
Role Mining in Access History Logs

Mohammad Jafari
*
, Amir H. Chinaei

*
, Ken Barker

*
, Mohammad Fathian

*
Department of Computer Science, University of Calgary, Alberta, CANADA

#
Department of Electronic Commerce, Iran University of Science and Technology, Tehran, IRAN

{jafarm, achinaei, kbarker}@ucalgary.ca, fathian@iust.ac.ir

Abstract

A novel approach for role mining in the context of role

engineering for role-based access control is developed in

this paper. We propose a simple algorithm, based on the

assumption that permissions from the same role appear

near each other in the access history log. Closely co-

occurring groups of permissions are selected as

candidate roles and are ranked based on a novel

heuristic, called role cohesion, that quantizes the

permission proximity of a candidate role in the access

log. High-rank roles are identified using the algorithm,

which is tested with a simulation scenario.

1. Introduction

Role-based access control (RBAC) has been an

interesting research topic for at least the past two decades.

It has been clearly defined by introducing reference

models [8], and it is finally codified in a standard form

[2]. However, before a system can benefit from RBAC’s

advantages, there must be a process of role engineering, in

which the enterprise roles and their corresponding

permissions are identified [3]. Role mining is a well-

known concept in role engineering, since it is understood

that successful implementations, particularly in legacy

systems, depend on the development of auto matic or

semi-automatic mechanisms. The core idea is to utilize

data mining techniques to infer access roles from the

information implicit in the system definition. This has

been referred to as a bottom-up approach, which contrasts

with the top-down one wherein high-level system

artifacts—such as organizational structure, business

processes, and job descriptions—are studied to determine

access roles [4, 7, 10]. The idea of role mining is based on

the presumption that access roles are already implicit in

user-permission assignments [8] and a reverse engineering

approach is very likely to successfully discover them. This

assumption is reasonable for two reasons: first, according

to the principle of least-privilege, permissions are granted

to users based on their job needs; and, security officers

permissions to a user.

Kuhlmann and Schimpf [6] developed the first role

mining framework by formulating role mining as an inter-

disciplinary topic that links data-mining technologies to

RBAC. They introduce a seven-step process for role

mining, starting from choosing the information source,

and leading to role inference and role creation. Based on

the well-known k-means algorithm, their proposed

algorithm clusters permissions into a predetermined

number of permission sets. The authors affirm, however,

that the resulting roles should pass plausibility and

correctness checks by information technology experts

before implementation.

Schlegelmilch et al. define a concrete role-mining

scheme [9] by exploiting a hierarchical clustering

algorithm. They propose a role mining tool that uses

current user-permission assignments to discover role

patterns. They use the membership cardinality of each

candidate role as a heuristic for ranking the resulting role
set. The assumption is that candidate roles with a

significant number of members, have a higher chance of

being real roles.

Furthermore, Vaidya et al. propose a role mining

mechanism that utilizes a subset enumeration algorithm to

infer access roles from user-permission assignments [11].

The algorithm examines all possible subsets of existing

permissions and assigns a score to each. Subsets are then

sorted based on their scores, so that better candidates sit

on top of the list and thereby expert review becomes

easier. Similar to Schlegelmilch et al. [9], the ranking is

based on the number of members in each candidate role.

Subset enumeration has exponential complexity and the

algorithm is not feasible unless for very few number of

permissions. A faster yet less accurate version of the

authors’ other algorithm, named FastMiner, is proposed

that finds candidate roles based on intersecting user

permissions and has O(n
2
) complexity.

Our work significantly differs from other role mining

approaches in the choice of source data. Our approach

utilizes permissions that are actually practiced by the

system users as opposed to making use of user-permission

assignments that may not necessarily reflect reality.

Further arguments in favour of this choice are given in

Section 2.1. Before proceeding to that section, we argue

for role mining over a top-down role engineering in

Section 1.1.

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)

http://www.mirlabs.org/ijcisim
ISSN: 2150-7988 Vol.1 (2009), pp.258-265

often have the organizational roles in mind when assigning

1.1 Role mining vs. top-down role engineering

Importance of role mining has been extensively

addressed in the literature. First, role engineering is a

time-consuming and a very costly phase, possibly the most

expensive phase, of adopting the RBAC paradigm [5].

This partially arises because of the large variety of

expertise required. Thus, much information sharing is

necessary and many different authorities must be involved,

so the scope of the problem rapidly exceeds what can be

accomplished manually [10]. It may also entail detailed

examination of organizational units, business processes,

job positions, and job functions [7]. Thus, role

engineering is the most problematic impediment in

adopting RBAC [5]. Therefore, developing any automatic

or semi-automatic tool to accelerate or circumvent this

phase is very valuable. Organizational obstacles to

adopting RBAC are another important motivation for

using role mining. Since role engineering is a prelude to

transparent permissions and job definitions, which often

implies tighter compliance with the principle of least

privilege, an organization’s staff tends to be reluctant to

cooperate with the role engineering team. This is

particularly true if they feel they may lose their current

access privileges that have been gained and accumulated

in the course of time by negotiation and persuasion [9].

Therefore, the ability to perform such tasks with less

human intervention and in a less interactive manner is

very important.

Finally, role-mining is the ability to discover the

system’s real behavior. Role engineering, as a top-down

approach, is normally based on studying documented

system artifacts and its operational units. Yet, the system

may not necessarily behave as documented. For example,

there may be some obscure documented privileges that are

not being used by the system users any more, if they ever

were. Role mining, as a bottom-up approach, provides the

opportunity to base role engineering on the system’s real

behavior and to carry out more realistic role engineering

—particularly when there is a gap between documentation

and reality.

1.2. Organization of this work

The rest of this work is organized as follows. Section 2

describes our approach, the design rationale, and the

underlying algorithms. Section 3 illustrates a validation

methodology followed by our simulation setup and

discusses the experimental results of the proposed role

mining approach. Finally, Section 4 summarizes our

contributions and briefly introduces next steps to pursue

this approach further.

2. Our approach

In this section, we introduce a role mining scheme,

including the choice of source data, underlying

algorithms, and design rationale.

2.1. The choice of source data

The choice of source data for role mining has not been

considered much in the literature. Although it has been

treated as one of the role mining steps [6], almost all

proposed approaches use current user-permission

assignments as the input data for role mining with hardly any

discussion or rationalization. Vaidya et al. formulate the

source data in the form of a binary matrix [12], in which

rows correspond to users, columns correspond to

permissions, and the intersections determine whether a

user is granted the corresponding permission.

In our approach, we exploit the access history log (AHL),

which contains permissions that users have actually

practiced during the system operations, as the source data.

We assume that the access history log is typically a

sequence of triplets in the form of <user, permission,

timestamp>, each of which is called log entry and shows

an access event in the system. An AHL shows the history

of how users have practiced their permissions over time.

We also define AHLU as a projection of AHL containing

only those entries that pertain to user U. In our approach,

we concentrate on the AHLU of each user, independent

from those of the others, and therefore, we ignore the

relations between AHLU’s of different users as well as all

information related to the concurrent nature of an AHL.

It is important that the given AHL reflect a comprehensive

sequence of log entries in terms of all users for all their

effective permissions. Otherwise, the result may not

reflect a correct set of roles. We assume that the given

AHL reflects the actual behavior of the system. Questions

of how to gather such a comprehensive sequence or how

to identify whether or not an AHL is good enough are

beyond our context, as this paper’s contribution is the

development of the required algorithms. Intuitively, larger

amount of log will produce better results. In general,

lengthening the sampling period and adding information

from samplings that are more diverse have proven to

improve the results in our experiments.

We emphasize that this choice of source data has

advantages over the other options, as follows:

Eliminating unused permissions. By choosing the access

history log as the source data, the effect of legacy

permissions that are obtained and retained

unnecessarily—called accumulated permissions by

Schlegelmilch and Steffens [9]—are mitigated. If a user

no longer needs some permission in their daily job, it is

259Role Mining in Access History Logs

less likely that they activate that permission frequently or

systematically. Hence, it may appear very rarely, if at all,

in the access history log and has no significant effect in

the output of our algorithm. Similarly, exceptional

permissions granted in special cases cannot affect the

result of role mining significantly, since users do not

systematically activate them. This purification effect is

due to the statistical nature of actual behaviour of the

system. Note that we assume that the system is working as

normal: no malicious user is poisoning the access history

log with unusual behavior.

Better Choice of Heuristic. The fact that the user-

permission assignments do not represent the actual

information active during system run time has led other

role mining approaches to make poor heuristic decisions,

i.e. the number of assigned members, for ranking the

candidate roles. This unfair choice may cause the roles

that have fewer members, such as management roles, to

have less chance to survive. By using the access history

log as the source data, this is less likely to happen if such

roles are activated frequently enough to be visible in the

log. In our approach, we consider the difference between

permission activation timestamps as a heuristic for our

role conjecture. Permissions belonging to a single role are

likely to be activated closely together; i.e. the temporal

distance between their activation is significantly less than

the temporal distance of permissions belonging to

different roles. This reflects how the system is being used

by its users; and from this point of view, an access history

log is the trace of running business processes and job

functions. Therefore, we observe that mining roles from

such a log is a bottom-up approach that also reflects the

higher-level system entities and takes them into account

indirectly. The bundle of rights, which are sets of

permissions needed to carry out a job function (as defined

by Roeckle et al. [7]), are exactly what our algorithm

finds in the stream of access log entries. This improves

our role mining approach from a pure bottom-up to a

semi-hybrid approach, in which some higher-level

information is also considered to a limited extent.

2.2. A mining algorithm

The rationale behind our algorithm is that co-occurring

permissions are likely to belong to the same role. In other

words, we assume that roles are sets of permissions which

appear together frequently in the access history log. This

is generally true, with some exceptions:

- In roles with very large number of permissions–—

so called long roles—users may activate different

groups of permissions of the role at different

times. This implies that the role actually

comprises smaller sub-roles that are activated by

the user separately.

- Roles that co-occur frequently and systematically

are also an exception. Our algorithm may be

misled to amalgamate such roles since their

permission always appear together.

From a data-mining viewpoint, our algorithm can be

thought of as a special case of frequent itemset mining

(FIM) which is a well-studied problem in the data mining

literature [1]. However, there are important differences

between our version of FIM and the classic one.

First, in our version, there is no known value for minimum

support, because we do not have a priori knowledge of

how frequent a pattern should be to be considered

frequent. To handle this, we have implemented a score-

based mechanism in which we always keep a sorted list of

all top-scored itemsets, which enables us to eliminate the

lowest scored itemsets if memory concerns arise. Second,

in our version of FIM, there is no notion of transaction or

item basket. An access history log is a stream of activated

permissions; hence, there are no separate groups of

permissions visible. In fact, finding groups of frequent

permission sets is the final goal of our algorithm. We can

assume that the border between transactions is fuzzy and

they cannot be identified deterministically. One example

of such an interpretation is shown in Figure 1(a). Based on

this notion of fuzzy permission sets, we define degree of

cohesion for a permission set. Intuitively, degree of

cohesion denotes how strongly the members of the set are

coupled. In particular, in Figure 1(a), the second entry can

form a transaction with either the first or the third entry,

each with a different degree of confidence, based on the

temporal distance between them.

1.(u, p1, 2007-08-11 10:17) 1
2.(u, p4, 2007-08-11 10:18)

3
3.(u, p6, 2007-08-11 10:21) …

(a) The fuzzy nature of transaction

u,p1, 2007-08-11 10:15 (p1,p4)

dmax=3 (p1,p4,p10)

dmax=5
u, p4, 2007-08-11 10:18

u, p10, 2007-08-11 10:26
u, p3, 2007-08-11 10:25 … …

(b) Maximum distance as a heuristic against cohesion

Figure 1. Exploiting AHL for role mining

Following our assumption of co-occurring permissions,

we are ready to present the first version of our algorithm

(Algorithm 1), inspired by the subset enumeration

approach introduced by Vaidya et al. [11]. The

complexity of this algorithm is exponential and therefore

260 Jafari et al.

it is not a feasible choice in practice, but it can illustrate

the main idea of our role mining approach. (We illustrate

a faster version of this algorithm in next section.)

Algorithm 1. Basic version of the role mining algorithm

Inputs: Access history log (AHL)

Outputs: Inferred RBAC schema
1. allPermissions = all permissions in AHL
2. allUsers = all users in AHL
3. P = Power set of allPermissions
4. roles = new List <Role>()
5. for each p in P do
6. role = new Role(p)
7. role.permissions = p
8. role.users = users having all permissions in p
9. role.score = degree of cohesion of p
10. roles.add(role)
11. sort (roles) // based on the scores
12. finalRoles = new List<Role>()
13. coveredPermissions = new List<Permission>()
14. coveredUsers = new List<User>()
15. for each role in roles do
16. finalRoles.add(role)
17. coveredPermissions.add(role.permissions)
18. coveredUsers.add(role.users)
19. if coveredPermission contains allPermissions

 and coveredUsers contains allUsers break
20. return finalRoles

The algorithm begins by extracting the sets of users and

permissions. This can be carried out trivially by scanning

the access history log (AHL) and collecting all

permissions and user names appeared in the log. It then

continues to generate all candidate roles and assigns each

role a degree of cohesion (Line 9). Candidate roles are

generated by enumerating every possible set of

permissions, which are all members of the power set of

permissions. Degree of cohesion is used to determine how

good a role is, and which roles are better. It is calculated

based on the probability—or simply frequency—of

coincidence of the permissions of a candidate role. By

scanning AHLU (for each user U), the score of a potential

role is incremented each time all permissions of that role

are seen together. We also consider the maximum pair

wise temporal distance of permissions as a heuristic

against the cohesion of the role. Therefore, in each

occurrence of permissions the score is incremented by

1/dmax , where dmax denotes the maximum distance between

two consecutive entries. This means, permission sets that

are temporally closer together, receive higher scores. We

do not calculate this maximum among all pairs since this

would lead to an unfair decline of the score for long roles

when their activation spans a longer time slice. Figure

1(b) illustrates an example of how maximum distance is

calculated. If the temporal distance between two entries is

very large at some points in the access history log, it can

be assumed to be composed of two different logs. This

can be done in a straightforward manner: e.g. by

employing a clustering algorithm to dissect the sequence

from its largest temporal gaps. In our implementation, we

have simply treated the access history log of each day

separately. Finally, members of each role are found and

then a sufficient number of top-scored roles are selected to

cover all permissions and users. In particular, the top-

score roles are selected until the set of all permissions

appear in all roles contain all permissions existing in the

log, and until the set of corresponding users of all selected

roles contain all users existing in the log (Lines 15-20).

2.3 Boosting the algorithm

Since the subset enumeration is of exponential order,

the basic role mining algorithm presented in previous

section is impractical—except for small number of

permissions. However, by considering an alternative

method of candidate generation, we can circumvent the

subset enumeration and develop a polynomial-complexity

algorithm. Accordingly, we concentrate on the access

history log itself as the source of candidate roles, and

instead of examining all potential roles, which requires

checking a large amount of irrelevant groups of

permissions, we generate candidate roles directly from

what appear in the log. On this basis, we present

Algorithm 2 with complexity of O(l.n.m), in which l is the

length of the sequence, n is the number of permissions,

and m is the number of users.

Algorithm 2 begins with separating the entries of each

user from the others, i.e. extracting AHLU for each user. It

then goes through each AHLU and gathers neighboring

permissions in form of candidate roles. As a practical point,

and for economy of memory usage, we maintain a large

but fixed-size list of candidate roles and remove low-

scored roles when the list grows beyond this fixed size.

This is implemented at the end of the loop initiated in

Line 7. Moreover, in Line 16, we avoid adding sub-roles

of currently gathered roles, which implies preference of

maximal roles. This is a practical decision that has been

introduced by the well-known a priori effect [1], which

states subsets of a frequent itemset are also frequent and

hence may cause noise roles to appear in the output. This

is confirmed by our experiments too (described in Section

3).

3. Simulation and Results

To validate our proposed approach, we have developed

a simulation experiment. In this section, this experiment is

presented and its structure is described. This simulation

experiment is general and can be used for comparing other

261Role Mining in Access History Logs

role-mining algorithms too. Figure 2 illustrates its general

structure.

Algorithm 2. Improved version of our role miner

algorithm

Inputs: Access history log (AHL)

Outputs: Inferred RBAC schema

1. allPermissions = all permissions in AHL

2. allUsers = all users in AHL

3. allRoles = new List<Role>()

4. for each user in users

5. s = AHLuser

6. for baseIndex=0 to s.size

7. for length=2 to allPermission.size

8. ss =

 subsequence from baseIndex to baseIndex+ length

9. role = new Role()

10. role.permissions = permissions in ss

11. role.users= users having all permissions in ss

12. if allRoles.contains(role)

13. allRoles.role.score +=

 1/maximum distance in role.permissions

14. else

15. role.score =

 1/maximum distance in role.permissions

16. allRoles.add(role)

17. sort (roles) // based on the scores

18. finalRoles = new List<Role>()

19. coveredPermissions = new List<Permission>

20. coveredUsers= new List<User>

21. for each role in allRoles do

22. if role is a sub-role of current roles in allRoles continue

23. finalRoles.add(role)

24. coveredPermissions.add(role.permissions)

25. coveredUsers.add(role.users)

26. if (coveredPermission=allPermissions

 and coveredUsers =allUsers) break

27. return finalRoles

At the first step, a random RBAC schema is generated.

This step is inspired by the work accomplished by Vaidya

et al. [11], with some modifications. The algorithm

receives the number of roles, permissions and users as

input, and generates a random RBAC schema in which

each role is assigned a random number of random

permissions. Moreover, a random number of random roles

are selected for each user. To avoid extreme cases, the

algorithm guarantees not to leave any role, permission, or

user unassigned. This means each of the permissions is

assigned to at least one role and each role consists of at

least one permission, so each role is assigned to at least

one user and each user has at least one role. The algorithm

to generate such a random schema is straightforward.

However, to make the simulation more realistic, we have

defined the notion of user profiles. A user's profile reflects

their distinguished habits and work patterns. We have

used a very simple implementation of user profiles, which

contains only two pieces of information: working days and

permission activation pattern. Working days indicates the

days of the week in which the user works (assuming the

existence of part-time employees). Permission activation

pattern is a factor to denote how many permission in a

time unit a user activates. Fast working users, or users

who have simpler jobs, activate more permission in a

same unit of time. This implies that different users with

different work habits and different kinds of jobs may

generate different volumes of access logs for a single role.

In our simulation, we generate a random profile for each

user. This factor brings more randomness to the

experiment and makes it more similar to reality, we

assume. More complicated user profiles are also possible

in which more aspects of the real system are grasped.

Figure 2. The structure of our simulation scenario

The aim of simulation (Step 2) is to emulate user's

behaviour at work. Our implementation uses a number of

assumptions for the sake of simplicity. These assumptions

are summarized here.

- Each working day begins from 8 A.M. to 4 P.M.

- Each user works all day long on their working

days.

- Each user selects one of his/her roles at the

beginning of a work day, randomly.

- At the end of each working hour, users may

change their role or continue working in their

current role with equal probabilities.

It is obvious that implementing these assumptions is

trivial.

3.1. Evaluation scheme

To evaluate the output of our role mining algorithm, we

compare the original schema with the output of the

algorithm (Step 4 in Figure 2): the greater the similarity,

the more accurate the algorithm.

We have developed a scheme for measuring the similarity

between two RBAC schemas, by which we can calculate

1. Generate a random

RBAC schema

2. Simulate running the

system

3. Apply role-mining

algorithm

Access History Sequence

Original RBAC schema

Inferred RBAC schema

4. Compare and calculate

similarity

262 Jafari et al.

the degree of similarity as a real number between 0 and 1.

Comparing two RBAC schemas involves comparing two

sets of roles. Naively, we can consider the number of

common members (the intersection of two sets) as a

preliminary criterion to measure their similarity. For

example, if two sets of roles have three roles in common,

they are more similar than two sets with only one common

role. However, a more sophisticated criterion should

consider the internal structure of roles as well. Consider

the following two role sets:

r1={p1,p2,p3,p4}, r2={p5}, r3={p1,p2,p3, r4={p6}

R1={r1, r2}, R2={r3, r2}, R3={r4, r2}

It is obvious that |R1∩ R2| = |R1∩ R3|. Yet, it is also

obvious that the two pairs do not have identical

similarities. Although r2 is a common member in all the

three sets, r1 differs from r3 only in a single permission,

while r4 is utterly a different role. Therefore, the simple

intersection cannot accurately show the similarity of two

role sets.

Since all roles are subsets of the set of all permissions,

by assuming each permission a dimension, each role can

be thought of as a vector in an n-dimensional space.

Simple Euclidean distance can then be used as the

criterion for comparing two roles. To compare two sets of

roles, namely R1 and R2, the nearest members of R1 to

each role in R2, and then the nearest members of R2 to

each role in R1 are found. We calculate the distance in

both ways, once from R1 to R2 and once from R2 to R1, in

order to make the relation symmetric in case the sets do

not have equal number of members. In addition, distances

are normalized by dividing them to the maximum possible

Euclidean distance in the n-dimensional space, which is

the square root of n. Finally, the average of all distances is

taken as the distance between the two sets. This scheme is

depicted in Formula 1.
jp

ir is 1 if pj is a member of ri, and

0 otherwise . For instance, in the above example,

distances may be calculated as d(R1,R2)=0.223 and

d(R2,R3)=0.447, which clearly reflects our intuition about

their similarity.

   

   221

2

2121

21

2 max

21

1 max

21

21

11

2

11

1

22

),(

||||

),(min),(min

),(

nn pppp

Rr

Rr

Rr

Rr

rrrrrrE

RR

E

rrE

E

rrE

RRd




















3.2 Results

In this section, the results of our simulation experiments

are presented. We have done three different sets of

experiments to test how accuracy is changed with number

of permissions, number of roles, and variance in role size.

Accuracy / Number of Permissions: In the first set, we

have raised the number of permissions from 5 to 100 with

steps of 5. For each value for number of permissions, we

made 30 different experiments each of which with a

random number of roles. This is a realistic assumption as

long as we can assume a normal distribution for the

number of roles. The result of this set of experiments is

depicted in Figure 3(a). As the results show, the accuracy
of algorithm declines as the number of permissions grows

although the steep is decreasing. Falling below 50%, the

accuracy is almost intolerably low when number of

permissions is beyond 40-50, which implies that the

algorithm is not usable in systems with large number of

permissions. However, the real number of permissions in

a single subsystem is normally below this limit. For

instance, although the overall number of permissions in a

portal is large, there are far less permissions in each site or

sub-site. Therefore, the algorithm can still be used in

many real cases with a divide-and-conquer approach of

mining roles in independent system units, separately.

Accuracy / Number of Roles: In the second set of

experiments, we have conducted a full-round experiment

for four different numbers of permissions. By full-round

testing, we mean testing all different possible role sizes

for a fixed number of permissions (except the extreme

cases of 1 and |P|) and averaging the results. Yet, for each

role and permission pair, we have repeated the experiment

30 times and calculated the average to make the results as

smooth as possible. The trend of accuracy with growth in

the number of roles is depicted in Figure 3(b). As it is

observable in the diagram, at first, the accuracy declines

sharply as number of roles grows. However, after it

exceeds 7-10, the accuracy remains almost the same, or in

some cases increases. The interesting fact is that the trend

is similar with different number of permissions chosen.

This implies that the accuracy of the algorithm depends

mainly on the number of roles and not on the number of

permissions. Therefore, even in large systems in which

there are a lot of permissions, the algorithm performs well

if the number of roles is not large.

Accuracy / Variance of Role Size: In the third set of

experiments, we have focused on the size of roles which we

had guessed to be an important factor in the accuracy of

the algorithm. However, after testing different role sizes,

we found out that accuracy does not exhibit any visible

correlation with role size. Instead, it is the role size variance

that seems to have a meaningful relation with accuracy. In

other words, more variance in role size results in less

accurate results. In our experiment, we simulated different

RBAC schemas with variable number of permissions from

5 to 70 but with only two roles. Regarding the difference

between the size of the two roles and by performing a

263Role Mining in Access History Logs

simple normalization by dividing it to the number of

permissions, (which is the maximum difference possible),

we came to the results depicted in Figure 3(c), which

shows an apparently descending trend line. The reason

behind this decline is that the access log of shorter roles is

buried among the access log of longer roles. This effect is

especially intensified when shorter roles are subsets of

longer roles, or have significant number of permissions in

common. This latter case happened frequently about

long roles in our simulation experiment since permissions

of each role are chosen at random and a long role have

more chance to share one of its permissions with other

roles.

4. Conclusion and future work

We proposed the simplest approach to role mining

based on system usage information. We argued why better

performance should be expected by this approach as

compared to other role mining approaches appearing to

date. Furthermore, we tested our algorithm using a

number of experiments and discussed advantages and

disadvantages.

As immediate directions to pursue this work further,

more complex usage information such as different access

logs, concurrent logs of different users, etc. can also be

used to develop more complex role mining schemes based

on running information of the system. Since role mining

algorithms (including the algorithm proposed in this

paper) are normally inefficient as number of permissions

grow, another topic of interest for future work is to study

how to apply role mining algorithm independently in

different subsystems and then merge the results.

5. References

[1] Agrawal, R., Srikant, R., ―Fast Algorithms for Mining

Association Rules‖, Proceedings of the 20th International

Conference on Very Large Databases (VLDB), 1994, 487-499.

[2] American National Standards Institute (ANSI), American

National Standard for Information Technology, Role Based

Access Control, ANSI/INCITS 359, 2004, 2004.

[3] Coyne, E.J. ―Role-Engineering‖, Proceedings of the 1st ACM

Workshop on Role-Based Access Control, 1995, Article No. 4.

[4] Epstein, P., Sandhu, R.S., ―Engineering of Role/Permission

Assignments‖, Proceedings of the 17th Annual Computer

Security Applications Conference, 2001, 127-136.

[5] Gallagher, M.P, O'Connor, A.C., Kropp, B., ―The Economic

Impact of Role-Based Access Control‖, Planning Report 02-1,

National Institute of Standards and Technology, 2002.

[6] Kuhlmann, M., Schimpf, G., ―Role Mining- Revealing

Business Roles for Security Administration using Data Mining

Technology‖, Proceedings of the 8th ACM Symposium on Access

Control Models and Technologies, 2003, 179-186.

[7] Roeckle H., Schimpf G., Weidinger R., ―Process-Oriented

Approach for Role-Finding to Implement Role-Based Security

Administration in a Large Industrial Organization‖, Proceedings

of the 5th ACM Workshop on Role-Based Access Control, 2000,

103-110.

[8] Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C. E.,

―Role-Based Access Control Models‖, IEEE Computer, 29(2),

1996, 38-47.

[9] Schlegelmilch, J., Steffens, U., ―Role Mining with ORCA‖,

Proceedings of the 10th ACM Symposium on Access Control

Models and Technologies, 2005, 168-176.

[10] Shin, D., Ahn, G.J., Cho, S., Jin, S., ―On modeling System-

Centric Information for Role Engineering‖, Proceedings of the

8th ACM Symposium on Access Control Models and

Technologies, 2003, 169-178.

[11] Vaidya, J., Atluri, V., Warner, J., ―RoleMiner: Mining

Roles Using Subset Enumeration‖, Proceedings of the 13th ACM

Conference on Computer and Communications Security, 2006,

144-153.

[12] Vaidya, J., Atluri, V., Guo, Q., ―The Role Mining Problem:

Finding a Minimal Descriptive Set of Roles‖, Proceedings of the

12th ACM Symposium on Access Control Models and

Technologies, 2007, 175-184.

264 Jafari et al.

(a) Change in accuracy as the number of permissions grows

(b) Change in accuracy as the number of roles grow while the number of permissions is fixed

(c) Scatter diagram of the effect of role size variation on accuracy of the algorithm

Figure 3. Experimental Results

265Role Mining in Access History Logs

