
O] 4x8 8x8 8x16 16x1616x3232x32
(a) VG-RAM WNN-COR [¢]
(b) VG-RAM WNN
0.25 T p—
%) 0.2 |X|:512 * 0.09
8 [X|=1024 e 0.08
Ig’ 0.15 X|—2048 - g 88;
£ o01f°" S 005
g £ 004
0.05 8 003
0 T 002
4x8 8x8 816 16x1616x3232x32 001
o] 2 10 100 1000 5000
(b) VG-RAM WNN k
(c) ML-KNN
0.25
g 02 / Figure. 5: Results of validation experiments aimed at tuning
‘L 015 the VG-RAM WNN-COR, VG-RAM WNN, and ML-KNN
c .
2 g1 / categorizers for AT100 data set.
[v]
® oo0s \//
0 In the following two subsections, we present the experiments

2 10 100 1000 5000
k

(c) ML-KNN

we have used to compare the VG-RAM WNN-COR perfor-
mance against that of VG-RAM WNN and ML-KNN.

Figure. 4: Results of validation experiments aimed at tuningjo" Results with Metrics for Ranked Sets
the VG-RAM WNN-COR, VG-RAM WNN, and ML-KNN  One-error (one-error;) evaluates if the top ranked category

categorizers for EX100 data set. is present in the set of pertinent categoiigof the test doc-
umentd;:
. 0 if[arg max.. d;i,c;)| € C;
VI. Experimental Results One-efroﬁ—{ 1 Ot[he?\,visex“ecjc( nell <G

The metrics used in the literature to evaluate text categeri

where [arg ma d;, c;)| returns the top ranked cate-
tion performance can roughly be divided into two groups: larg max, cc.f(d;, c:)] P

gory for the test document;.

(i) Evaluation metrics for ranked sets, which eval- The overall performance is obtained by:

uate the whole ranking of categories derived from ITe|
the real-valued functionf(.,.); these includeone- ) _ ) ,
error [14], coverage[15], ranking loss[14], average one-error |Te| ;one ooy @
precision[10], andR-precision10];
The smaller the value of one-error, the better the perfogaan
(ii) Evaluation metricsfor unranked sets, which evaluate of the categorization system. The performance is perfect
the set of categories predicted for the test docurdent whenone-error= 0.
C‘j (see Section Il), among which the most frequent ar€igure 6 shows the VG-RAM WNN-COR, VG-RAM WNN
Hamming los$14], exact match8], precision[10, 16], and ML-KNN performance in terms ahe-errorfor EX100
recall [10, 16], andFgs [10, 16]. and AT100 (the smaller the better). As the figure shows,
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VG-RAM WNN-COR has about the same performance oEX100 and AT100, the performance advantage is only sig-
VG-RAM WNN for EX100, but outperforms it for AT100 nificant for AT100 (two-tailed paired t-test &% significance
(two-tailed paired t-test &% significance level). This is to level). However, it is important to note that, exploring @at
be expected since, when we have enough examples of eaxtirelation, VG-RAM WNN may outperform ML-KNN.
category (EX100), the benefits of data correlation may di-

minish; while, when certain categories are not well repre- 4.00
sented in the data set (AT100), data correlation betweesetho . o0
and others in the data set, when captured, may allow bet- g 250
ter categorization performance. Both VG-RAM WNN-COR § s

and VG-RAM WNN outperform ML-KNN for EX100 and 1.00

AT100 (two-tailed paired t-test &% significance level). 920
0.60 WNN-COR ML=KNN  mo—
. WNN  m—
050
5 040 (a) EX100
(0]
o 030 40.00
6 020 1 35.00
010} ] » 3000
0.00 g 25.00
: g 2000
3 1500
WNN-COR ML-KNN  e— 1000
WNN  mo—— 5:00
(a) EX100 0.00
0.60 WNN-COR ML-KNN  o—
. WNN sossen
5 0% b) AT100
o .
5 g-gg Figure. 7: Covergge(the smaller the better)
| [ il
Yoo
5§ 0201
g';g i Ranking loss (ranking-loss;) evaluates the fraction of cate-

gory pairs(c;, cx), ¢; € C; andey, € C;, that are reversely
WNN-COR ML-KNN ~ s— ordered ((d;,c;) < f(d;,c)) in the ranking of categories

W for the test document;:
(b) AT100

. 1

ranking-loss = m|{<ci,6k)|f(dj,cq;> < f(dj,cr),
J J

(ciscr) € Cj x Gy},

Coverage (coverage;) measures how far we need to go down (5)
the ranking of categories for the test documeénin order to
cover all its pertinent categories:

Figure. 6: One-error(the smaller the better)

whereC; is the complementary set 6f; in C. The overall
performance is computed as:

coverage = max r(d;,c;) — 1, 3) |Te|
Ciecj' . 1 .
ranking-loss= el E ranking-loss. (6)
wheremax,, cc; r(d;, ¢;) returns the maximum rank for the [ Tel j=1

set of pertinent categories @f, C;. The overall performance .
pert gories df, C v P The smaller the value afinking loss the better the perfor-

is given by mance of the categorizer. The performance is perfect when
|Te| ranking-loss= 0.
coverage= —— Z Coveragg_ (4) Figure 8 shows the VG-RAM WNN'COR, VG-RAM WNN
|Te| = and ML-KNN performance in terms ofanking lossfor

EX100 and AT100 (the smaller the better). As the figure
The smaller the value afoveragethe better the performance shows, VG-RAM WNN-COR outperforms VG-RAM WNN
of the categorization system. The performance is perfegr EX100 and AT100 (two-tailed paired t-test?# signifi-
whencoverage = ﬁ L-Tzel‘(lcjl —1). cance level). VG-RAM WNN-COR exhibits about the same
Figure 7 shows the VG-RAM WNN-COR, VG-RAM WNN performance of ML-KNN for EX100, but an inferior perfor-
and ML-KNN performance in terms afoveragefor EX100 mance than ML-KNN for AT100 (two-tailed paired t-test at
and AT100 (the smaller the better). As the figure shows, VG% significance level). This happens because, for documents
RAM WNN-COR outperforms VG-RAM WNN for EX100 associated with rare categories, the neural network may not
and AT100 (two-tailed paired t-test &% significance level). output any pertinent category, which results in a largek-
This happens because data correlation allows VG-RANhg loss—by definition, for any given document ML-KNN
WNN-COR to move pertinent categories up in the rankalways output a different than zero belief for all categerie
ing, reducing the coverage. Although Figure 7 may sugNote that this has an smaller impactin VG-RAM WNN-COR
gests that VG-RAM WNN-COR outperforms ML-KNN for than in VG-RAM WNN thanks to data correlation.
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0.06 - 100
@ 005 2 080
o (3]
L 004 2 060
£ 003 y
S 0.02 g 040
® o1} . 1 2 o20
0.00 0.00
WNN-COR ML-KNN  mo— WNN-COR ML-KNN  mo—
WNN s WNN =
(a) EX100 (a) EX100
0.06 - 100
@ 0.05 2 080
o (3]
L 004 £ 060
£ 003} o
£ 02| g 040
® o001} £ o2
0.00 0.00
WNN-COR ML-KNN  m—— WNN-COR ML-KNN  n——
WNN s WNN s
: . (b) AT100 ) b) AT100
Figure. 8: Ranking I)os tﬁe smaller the better) Figure. 9: Average |)eC|S|or(1the larger the better)

Average precision (avg-precision;) evaluates the average of \yhich £(d;, c;) = 0 should not be inserted int8!/“7! . In this
precisions computed truncating the ranking of categooes f /

A1C51 ,
the test document; after each category; € C; in turn: case|C; ™ | may be smaller thafC; .

The overall performance is obtained by:

1C51 ) Ak
crne;
avg-precision = oA Z % (7) . 1 el N
il= 1T R-precision= TTe] Z R-precisior). (10)
j=1

where|C)| is the number of pertinent categories of the test
documentd;, andC‘f is the set of predicted categories thatThe larger the value oR-precision the better the perfor-
goes from the top of the ranking until the ranking position mance of the categorizer. The performance is perfect when
If there is a category; € C; at positionk andf(d;,¢;) =0, R-precision= 1.

then the precision value obtained fo*f in Equation (7) is Figure 10 shows the categorizers’ performance in terms of

taken to be 0. R-precisionfor EX100 and AT100 (the larger the better).
The overall performance is calculated as: Similarly to the case overage precisionVG-RAM WNN-
el COR presents the same performance of VG-RAM WNN for

EX100, but outperforms it for AT100 (two-tailed paired t-
test atb% significance level). Both VG-RAM WNN-COR

o and VG-RAM WNN outperform ML-KNN for EX100 and
The larger the value adverage precisionthe better the per- AT100 (two-tailed paired t-test &t% significance level).
formance of the categorization system. The performance is

perfect wheravg-precision= 1. . B. Results with Metrics for Unranked Sets

Figure 9 shows the categorizers’ performance in ternevef . ) o ]

erage precisiorfor EX100 and AT100 (the larger the bet- The metrics examined in this section evaluate the set of cat-
ter). As the figure shows, VG-RAM WNN-COR has aboutdories predicted for a gives;, C;, instead of a ranking,
the same performance of VG-RAM WNN for EX100, but@s the metrics described in the previous section. Because of
outperforms it for AT100 (two-tailed paired t-tests# sig- tha’F, we n.eed a means of thresholding the rankipg of cate-
nificance level). Both VG-RAM WNN-COR and VG-RAM dories q§r|ved fromy(.,.). There are various techniques for
WNN outperform ML-KNN for EX100 and AT100 (two- determining the threshold; for each category:; [19, 16]._
tailed paired t-test a8% significance level). These results We evaluate the performance of all categorizers examined

are in line with those obne-errorand have the same expla-Under a perfect thresholding policy; i.e., we choose the car
nations (see above). dinality of the predicted set of categories by, |C;|, to be

equal to|C;| (or approximately equal toC;]). Thus, as we
R-precision (R-precision;) evaluates the precision computedhave done for the metri®-precision(see above), we de-

avg-precision= Tel E avg-precision. (8)
€
j=1

with the|C;| top ranked categories fa;: rive C; from the|C;| top ranked categories faf; and call
1% A oy it C’}Cﬂ,
R-precision = 3701 9) _ _ .
|CJ\, j\‘ Hamming loss (Hamming-loss;) evaluates how many times

R the test document; is misclassified (i.e., a category not be-
whereCJ‘.le is the set of(C;| top ranked categories. Note longing to the document is predicted or a category belonging
that categories; in the set oflC;| top ranked categories for to the document is not predicted), normalized by the total
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Figure. 10: R—pre&smr%(the larger the better) Figure. 11: Hamming @sgt%e smaller the better)
number of categories: Figure 12 shows the categorizers’ performance in terms of
| elGil | exact matchfor EX100 and AT100 (the larger the better).
=y 7

, (11) As before, VG-RAM WNN-COR presents the same perfor-
| mance of VG-RAM WNN for EX100, but outperforms it

whereo indicates the symmetric difference between the séer AT100 (two-tailed paired t-test &% significance level).
of predicted categonei]‘c il and the set of pertinent cate- Both VG-RAM WNN-COR and VG-RAM WNN outper-

Hamming-loss =

gories ofd;, C;. form ML-KNN for EX100 and AT100 (two-tailed paired t-
The overall performance is calculated as: test at5% significance level).

ITel 1.00
Hamming-loss= — 7e] 2 Z Hamming-loss.  (12) 5 oso
l% 0.60
The smaller the value cHiammlng lossthe better the perfor- 8 040
mance of the categorizer. The performance is perfect when G 50
Hamming-loss= 0. 0.00

Figure 11 shows the categorizers’ performance in terms of
Hamming losfor EX100 and AT100 (the smaller the bet- A —
ter). As in the case adiverage precisiorfsee previous sub-

section), VG-RAM WNN-COR presents the same perfor-

mance of VG-RAM WNN for EX100, but outperforms it 1.00

(a) EX100

for AT100 (two-tailed paired t-test &% significance level). 5 080
Both VG-RAM WNN-COR and VG-RAM WNN outper- g o060
form ML-KNN for EX100 and AT100 (two-tailed paired t- é 0.40
test ats% significance level). G g5 .
Exact match (exact-match;) evaluates how frequently all 0.00
and only all pertinent categories are present in the setesf pr WNN-COR ML-KNN  mm—
dicted categories fat;: VNN s
{ 1 C'C —C. Figure. 12: Exact (rtr)%aégi}&?]e larger the better)
exact-match = » (13)
0 other\lee
The overall performance is obtained by: Preci_sion on a per-category basis (pr.ecisionf) evaluates the
fraction of test documents categorized under the category
|Tel that are truly associated with, and can be estimated using
exact-match= m Z exact-match (14) " the contingency table for the categasy shown in Table VI-
B, as:
The larger the value oéxact matchthe better the perfor- precisiorf = TR (15)
mance of the categorizer. The performance is perfect when TP; +FP;

exact-match= 1. whereFP; (false positives for;) is the number of test doc-
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uments that have been incorrectly categorized ungéerN; 1.00
(true negatives) is the number of test documents that have “g 0.80
been correctly not categorized undey TP; (true positives) ? o060
is the number of test documents that have been correctly cat- T 040
egorized under;, andFN; (false negatives) is the number 8 o020
of test documents that have been incorrectly not categbrize = 0.00
undere;.
WNN-COR ML-KNN  mo—
Category Expert judgments VNN s
¢ YES NO (a) EX100
Categorizer | YES | TP; FP;
judgments NO FN; TN; - 1.00
.g 0.80
Table 2 The contingency table for the categary 8 060
Z_ 0.40
The average oprecisiorf can be computed in two different § 0.20
ways: 0.00 -

(i) Macroaveraging evaluates the average over the results WNN-COR ML=KNN  m—
for different categories: WNN =
b) AT100
lec\l precisiorf Figure. 13: Macro—p#e)cisioﬁ (the larger the better)
macro-precisiof = == (16)
‘C‘ 1.00
(ii) Microaveraging evaluates the sum over all individual ‘§ 0.80
decisions in terms of the contingency table for the cate- 2 060
gory ¢;: T 040
c| TP, 2 020
micro-precisiof = \C|Z . a7 0.00
2.i=1 (TP + FPy) WNN-COR ML-KNN  m—
]
The larger the value of macro-precisiofi and (a) EX100
micro-precisiofi, the Dbetter the performance of
the categorizer. The performance is perfect when 1.00
macro-precisiofi = 1 andmicro-precisioi = 1. § 0.80
Figure 13 and Figure 14 show the categorizers’ performance g o060
in terms of macro-precisiofi and micro-precisiori, respec- T 040
tively, for EX100 and AT100 (the larger the better). Again, £ o020
VG-RAM WNN-COR presents the same performance of 0.00
VG-RAM WNN for EX100, but outperforms it for AT100
(two-tailed paired t-test d@t% significance level). Both VG- NN Oy MIETKNN s
RAM WNN-COR and VG-RAM WNN outperform ML- (b) AT100
KNN for EX100 and AT100 (two-tailed paired t-test & Figure. 14: Micro-precisiort (the larger the better)

significance level).

Recall on a per-category basis (recall;) evaluates the frac- Figure 15 and Figure 16 show the categorizers’ performance
tion of test documents truly associated with the category in terms ofmacro-recalf andmicro-recalF, respectively, for
that are categorized undef and can also be estimated usingEX100 and AT100 (the larger the better). VG-RAM WNN-
the contingency table for the categaryshown in Table VI-  COR presents the same performance of VG-RAM WNN for

B, as: P EX100, but outperforms it for AT100 (two-tailed paired t-
recall’ = i (18) test at5% significance level). Both VG-RAM WNN-COR
TP; +FN; and VG-RAM WNN outperform ML-KNN for EX100 and

Estimates omacro-recalf andmicro-recalf are calculated AT100 (two-tailed paired t-test &% significance level).

as:
Z\CI recall’ F 5 on a per-category basis (Fz¢) evaluates the weighted
macro-recalf = =S (19)  harmonic mean oprecisiorf andrecall::

9l TP,
S (TR PNy

The larger the value ahacro-recalf andmicro-recalf, the In this formula,3 may be seen as the relative degree of im-
better the performance of the categorizer. The performang®rtance attributed tprecisiorf andrecall; [16]. If 3 = 0
is perfect whermmacro-recalf = 1 andmicro-recalf = 1. thenF ¢ coincides withprecisiorf, whereas i3 = +oo then

(8% + 1)precisiorf x recall;
(%precisiorf + recall{

(21)

micro-recalf = (20) Fai =
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1.00 EX100, but outperforms it for AT100 (two-tailed paired t-
« 080 test att% significance level). VG-RAM WNN-COR outper-
S 060 | forms ML-KNN for EX100 and AT100 (two-tailed paired t-
'§ 040l | test at5% significance level).
= 020¢
0.00 1.00
0.80
WNN-COR ML-KNN  m— St
WNN s 5 060
Q
() EX100 g 040
0.20
1.00 0.00
h] 0.80
Q WNN-COR ML-KNN  —
£ 060 WNN s
o
§ 0.40 (a) EX100
0.20
0.80
WNN-COR ML-KNN  m— ot
WNN s L 060
Q
_ (b) AT100 g 040
Figure. 15: Macro-recalf (the larger the better) 0.20 -
0.00
1.00
WNN-COR ML-KNN  —
Qﬁ 0.80 WNN s
3 060 1
o ) b) AT1Q0
S a0l ] Figure. 17: Macr(g-):f %ﬂwe larger the better)
L
= 020f
0.00
1.00
WNN-COR ML-KNN s
WNN s , 080
(a) EX100 T 060
£ 040
1.00 0.20
« 080 0.00
3 0.60
5 0.40 | WNN-COR ML-KNN  m—
o : WNN s
= L
0.20 (a) EX100
0.00
1.00
WNN-COR ML-KNN  mo—
WNN . 0.80
: . (b) AT100 L 080
Figure. 16: Micro-recall® (the larger the better) g 0.40
0.20
Fs¢ coincides withrecalls. Usually, a valued = 1 is used, 0.00
which attributes equal importance peecisiorf andrecall;. WNN=-COR ML=KNN s
Estimates ofnacro-F;¢ andmicro-F5;© are given by: VNN s
, . (b) AT100
1 te] Figure. 18: M|cr0-I%1C &%e larger the better)
macro-F;¢ = Cl Z Fs; (22)
1=1

Precision on a per-document basis (precision?) evaluates
the fraction of predicted categories that are pertinenttier

) : . .
(8° + 1)micro-precisiofi x micro-recalf test document;, and can be estimated in terms of the con-

micro-Fz“ =

/32micro-precisiori + micro-recalf (2'3) tingency table forl; shown in Table VI-B as:
The larger the value afacro-F;¢ and micro-Fs€, the bet- o TP,
) , precisiorf = —— (24)
ter the performance of the categorizer. The performance is , ,
TP, + FP;

perfect whemrmacro-F3¢ = 1 andmicro-Fg¢ = 1.

Figure 17 and Figure 18 show the categorizers’ perfowhereFP; (false positives fot;) is the number of categories
mance in terms ofmacro-F andmicro-Fj, respectively, for that have been incorrectly predicted féy, and TN; (true
EX100 and AT100 (the larger the better). VG-RAM WNN-negatives)TP; (true positives), an&N; (false negatives) are
COR presents the same performance of VG-RAM WNN fodefined accordingly.
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Document Expert judgments 1.00
d; YES NO = 080
Categorizer | YES | TP; FP; @
judgments [ NO | FN; TN; g 060
T 040
Table 3 The contingency table for the test documeént S 020
0.00
The average oprecisiorf can be computed in two different WNN-COR ML-KNN  me—
ways: WNN
e (a) EX100
e .
. >L_% precisiorf
macro-precisioff = jl—rjl; (25) 1.00
|Te] o
5 o080
el § 060
. .. Zj:l ij o
micro-precisiof = el . (26) 5 040
> ;=1 (TP; + FPj) £ 020
The larger the value of macro-precisiof and 0.00
micro-precisiof, the better the performance of WNN-COR ML-KNN  mo—
the categorizer. The performance is perfect when WNN s
macro-precisiofl = 1 andmicro-precisioff = 1. (b) AT100

Figure 19 and Figure 20 show the categorizers’ performance F19ure. 20: Micro-precisiorf (the larger the better)

in terms ofmacro-precisiofi and micro-precisiotf, respec-
tively, for EX100 and AT100 (the larger the better). VG-
RAM WNN-COR presents the same performance of VG-

RAM WNN for EX100, but outperforms it for AT100. VG- . ZE‘}' TP;
micro-recalf = J . (29)
RAM WNN-COR outperforms ML-KNN for EX100 and Z|Te\ TP. + FN,
AT100. 5=1(TP; 2
1.00 The larger the value ahacro-recalf andmicro-recalf’, the
S 580 better the performance of the categorizer. The performance
8 060 is perfect whermacro-recalf = 1 andmicro-recall’ = 1.
=3 0'40 I Figure 21 and Figure 22 show the categorizers’ performance
5 ool in terms ofmacro-recalf andmicro-recalf’, respectively, for
= - EX100 and AT100 (the larger the better). VG-RAM WNN-
000 COR presents the same performance of VG-RAM WNN for
WNN-COR ML-KNN  mem— EX100, but outperforms it for AT100. VG-RAM WNN-COR
VNN s outperforms ML-KNN for EX100 and AT100.
(a) EX100
1.00 1.00
j% 0.80 'a(:g 0.80
g 0.60 £ 060
5 040f % 0.40
g o20f = 020
0.00 0.00
WNN-COR ML-KNN  mo— WNN-COR ML-KNN  —
WNN WNN
_ (b) AT100 (a) EX100
Figure. 19: Macro-precisiof (the larger the better)
1.00
= 080
Recall on a per-document basis(recall?) evaluates the frac- & 060
tion of pertinent categories that are predicted for thedest 'g 0.40
umentd;, and can also be estimated in terms of the contin- S o020
gency table forl; shown in Table VI-B as: 0.00
TP,
reca”d — 73. 27 WNN-COR ML-KNN  o—
I TP + FN; @7) WNN s
(b) AT100
Estimates ofnacro-recalf andmicro-recalf' are calculated Figure. 21: Macro-recalf' (the larger the better)
as:
y 17 recall?
macro-recalf = Te] (28) " E, on a per-document basis (Fs?) evaluates the weighted
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1.00 1.00
'a\ﬁ 0.80 - 0.80
® 060f T 060
Ig 0.40 § 0.40
= o020} 1 0.20
0.00 0.00
WNN-COR ML-KNN  mo— WNN-COR ML-KNN  mo—
WNN WNN =
(a) EX100 (a) EX100
1.00 1.00
LE 0.80 - 0.80
® 0.0 T 060
(IQJ 0.40 - ;g 0.40
= o020} ! 0.20
0.00 0.00
WNN-COR ML-KNN  m—— WNN-COR ML-KNN  n——
WNN s WNN s
_ ~ (b) AT100 _ (b) AT100
Figure. 22: Micro-recall” (the larger the better) Figure. 23: Macro-F, ¢ (the larger the better)
harmoni isiorf andrecall’: -
armonic mean oprecisiorf andrecall’: _ os0
2 4 1)precisiorf x recall? 5 0%
3*precisiorf + recall] 0.20
0.00
Estimates omacro-F;? andmicro-Fs;? are given by:
WNN-COR ML-KNN  —
1 \Te| WNN  m—
d d
macro-F;¢ = el Z Fad; (31) (a) EX100
=t 1.00
- 0.80
. 4 (3% 4 1)micro-precisio x micro-recalf’ T 060
micro-Fg“ = : — , S 040
2micro-precisioff 4+ micro-recalf s 7
(32) 0.20
The larger the value afnacro-F;¢ andmicro-Fs¢, the bet- 0.00
ter the performance of the categorizer. The performance is WNN-COR ML_KNN s
perfect whermacro-F;¢ = 1 andmicro-Fz? = 1. WNN s
Figure 23 and Figure 24 show the categorizers’ perfor- _ ~ (b) AT100
mance in terms ofnacro-F andmicro-Fy, respectively, for Figure. 24: Micro-F,“ (the larger the better)
EX100 and AT100 (the larger the better). VG-RAM WNN-
COR presents the same performance of VG-RAM WNN for
EX100, but outperforms it for AT100. VG-RAM WNN-COR
outperforms ML-KNN for EX100 and AT100. . . Z"Tj TP,
Note that the microaveraged metrics give an equal result[nleO-preCISIOH = ITel ]TP Fp (34)
independently of being defined on a per-category basis or j:1( i+ FPj)
on a per-document basis. To understand why this is so, Zl,Tzel\ legll TP,
Ie_t FP;; = 1 if the categoryc; has been incorrgctly pre- = \Tel( |]C| - Zlc‘ =
dicted for the test document;, FP;; = 0 otherwise; and j=1\2wi=1 1] =171 "1

TP;; = 1if ¢; has been correctly predicted fdy, TP;; = 0 As one can observe in Equations (33) and (34),
otherwise. Estimates of microaveraged precision on a P&Hicro-precisiofi is equal to micro-precisiod.  Analo-
category basisnjicro-precisioli) and on a per-document ba- gously, one can show thaticro-recall and micro-Fs¢ are

sis (micro-precisioff) can be obtained, respectively, as: equal tomicro-recalF andmicro-F, respectively.

Sl TP;
S (TP + FP))

micro-precisiofi (33) C. Statistical T-Test

To present a clearer view of the relative performance of the

ICl ~ITel 1. ) X . '
2iz1 ijl TP algorithms, a partial order is defined on the set of all com-

Li'l(ZLT:ell TP;; + Z'fj FPi;) paring algorithms for each evaluation metric, where:AA2
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means that the performance of algorithm Al is significantl
better than that of algorithm A2 on the specific metric (two
tailed paired t-test a8% significance level). If the perfor-
mance is not significantly better, we say A1A2. The par-
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tial order on all comparing algorithms in terms of each eval- avg-precision

uation metric for the EX100 and AT100 data sets is shown i
Table 4 and Table 5, respectively.

Itis important to note that it is possible that A1 performé-be
ter than A2 in terms of some metrics but equivalent or wor

in others. In this case, it is hard to judge which algorithm i

superior. So, in order to give an overall performance asses

ment of an algorithm, we employed a score that takes in

account its performance against that of the other algosthn

on all metrics. Concretely, for each evaluation metric, if A
= A2 holds, then Al is rewarded with a positive scoré
and A2 is penalized with a negative scoré. Based on the
accumulated score of each algorithm on all evaluation m
rics, a total order> is defined on the set of all comparing

algorithms, as shown in the last line of Table 4 and Table

where A1> A2 means that A1 performs better than A2 o

Y Evaluation metric | WC x WN | WC x ML | WN x ML
r one-error WC>WN | WC> ML | WN > ML
coverage WC>WN | WC>ML | WN > ML
ranking-loss WC>WN | WC<ML | WN <ML
WC>WN | WC>= ML | WN > ML
nR-precision WC>WN | WC> ML | WN > ML
hamming-loss WC>WN | WC>ML | WN > ML
exact-match WC>WN | WC> ML | WN > ML
emacro-precisiofi WC>WN | WC>ML | WN > ML
. Micro-precisiofi WC>WN | WC>ML | WN > ML
<macro-recalf WC > WN | WC> ML | WN > ML
~micro-recalf WC>WN | WC> ML | WN > ML
["macro-F WC>WN | WC>=ML | WN > ML
" micro-F§ WC>~WN | WC>ML | WN > ML
macro-precisiofi WC>WN | WC>ML | WN >~ ML
micro-precisioff WC>WN | WC>ML | WN > ML
_macro-recalf WC>WN | WC>ML | WN >~ ML
“micro-recalf WC > WN | WC>ML | WN =ML
| macro-F WC>=WN | WC~ML | WN > ML
'micro-F¢ WC > WN | WC>=ML | WN =ML
Total Order WC(36) > WN(—2) > ML(—34)

the EX100 and AT100 data sets, respectively. The accume=
lated score of each algorithm is also shown in the parenthe-
ses. As shown in Table 4 and Table 5, VG-RAM WNN-COR
has an overall better performance than VG-RAM WNN and

Table 5 Results of t-test for AT100.

ML-KNN on both the EX100 and AT100 databases for théhat VG-RAM WNN-COR has an overall better performance
set of metrics considered.

Evaluation metric | WC x WN | WC x ML | WN x ML
one-error WC=WN | WC> ML | WN > ML
coverage WC>WN | WC=ML | WN=ML
ranking-loss WC>=WN | WC=ML | WN=ML
avg-precision WC=WN | WC>ML | WN > ML
R-precision WC=WN | WC>ML | WN > ML
hamming-loss WC=WN | WC>ML | WN > ML
exact-match WC=WN | WC> ML | WN > ML
macro-precisiofi WC=WN | WC>~ML | WN > ML
micro-precisiori WC=WN | WC> ML | WN > ML
macro-recalf WC=WN | WC> ML | WN > ML
micro-recalf WC=WN | WC> ML | WN > ML
macro-F WC=WN | WC>ML | WN > ML
micro-F WC=WN | WC> ML | WN > ML
macro-precisioA | WC=WN | WC >~ ML | WN > ML
micro-precisioff WC=WN | WC>ML | WN > ML
macro-recalf’ WC=WN | WC>ML | WN >~ ML
micro-recall WC=WN | WC>ML | WN > ML
macro-F WC=WN | WC>~ML | WN >~ ML
micro-F{ WC=WN | WC>=ML | WN =ML
Total Order WC(19) > WN(15) > ML(—34)

Table 4 Results of t-test for EX100.

VI1l. Conclusions

, , , 4
In this paper, we presented an experimental evaluation o‘ ]

than VG-RAM WNN and ML-KNN on the two databases for
the set of metrics considered.
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