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Abstract 
 

A novel approach for role mining in the context of role 

engineering for role-based access control is developed in 

this paper. We propose a simple algorithm, based on the 

assumption that permissions from the same role appear 

near each other in the access history log. Closely co-

occurring groups of permissions are selected as 

candidate roles and are ranked based on a novel 

heuristic, called role cohesion, that quantizes the 

permission proximity of a candidate role in the access 

log. High-rank roles are identified using the algorithm, 

which is tested with a simulation scenario. 

 

1. Introduction 
 

Role-based access control (RBAC) has been an 

interesting research topic for at least the past two decades. 

It has been clearly defined by introducing reference 

models [8], and it is finally codified in a standard form 

[2]. However, before a system can benefit from RBAC’s 

advantages, there must be a process of role engineering, in 

which the enterprise roles and their corresponding 

permissions are identified [3]. Role mining is a well-

known concept in role engineering, since it is understood 

that successful implementations, particularly in legacy 

systems, depend on the development of auto matic or 

semi-automatic mechanisms. The core idea is to utilize 

data mining techniques to infer access roles from the 

information implicit in the system definition. This has 

been referred to as a bottom-up approach, which contrasts 

with the top-down one wherein high-level system 

artifacts—such as organizational structure, business 

processes, and job descriptions—are studied to determine 

access roles [4, 7, 10]. The idea of role mining is based on 

the presumption that access roles are already implicit in 

user-permission assignments [8] and a reverse engineering 

approach is very likely to successfully discover them. This 

assumption is reasonable for two reasons: first, according 

to the principle of least-privilege, permissions are granted 

to users based on their job needs; and, security officers 

permissions to a user.  

Kuhlmann and Schimpf [6] developed the first role 

mining framework by formulating role mining as an inter-

disciplinary topic that links data-mining technologies to 

RBAC. They introduce a seven-step process for role 

mining, starting from choosing the information source, 

and leading to role inference and role creation. Based on 

the well-known k-means algorithm, their proposed 

algorithm clusters permissions into a predetermined 

number of permission sets. The authors affirm, however, 

that the resulting roles should pass plausibility and 

correctness checks by information technology experts 

before implementation.  

Schlegelmilch et al. define a concrete role-mining 

scheme [9] by exploiting a hierarchical clustering 

algorithm. They propose a role mining tool that uses 

current user-permission assignments to discover role 

patterns. They use the membership cardinality of each 

candidate role as a heuristic for ranking the resulting role 
set. The assumption is that candidate roles with a 

significant number of members, have a higher chance of 

being real roles.  

Furthermore, Vaidya et al. propose a role mining 

mechanism that utilizes a subset enumeration algorithm to 

infer access roles from user-permission assignments [11]. 

The algorithm examines all possible subsets of existing 

permissions and assigns a score to each. Subsets are then 

sorted based on their scores, so that better candidates sit 

on top of the list and thereby expert review becomes 

easier. Similar to Schlegelmilch et al. [9], the ranking is 

based on the number of members in each candidate role. 

Subset enumeration has exponential complexity and the 

algorithm is not feasible unless for very few number of 

permissions. A faster yet less accurate version of the 

authors’ other algorithm, named FastMiner, is proposed 

that finds candidate roles based on intersecting user 

permissions and has O(n
2
) complexity.  

Our work significantly differs from other role mining 

approaches in the choice of source data. Our approach 

utilizes permissions that are actually practiced by the 

system users as opposed to making use of user-permission 

assignments that may not necessarily reflect reality. 

Further arguments in favour of this choice are given in 

Section 2.1. Before proceeding to that section, we argue 

for role mining over a top-down role engineering in 

Section 1.1. 
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1.1 Role mining vs. top-down role engineering 
 

Importance of role mining has been extensively 

addressed in the literature. First, role engineering is a 

time-consuming and a very costly phase, possibly the most 

expensive phase, of adopting the RBAC paradigm [5]. 

This partially arises because of the large variety of 

expertise required.  Thus, much information sharing is 

necessary and many different authorities must be involved,

so the scope of the problem rapidly exceeds what can be 

accomplished manually [10]. It may also entail detailed 

examination of organizational units, business processes, 

job positions, and job functions [7]. Thus, role 

engineering is the most problematic impediment in 

adopting RBAC [5]. Therefore, developing any automatic 

or semi-automatic tool to accelerate or circumvent this 

phase is very valuable. Organizational obstacles to 

adopting RBAC are another important motivation for 

using role mining. Since role engineering is a prelude to 

transparent permissions and job definitions, which often 

implies tighter compliance with the principle of least 

privilege, an organization’s staff tends to be reluctant to 

cooperate with the role engineering team. This is 

particularly true if they feel they may lose their current 

access privileges that have been gained and accumulated 

in the course of time by negotiation and persuasion [9]. 

Therefore, the ability to perform such tasks with less 

human intervention and in a less interactive manner is 

very important.  

Finally, role-mining is the ability to discover the 

system’s real behavior. Role engineering, as a top-down 

approach, is normally based on studying documented 

system artifacts and its operational units. Yet, the system 

may not necessarily behave as documented. For example, 

there may be some obscure documented privileges that are 

not being used by the system users any more, if they ever 

were. Role mining, as a bottom-up approach, provides the 

opportunity to base role engineering on the system’s real 

behavior and to carry out more realistic role engineering 

—particularly when there is a gap between documentation 

and reality. 

 

1.2. Organization of this work 
 

The rest of this work is organized as follows. Section 2 

describes our approach, the design rationale, and the 

underlying algorithms. Section 3 illustrates a validation 

methodology followed by our simulation setup and 

discusses the experimental results of the proposed role 

mining approach. Finally, Section 4 summarizes our 

contributions and briefly introduces next steps to pursue 

this approach further. 

 

2. Our approach 
 

In this section, we introduce a role mining scheme, 

including the choice of source data, underlying 

algorithms, and design rationale. 

 

2.1. The choice of source data 
 

The choice of source data for role mining has not been 

considered much in the literature. Although it has been 

treated as one of the role mining steps [6], almost all 

proposed approaches use current user-permission 

assignments as the input data for role mining with hardly any

discussion or rationalization. Vaidya et al. formulate the 

source data in the form of a binary matrix [12], in which 

rows correspond to users, columns correspond to 

permissions, and the intersections determine whether a 

user is granted the corresponding permission.  

In our approach, we exploit the access history log (AHL), 

which contains permissions that users have actually 

practiced during the system operations, as the source data. 

We assume that the access history log is typically a 

sequence of triplets in the form of <user, permission, 

timestamp>, each of which is called log entry and shows 

an access event in the system. An AHL shows the history 

of how users have practiced their permissions over time. 

We also define AHLU as a projection of AHL containing 

only those entries that pertain to user U. In our approach, 

we concentrate on the AHLU of each user, independent 

from those of the others, and therefore, we ignore the 

relations between AHLU’s of different users as well as all 

information related to the concurrent nature of an AHL. 

It is important that the given AHL reflect a comprehensive 

sequence of log entries in terms of all users for all their 

effective permissions.  Otherwise, the result may not 

reflect a correct set of roles. We assume that the given 

AHL reflects the actual behavior of the system. Questions 

of how to gather such a comprehensive sequence or how 

to identify whether or not an AHL is good enough are 

beyond our context, as this paper’s contribution is the 

development of the required algorithms. Intuitively, larger 

amount of log will produce better results. In general, 

lengthening the sampling period and adding information 

from samplings that are more diverse have proven to 

improve the results in our experiments.  

We emphasize that this choice of source data has 

advantages over the other options, as follows: 

 

Eliminating unused permissions. By choosing the access 

history log as the source data, the effect of legacy 

permissions that are obtained and retained 

unnecessarily—called accumulated permissions by 

Schlegelmilch and Steffens [9]—are mitigated. If a user 

no longer needs some permission in their daily job, it is 
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less likely that they activate that permission frequently or 

systematically. Hence, it may appear very rarely, if at all, 

in the access history log and has no significant effect in 

the output of our algorithm. Similarly, exceptional 

permissions granted in special cases cannot affect the 

result of role mining significantly, since users do not 

systematically activate them. This purification effect is 

due to the statistical nature of actual behaviour of the 

system. Note that we assume that the system is working as 

normal: no malicious user is poisoning the access history 

log with unusual behavior. 

 

Better Choice of Heuristic. The fact that the user-

permission assignments do not represent the actual 

information active during system run time has led other 

role mining approaches to make poor heuristic decisions, 

i.e. the number of assigned members, for ranking the 

candidate roles. This unfair choice may cause the roles 

that have fewer members, such as management roles, to 

have less chance to survive. By using the access history 

log as the source data, this is less likely to happen if such 

roles are activated frequently enough to be visible in the 

log. In our approach, we consider the difference between 

permission activation timestamps as a heuristic for our 

role conjecture. Permissions belonging to a single role are 

likely to be activated closely together; i.e. the temporal 

distance between their activation is significantly less than 

the temporal distance of permissions belonging to 

different roles. This reflects how the system is being used 

by its users; and from this point of view, an access history 

log is the trace of running business processes and job 

functions. Therefore, we observe that mining roles from 

such a log is a bottom-up approach that also reflects the 

higher-level system entities and takes them into account 

indirectly. The bundle of rights, which are sets of 

permissions needed to carry out a job function (as defined 

by Roeckle et al. [7]), are exactly what our algorithm 

finds in the stream of access log entries. This improves 

our role mining approach from a pure bottom-up to a 

semi-hybrid approach, in which some higher-level 

information is also considered to a limited extent. 

 

2.2. A mining algorithm 
 

The rationale behind our algorithm is that co-occurring 

permissions are likely to belong to the same role. In other 

words, we assume that roles are sets of permissions which 

appear together frequently in the access history log. This 

is generally true, with some exceptions: 

- In roles with very large number of permissions–— 

so called long roles—users may activate different 

groups of permissions of the role at different 

times. This implies that the role actually 

comprises smaller sub-roles that are activated by 

the user separately.  

- Roles that co-occur frequently and systematically 

are also an exception. Our algorithm may be 

misled to amalgamate such roles since their 

permission always appear together. 

 

From a data-mining viewpoint, our algorithm can be 

thought of as a special case of frequent itemset mining 

(FIM) which is a well-studied problem in the data mining 

literature [1]. However, there are important differences 

between our version of FIM and  the classic one. 

First, in our version, there is no known value for minimum 

support, because we do not have a priori knowledge of 

how frequent a pattern should be to be considered 

frequent. To handle this, we have implemented a score-

based mechanism in which we always keep a sorted list of 

all top-scored itemsets, which enables us to eliminate the 

lowest scored itemsets if memory concerns arise. Second, 

in our version of FIM, there is no notion of transaction or 

item basket. An access history log is a stream of activated 

permissions; hence, there are no separate groups of 

permissions visible. In fact, finding groups of frequent 

permission sets is the final goal of our algorithm. We can 

assume that the border between transactions is fuzzy and 

they cannot be identified deterministically. One example 

of such an interpretation is shown in Figure 1(a). Based on 

this notion of fuzzy permission sets, we define degree of 

cohesion for a permission set. Intuitively, degree of 

cohesion denotes how strongly the members of the set are 

coupled. In particular, in Figure 1(a), the second entry can 

form a transaction with either the first or the third entry, 

each with a different degree of confidence, based on the 

temporal distance between them. 

 

   
1.(u, p1, 2007-08-11 10:17)  1 
2.(u, p4, 2007-08-11 10:18)  

3   
3.(u, p6, 2007-08-11 10:21)  … 

  

(a)  The fuzzy nature of transaction 

   

u,p1, 2007-08-11 10:15 (p1,p4) 

dmax=3 (p1,p4,p10) 

dmax=5 
u, p4, 2007-08-11 10:18 

u, p10, 2007-08-11 10:26  
u, p3, 2007-08-11 10:25  … …

   

(b) Maximum distance as a heuristic against cohesion 

Figure 1. Exploiting AHL for role mining  

 

Following our assumption of co-occurring permissions, 

we are ready to present the first version of our algorithm 

(Algorithm 1), inspired by the subset enumeration 

approach introduced by Vaidya et al. [11]. The 

complexity of this algorithm is exponential and therefore 
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it is not a feasible choice in practice, but it can illustrate 

the main idea of our role mining approach. (We illustrate 

a faster version of this algorithm in next section.) 
 

Algorithm 1. Basic version of the role mining algorithm 

Inputs: Access history log (AHL) 

Outputs: Inferred RBAC schema  
1.  allPermissions = all permissions in AHL 
2.  allUsers = all users in AHL 
3.  P = Power set of allPermissions 
4.  roles = new List <Role>() 
5.  for each p in P do 
6.       role = new Role(p) 
7.       role.permissions = p 
8.       role.users = users having all permissions in p 
9.       role.score = degree of cohesion of p 
10.      roles.add(role) 
11.  sort (roles) // based on the scores 
12.  finalRoles = new List<Role>() 
13.  coveredPermissions = new List<Permission>() 
14.  coveredUsers = new List<User>() 
15.  for each role in roles do 
16.      finalRoles.add(role) 
17.       coveredPermissions.add(role.permissions) 
18.      coveredUsers.add(role.users) 
19.      if coveredPermission contains allPermissions  

       and coveredUsers  contains allUsers break 
20.  return finalRoles 

 
The algorithm begins by extracting the sets of users and 

permissions. This can be carried out trivially by scanning 

the access history log (AHL) and collecting all 

permissions and user names appeared in the log. It then 

continues to generate all candidate roles and assigns each 

role a degree of cohesion (Line 9). Candidate roles are 

generated by enumerating every possible set of 

permissions, which are all members of the power set of 

permissions. Degree of cohesion is used to determine how 

good a role is, and which roles are better. It is calculated 

based on the probability—or simply frequency—of 

coincidence of the permissions of a candidate role. By 

scanning AHLU (for each user U), the score of a potential 

role is incremented each time all permissions of that role 

are seen together. We also consider the maximum pair 

wise temporal distance of permissions as a heuristic 

against the cohesion of the role. Therefore, in each 

occurrence of permissions the score is incremented by 

1/dmax , where dmax denotes the maximum distance between 

two consecutive entries. This means, permission sets that 

are temporally closer together, receive higher scores. We 

do not calculate this maximum among all pairs since this 

would lead to an unfair decline of the score for long roles 

when their activation spans a longer time slice. Figure 

1(b) illustrates an example of how maximum distance is 

calculated. If the temporal distance between two entries is 

very large at some points in the access history log, it can 

be assumed to be composed of two different logs. This 

can be done in a straightforward manner: e.g. by 

employing a clustering algorithm to dissect the sequence 

from its largest temporal gaps. In our implementation, we 

have simply treated the access history log of each day 

separately. Finally, members of each role are found and 

then a sufficient number of top-scored roles are selected to 

cover all permissions and users. In particular, the top-

score roles are selected until the set of all permissions 

appear in all roles contain all permissions existing in the 

log, and until the set of corresponding users of all selected 

roles contain all users existing in the log (Lines 15-20). 

 

2.3 Boosting the algorithm 
 

Since the subset enumeration is of exponential order, 

the basic role mining algorithm presented in previous 

section is impractical—except for small number of 

permissions. However, by considering an alternative 

method of candidate generation, we can circumvent the 

subset enumeration and develop a polynomial-complexity 

algorithm. Accordingly, we concentrate on the access 

history log itself as the source of candidate roles, and 

instead of examining all potential roles, which requires 

checking a large amount of irrelevant groups of 

permissions, we generate candidate roles directly from 

what appear in the log. On this basis, we present 

Algorithm 2 with complexity of O(l.n.m), in which l is the 

length of the sequence, n is the number of permissions, 

and m is the number of users.  

 

Algorithm 2 begins with separating the entries of each 

user from the others, i.e. extracting AHLU for each user. It 

then goes through each AHLU and gathers neighboring 

permissions in form of candidate roles. As a practical point, 

and for economy of memory usage, we maintain a large 

but fixed-size list of candidate roles and remove low-

scored roles when the list grows beyond this fixed size. 

This is implemented at the end of the loop initiated in 

Line 7. Moreover, in Line 16, we avoid adding sub-roles 

of currently gathered roles, which implies  preference of 

maximal roles. This is a practical decision that has been 

introduced by the well-known a priori effect [1], which 

states subsets of a frequent itemset are also frequent and 

hence may cause noise roles to appear in the output. This 

is confirmed by our experiments too (described in Section 

3).  

 

3. Simulation and Results 
 

To validate our proposed approach, we have developed 

a simulation experiment. In this section, this experiment is 

presented and its structure is described. This simulation 

experiment is general and can be used for comparing other 
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role-mining algorithms too. Figure 2 illustrates its general 

structure. 

 

Algorithm 2. Improved version of our role miner 

algorithm 

Inputs: Access history log  (AHL) 

Outputs: Inferred RBAC schema  

1.  allPermissions = all permissions in AHL 

2.  allUsers = all users in AHL 

3.  allRoles = new List<Role>() 

4.  for each user in users 

5.    s = AHLuser 

6.    for baseIndex=0 to s.size 

7.      for length=2 to allPermission.size 

8.         ss =  

            subsequence from baseIndex to baseIndex+ length 

9.             role = new Role() 

10.             role.permissions = permissions in ss 

11.             role.users= users having all permissions in ss 

12.            if allRoles.contains(role) 

13.               allRoles.role.score += 

                       1/maximum distance in role.permissions 

14.            else 

15.               role.score = 

                     1/maximum distance in  role.permissions 

16.         allRoles.add(role) 

17.  sort (roles)  // based on the scores 

18.  finalRoles = new List<Role>() 

19.  coveredPermissions = new List<Permission> 

20.  coveredUsers= new List<User> 

21.  for each role in allRoles do 

22.     if role is a sub-role of current roles in allRoles  continue 

23.      finalRoles.add(role) 

24.     coveredPermissions.add(role.permissions) 

25.     coveredUsers.add(role.users) 

26.     if (coveredPermission=allPermissions 

      and coveredUsers =allUsers)  break 

27.  return finalRoles 

 

At the first step, a random RBAC schema is generated. 

This step is inspired by the work accomplished by Vaidya 

et al. [11], with some modifications. The algorithm 

receives the number of roles, permissions and users as 

input, and generates a random RBAC schema in which 

each role is assigned a random number of random 

permissions. Moreover, a random number of random roles 

are selected for each user. To avoid extreme cases, the 

algorithm guarantees not to leave any role, permission, or 

user unassigned. This means each of the permissions is 

assigned to at least one role and each role consists of at 

least one permission, so each role is assigned to at least 

one user and each user has at least one role. The algorithm 

to generate such a random schema is straightforward. 

However, to make the simulation more realistic, we have 

defined the notion of user profiles. A user's profile reflects 

their distinguished habits and work patterns. We have 

used a very simple implementation of user profiles, which 

contains only two pieces of information: working days and 

permission activation pattern. Working days indicates the 

days of the week in which the user works (assuming the 

existence of part-time employees). Permission activation 

pattern is a factor to denote how many permission in a 

time unit a user activates. Fast working users, or users 

who have simpler jobs, activate more permission in a 

same unit of time. This implies that different users with 

different work habits and different kinds of jobs may 

generate different volumes of access logs for a single role. 

In our simulation, we generate a random profile for each 

user. This factor brings more randomness to the 

experiment and makes it more similar to reality, we 

assume. More complicated user profiles are also possible 

in which more aspects of the real system are grasped. 

 

 

Figure 2. The structure of our simulation scenario 

 
The aim of simulation (Step 2) is to emulate user's 

behaviour at work. Our implementation uses a number of 

assumptions for the sake of simplicity. These assumptions 

are summarized here.  

- Each working day begins from 8 A.M. to 4 P.M.  

- Each user works all day long on their working 

days. 

- Each user selects one of his/her roles at the 

beginning of a work day, randomly. 

- At the end of each working hour, users may 

change their role or continue working in their 

current role with equal probabilities. 

It is obvious that implementing these assumptions is 

trivial. 

 

3.1. Evaluation scheme 
 

To evaluate the output of our role mining algorithm, we 

compare the original schema with the output of the 

algorithm (Step 4 in Figure 2): the greater the similarity, 

the more accurate the algorithm.  

We have developed a scheme for measuring the similarity 

between two RBAC schemas, by which we can calculate 

1. Generate a random 

RBAC schema 

2. Simulate running the 

system 

3. Apply role-mining 

algorithm 

Access History Sequence 

 

Original RBAC schema 

 
Inferred RBAC schema 

 
4. Compare and calculate 

similarity 
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the degree of similarity as a real number between 0 and 1. 

Comparing two RBAC schemas involves comparing two 

sets of roles. Naively, we can consider the number of 

common members (the intersection of two sets) as a 

preliminary criterion to measure their similarity. For 

example, if two sets of roles have three roles in common, 

they are more similar than two sets with only one common 

role. However, a more sophisticated criterion should 

consider the internal structure of roles as well. Consider 

the following two role sets: 

r1={p1,p2,p3,p4}, r2={p5}, r3={p1,p2,p3, r4={p6} 

R1={r1, r2},  R2={r3, r2},  R3={r4, r2} 

 

It is obvious that |R1∩ R2| = |R1∩ R3|. Yet, it is also 

obvious that the two pairs do not have identical 

similarities. Although r2 is a common member in all the 

three sets, r1 differs from r3 only in a single permission, 

while r4 is utterly a different role. Therefore, the simple 

intersection cannot accurately show the similarity of two 

role sets. 

Since all roles are subsets of the set of all permissions, 

by assuming each permission a dimension, each role can 

be thought of as a vector in an n-dimensional space. 

Simple Euclidean distance can then be used as the 

criterion for comparing two roles. To compare two sets of 

roles, namely R1 and R2, the nearest members of R1 to 

each role in R2, and then the nearest members of R2 to 

each role in R1 are found. We calculate the distance in 

both ways, once from R1 to R2 and once from R2 to R1, in 

order to make the relation symmetric in case the sets do 

not have equal number of members. In addition, distances 

are normalized by dividing them to the maximum possible 

Euclidean distance in the n-dimensional space, which is 

the square root of n. Finally, the average of all distances is 

taken as the distance between the two sets. This scheme is 

depicted in Formula 1. 
jp

ir is 1 if pj is a member of ri, and 

0 otherwise . For instance, in the above example, 

distances may be calculated as d(R1,R2)=0.223 and 

d(R2,R3)=0.447, which clearly reflects our intuition about 

their similarity. 
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3.2 Results 
 

In this section, the results of our simulation experiments 

are presented. We have done three different sets of 

experiments to test how accuracy is changed with number 

of permissions, number of roles, and variance in role size.  

 

Accuracy / Number of Permissions: In the first set, we 

have raised the number of permissions from 5 to 100 with 

steps of 5. For each value for number of permissions, we 

made 30 different experiments each of which with a 

random number of roles. This is a realistic assumption as 

long as we can assume a normal distribution for the 

number of roles. The result of this set of experiments is 

depicted in Figure 3(a). As the results show, the accuracy 
of algorithm declines as the number of permissions grows 

although the steep is decreasing. Falling below 50%, the 

accuracy is almost intolerably low when number of 

permissions is beyond 40-50, which implies that the 

algorithm is not usable in systems with large number of 

permissions. However, the real number of permissions in 

a single subsystem is normally below this limit. For 

instance, although the overall number of permissions in a 

portal is large, there are far less permissions in each site or 

sub-site. Therefore, the algorithm can still be used in 

many real cases with a divide-and-conquer approach of 

mining roles in independent system units, separately. 

 

Accuracy / Number of Roles: In the second set of 

experiments, we have conducted a full-round experiment 

for four different numbers of permissions. By full-round 

testing, we mean testing all different possible role sizes 

for a fixed number of permissions (except the extreme 

cases of 1 and |P|) and averaging the results. Yet, for each 

role and permission pair, we have repeated the experiment 

30 times and calculated the average to make the results as 

smooth as possible. The trend of accuracy with growth in 

the number of roles is depicted in Figure 3(b). As it is 

observable in the diagram, at first, the accuracy declines 

sharply as number of roles grows. However, after it 

exceeds 7-10, the accuracy remains almost the same, or in 

some cases increases. The interesting fact is that the trend 

is similar with different number of permissions chosen. 

This implies that the accuracy of the algorithm depends 

mainly on the number of roles and not on the number of 

permissions. Therefore, even in large systems in which 

there are a lot of permissions, the algorithm performs well 

if the number of roles is not large.  

 

Accuracy / Variance of Role Size: In the third set of 

experiments, we have focused on the size of roles  which we 

had guessed to be an important factor in the accuracy of 

the algorithm. However, after testing different role sizes, 

we found out that accuracy does not exhibit any visible 

correlation with role size. Instead, it is  the role size variance 

that seems to have a meaningful relation with accuracy. In 

other words, more variance in role size results in less 

accurate results. In our experiment, we simulated different 

RBAC schemas with variable number of permissions from 

5 to 70 but with only two roles. Regarding the difference 

between the size of the two roles and by performing a 
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simple normalization by dividing it to the number of 

permissions, (which is the maximum difference possible), 

we came to the results depicted in Figure 3(c), which 

shows an apparently descending trend line. The reason 

behind this decline is that the access log of shorter roles is 

buried among the access log of longer roles. This effect is 

especially intensified when shorter roles are subsets of 

longer roles, or have significant number of permissions in 

common. This latter case happened frequently about 

long roles in our simulation experiment since permissions 

of each role are chosen at random and a long role have 

more chance to share one of its permissions with other 

roles. 

 

4. Conclusion and future work 
 

We proposed the simplest approach to role mining 

based on system usage information. We argued why better 

performance should be expected by this approach as 

compared to other role mining approaches appearing to 

date. Furthermore, we tested our algorithm using a 

number of experiments and discussed advantages and 

disadvantages.  

As immediate directions to pursue this work further, 

more complex usage information such as different access 

logs, concurrent logs of different users, etc. can also be 

used to develop more complex role mining schemes based 

on running information of the system. Since role mining 

algorithms (including the algorithm proposed in this 

paper) are normally inefficient as number of permissions 

grow, another topic of interest for future work is to study 

how to apply role mining algorithm independently in 

different subsystems and then merge the results. 
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(a)  Change in accuracy as the number of permissions grows 

 
(b) Change in accuracy as the number of roles grow while the number of permissions is fixed 

 
(c) Scatter diagram of the effect of role size variation on accuracy of the algorithm 

Figure 3. Experimental Results 

 

265Role Mining in Access History Logs


