
How can Ontologies Support Digital and Paper Archives? A Case Study

Ugo Barchetti, Alberto Bucciero, Anna Lisa Guido, Luca Mainetti, Roberto Paiano
University of Salento

Via Monteroni
73100, Lecce, Italy
+39 0832 297376

{ugo.barchetti,alberto.bucciero, annalisa.guido, luca.mainetti, roberto.paiano} @unisalento.it

Abstract

Up to some years ago, industries operating in the field
of document filing systems had a great boost to their
growth, driven, above all, by the need of Public
Administrations and of large-scale industries to
externalize their paper archives. Now document filing
system companies are slowly trying to convert themselves
into digital enterprises becoming, de facto, providers of
services going far beyond the simple physical provision of
space for rental in warehouses: services such as
Substitutive Optical Scanning, document indexing,
manual data input and OCR (Optical Character
Recognition) are now essential. In this context these
companies often encounter difficulties facing up to
problems more typical of the software engineering field:
small several documental production is ever more
dependent on their clients’ internal business processes
and integrated with their information systems. This makes
the clients increasingly subject to the work of external
software house to perform every, even little, modification
to the implemented systems. In this paper we present a
case study: the YouFile service prototype. This system
supports smart document (both paper and electronic)
indexing. It is based on a WebOS interface in order to
benefit from the desktop metaphor, and it uses an
ontological approach that defines not only the document
classes but also the semantic relationships between
specific characteristics of each document class. The
system allows the management of the process of
document indexing and retrieval in an automatic way,
generating the data entry forms at run-time.

1. Introduction

By their very nature, paper archives increase in
quantity rapidly and the concurrent problems in accessing
these documents for consultation grow exponentially.
This is an issue faced by every working organisation, be it
a government agency, a large enterprise or a public body.

One way to solve this problem is to convert paper
documents into electronic format: this solution brings

several advantages in terms of space optimization,
flexibility, availability and ease of retrieval.

When indexing paper documents, very often the
quality of the original document doesn’t allow the use of
OCR techniques so these documents are converted into
simple raster images without any possibility for the
electronic retrieval of their content.

Similarly, even when documents are directly generated
as electronic (digital images, word processor documents,
files produced by specific software applications) they
contain such large quantities of information that easy
aggregation of them into groups of similar documents as
well as their retrieval after storage is not possible.

A solution to this problem is to refer to classification
systems which support the user in the categorization of
documents. These range from professional systems used
for example in digital libraries to the more ‘personal’
ones such as for example the file tagging system of
Windows Vista.

In this conception of classification the user has to
extract the information from the text of the original
document and it will be linked (as metadata) to the image
file, qualifying it in the database. This solution increases
the additional conceptual and operative effort for the final
user because s/he needs to specify unique information to
link to the image of the acquired documents (for paper
documents) and/or to the electronic ones.

To build a system of this type it is important that a
design phase is included and used to define the
‘indexes‘ of different types of documents. This phase is
very delicate because it has to be performed ‘a priori‘ and
it is the essential condition for enabling optimal research
inside the electronic documental archive.

Typically the phase of keyword definition is the job of
the company providing the recording service and it is an
onerous and at the same time not very rewarding activity.
The possibility of storing in the system not only
electronic documents (obtained through the scanner or
directly produced by the user) but also paper ones opens
up the market to include of all those customers who may
require the storage of their paper documents in a company
warehouse but who are unable to index them in a

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)

http://www.mirlabs.org/ijcisim
ISSN: 2150-7988 Vol.1 (2009), pp.266-278

autonomous way, defining their own search keywords,
without the help of the personnel of the company.

In this context two problems arise: first of all it is
important to provide the user with extensive memory
space in order to store all the electronic documents. The
second problem is to allow the user access to the system
in order to simplify both the storage and the following
retrieval of their document (independently of its form).

The opening of the system to the end user has, as a
consequence, an increase in the number of possible
documents that the people inside the document filing
company do not know ‘a priori‘.

Following these we decided to work on a centralized
system (realized as a web application) able to provide its
users not only with a recording space in a ‘virtual hard
drive‘ fashion, but also to support and facilitate the
autonomous performance of the delicate preliminary
phase of indexing, even by less technically skilled users.

Starting from this idea, we present here the YouFile
service: a real case study developed under the eSCI
project (eStore of Captured Information).

2. eSCI project

The eSCI project is a research project led by Memar

Monteassegni, an Italian company which has been
working for more than twenty years in the field of paper
and digital storage and GSA-Lab (Graphics and Software
Architectures Laboratory) of the University of Salento.

One of the main goals of this project is to develop a
Web portal, called YouFile, that will allow users to
directly interact with the document filing company in
order to electronically store digital documents or to
activate its services related to paper document recording.
The portal will provide tools for the auto-configuration of
the user’s archives, OCR and Information Capture
services etc. Through the YouFile portal, the user will
select the desired service of either electronic or paper.

The main expected result is to free the document filing
company of all those phases such as customer searches
and acquisition as well as the indexing of customer
documents. Also, such a system would allow the
customer, without the need for help from operators at the
document filing company, to request a paper document
storage service, to request document digitalization, to
store electronic documents and to organize them into
folders in order to retrieve them in a fast and secure way.

The eSCI project is divided into three main research
themes. The first is connected to the definition of a
storage hardware and software architecture able to
support many electronic repositories and a great amount
of e-documents; the second concerns the automation of
the paper storage process, booked or activated through
the web application, and the third regards the
development of a system to assist web users in the

creation of their own electronic virtual folders and in
following definitions of the indexes for each e-document
class.

It is the last theme, i.e. the development of assistive
systems to help web users in the creation and
maintenance of their digital folders, that has been the
main target of the project. In fact, as previously said, the
main difficulty in these systems is to achieve the complete
characterization of every document, with appropriate
keywords, in order to perform targeted, effective and fast
searches.

3. Related works

As related works, we must consider two different
aspects not related in themselves but both feature in the
international scientific panorama necessary to set this
problem against the correct background. The first aspect
is related to digital libraries in order to solve the problem
of ‘indexing‘ and the second aspect is ‘WebOS‘ to allow
the user to access, easily and everywhere, the copies of
their own indexed digital documents as well as the paper
ones, even if the latter are only available in terms of their
reference numbers in the company warehouse.

The project’s basic idea is not too far from the concept
of digital library [1], which originated in the sphere of
biblioeconomy and has since widely developed over time.

Example of digital libraries include the Vatican
Library or the Digital Library at the University of
Michigan. In the international scientific panorama there is
a rightful distinction between digital libraries and digital
archives. Differently from the digital libraries, digital
archives were conceived to hold digital documents
directly generated by whoever performs their upload.
Moreover, in digital archives the documents are stored in
groups and not as single items: the user performing the
file storage, the organization of its contents following the
user’s own logic. Grouping, for example, in different
folders documents that share the same content. Another
problem is the privacy issue: whereas in digital libraries
the contents could be accessible also to user groups (even
if restricted), in digital archives, typically, every user can
access only his own content.

Both digital libraries and digital archives must face the
problem of document indexing: it has to be performed in
order to facilitate as much as possible e-document
retrieval.

In digital libraries the indexing problem is solved
through the definition of a set of keywords more or less
specific to well-known specific topics of interest because,
in most cases, the documents are limited to a specific and
well known sector. In the digital archive field it is
impossible to think in terms of well established keywords
because the types of documents are diverse and each user

267How can Ontologies Support Digital and Paper Archives? A Case Study

could define different keywords for the same document
type.

The first idea of document indexing practice (either for
single documents or groups) has distant origins: the first
was the ‘faceted‘ classification system, devised in 1930
by the Indian archivist Ranganathan and which
subsequently evolved as the indexing standard [2].

Nowadays pattern recognition techniques are often
used [3] and they allow the performance of indexing
starting from a first phase of knowledge extraction. Such
techniques assume the availability of scanned documents
with a resolution high enough to perform some OCR
which is not the case for us, at least for the treatment of
the paper documents (there may even be several
handwritten documents for example).

The problem of document classification has been faced
also from the discovery point of view: in [4] authors
present a tagging system based on the face images where
face images are extracted from the documents and the
documents are tagged to the face images. This idea,
although interesting, is more oriented to face recognition
rather than the real indexing problems.

In recent times, personal digital documents (mainly
photographs and video) have become able to be stored in
several portals, for example YouTube for videos
(www.youtube.com) or Flickr (www.flickr.com) for
photographs.

The proliferation of these portals, following the Web
2.0 trend of content sharing, is not at all suitable for the
storage documents containing sensitive data such as
private and personal documents which a user would like
to store in a secret and secure place.

Moreover, those indexing systems are based only on
simple user self-defined tags. Even if in Web 2.0
applications the tag definition is a useful and powerful
feature, it does not seem very usable for a system where
one of the main goals is to assist users in the correct
indexing of their own documents by providing a set of
keywords that should be able to entirely characterize the
document. A study of this phenomenon can be found in
[5] where it is asserted that the use of the tag is not
enough to characterize a document because tags, without
the use of a domain ontology only allow classification
based on a string and do not allow any type of reasoning.
It is very important to see the use of ontologies as a key
aspect to solve indexing problems: the use of tags related
to a defined ontology opens the research up to web 3.0;
the next target of the web [6].

As stated before, another work area very useful for our
study is related to Web Operative Systems. One of the
first studies of WebOS was carried out at the University
of Texas [7]. The study was done in order to support
geographically distributed application. The main goal of
the WebOS idea is to define a new metaphor for desktop
application [8]: all the operations that a user may make

using his own computer will be translated on the web.
The desktop metaphor is, in our opinion, the best
paradigm to allow a generic user to access and manage
his own electronic documents in the simplest way.
WebOS provides the basic operating systems services
needed to build applications that are geographically
distributed, highly available, incrementally scalable and
that reconfigure dynamically. WebOS simplifies system
development and improves resource utilization. One of
the major WebOS components very useful for our study
is the possibility it offers to manage a wide area system
that supports replication and wide-scale sharing.

4. Open Issues and motivations

One of the main problems for companies who have
digital and paper filing systems is the complexity of
document retrieval from their paper warehouse or from
their digital archives: an issue that usually falls into the
area of indexing.

In order to be retrievable, every document has to be
tagged with some relevant keywords. The choice of these
search keys depends on the specific document class under
consideration. For example in an invoice, keys could be
the legal name of the biller, invoice number, invoice date
and so on.

When a new class of document is to be indexed the
data storage company carries out one or more interviews
with the customer who will use the system. This phase of
analysis is oriented towards the definition of a model for
each specific document class. This model is used to
define the most important unique data for each document
class in order to allow the company to retrieve the right
document when its owner asks for it. Once keys are
chosen for a particular class of document, every other
document belonging to the same class will be
automatically treated in the same way. Traditionally, the
phase of association of the search keys to each document
is performed through the support of a software
application which has a certain set of data entry forms,
developed ‘ad hoc’, one for each document class.

The complexity of these recording and indexing
management applications is mainly due to the large
amount of data entry forms that must be developed from
scratch in order to characterize every different type of
document.
This is reflected in:
• an overhead in the from of the maintenance of the

archive management application which must be
continuously evolved in order to update the set of
supported document models with new document types
that, periodically, need to be added;

• a cost to the data storage company as it is permanently
tied to a software house for such maintenance;

268 Barchetti et al.

• a weak reactivity with respect to the consumers, who
often have to wait to index their documents if they
belong to a new and not yet supported class, while the
indexing application is being updated;
Although we can hypothesize forms of customized

indexing, where the customer themself takes care of the
search key definition of their own digital archives, this
would generally produce two negative effects. First of all,
the resulting proliferation of heterogeneous document
classification systems would discourage any
standardization. The second negative aspect is that the
customer is not assisted in the generation and
maintenance of his own archives, devaluing, de facto, the
experience in the document management field that the
company has laboriously consolidated over the course of
the years. This experience needs to represent an added
value of the entire system.

In order to face these two negative aspects, it is
important that the information used for the data entry
form generation is expressed as concepts with strict
semantic meanings. The use of a knowledge base, and
thus of the ontologies, seems to be the best means for the
archiving of this kind of concepts.

5. Proposed solution

In order to discharge the enterprise from tasks that
aren’t value added such as the internal (to the data
storage company) manual document indexing and the
external development and management of the software
applications supporting the indexing process, a better
solution would be to directly allow the customers to index
their own documents without any intervention by the
company.

This process should be automatic and simple enough
to also enable users who not very technically skilled to be
autonomous. As stated before, WebOS and thus the
desktop metaphor seem to be the most useful technology
for our goals. In fact, since the profile of the end users of
this system may vary from those with a little or no IT
ability to those with a very high one, the software system
that supports the process of document storing, indexing
and retrieval should be as simple and standard as possible
with the most traditional working mechanism, obviously
in the form of a web application.

Why WebOS? The history of personal computing has
so far been dominated by one-box solutions: a physical
container holding all the software and hardware you need
to run your applications. A desktop operating system such
as Microsoft Windows, Apple’s OS X and Linux KDE,
provides a series of interfaces between the hardware
inside the box and the software that is run (the word
processors, graphic design tools, Web browser, etc.)

The WebOS vision explodes the very concept of
operating system itself, moving beyond the physical
bounds of a box and across the Internet. File storage is no
longer limited to local disks, application logic to local
processing on a CPU or access to documents to just one
person at a time.

This vision seems to be the best for several reasons:
• Users can access their resources (multiple archives of

paper or electronic documents), in the same way as
they do already on their desktop computers;

• Users have a virtually infinite storage space, are
provided with high security policies and the archives
are reachable from everywhere and at any time;

• Companies can provide their clients with a WebOS
application in order to let them manage their own
resources without any external intervention.
However, to have a simple and traditional interface to

access resources solves only half the problem. In order to
be autonomous in the difficult process of indexing users
have to be, in some way, guided by the experience and
the know-how acquired through years of work by the data
storage company.

In traditional document archive systems the
information about the documents to be indexed is
acquired through data entry forms which are statically
generated. This feature represents an important design
constraint because it is not very scalable in architectures
that make use of many document types. It would be
indeed extremely complex and expensive to develop new
interfaces whenever required to define new document
classes. Another limit of a static form of generation
system is surely represented by the issues raised in the
updating of already defined models. In fact, the simple
modification of a field would imply the reprogramming of
the whole interface and the database structure.

We advocate that the solution, in order to make the
indexing systems more flexible and effective, could be:
• the use of a WebOS as virtual operative system

hosting the resource management application;
• the use of ontologies to codify the company know-

how about the best indexing strategy for each
document class;

• the development of a proper interface generator able
to dynamically propose to users the search keys most
suitable to describe each specific document.
To validate our thesis we have designed and developed

the YouFile personal indexing and storing prototype
service. We face the problems both of the knowledge
base design and of the experimentation of it through our
development of the YouFile service prototype.

269How can Ontologies Support Digital and Paper Archives? A Case Study

6. Knowledge base

6.1. Design methodologies

There are several methodologies in the international

scientific panorama useful to design a knowledge
base(Uschold & King methodology [9]; Gruninger & Fox
methodology [10]; Methontology [11]). In this paper we
adopted the methodology defined by Stanford University
[12] which was conceived in parallel with the tool
Protégé, an open source editor for ontologies that allows
the representation of a knowledge base in a formal way
and which represents ontology visually and obtains its
formal representation in OWL [13] language. The
concept steps foreseen by the Stanford University
methodology are general enough and therefore easily
adaptable to any particular application domain. The
methodology starts from the definition of the motivations
that bring an ontology to be designed (through several
questions that the designer asks himself), and allows for
the consideration of the possibility that an already
existing ontology could be used and to generate a list of
terms useful to define the ontology. From that list it is
possible to select those useful to the conceptualization of
the classes and to the conceptualization of the
relationships between classes. The methodology suggests
that each class be characterized by its attributes and
relationships. It also suggests that a restriction of the
properties useful to define, if there are any, is carried out.
For example the cardinality or other characteristics of
each property. The last step is to define individuals for
each class.

The choice of the Stanford University methodology
comes from two main motivations:
• The description of the methodology is helpful: this is

thanks to its definition of several questions, to its
definition of a list of terms and to the separation it
makes between concepts and relationships. The
methodology may be used as a step by step tutorial for
knowledge base definition.

• The methodology was conceived in parallel to the
Protégé editor. The editor and the methodology have
the support of a passionate community of developers
and users: the inventor of the methodology is,
therefore, always ready to provide very useful
suggestions when the designer experiences a problem
in the design of some specific situation.

6.2. Why use ontologies?

One of the main goals of the project was to provide the
user with a system to store documents in a way that
follows, as closely as possible, the user’s own way of

reasoning in order to facilitate the recovery of their
documents. To do this, it is important to reproduce the
same semantic connections as those within which the user
operates when storing his documents. To reproduce the
relationships between concepts in the real world is at the
base of the semantic web, therefore the definition of an
ontology that can store, in a formal way, the semantic
connections among the representative concepts of the
several documents that the final user would like to
archive, seemed the solution most suitable for our aims.

Our basic idea was to totally define a type of document
both as regarding its intrinsic properties (title of the
document, date of creation, author of the document and so
on) and also in terms of some other data useful to better
define the document. To take the example of a document
that stores the personal data of someone: the intrinsic
property of the document will be the title of the document
(e.g. ‘curriculum vitae of…’), the date of the document
(e.g. ‘01/01/2008‘), the author (e.g. ‘Paolo Rossi‘), the
format used (e.g. ‘European format’) and so on. The set
of attributes that characterize the person inside the
document (such as name, address, experience and so on)
is not information that distinguishes the type of document
from other documents. Starting from this idea, two
different types of concepts can be proposed: primary
concepts that characterize each type of document and
secondary concepts that may be common to several types
of documents. It is clear that it is possible to link primary
concepts and also to link between them secondary
concepts. It is important to link together concepts defined
as ‘primary‘ with concepts defined as ‘secondary‘ in
order to characterize each document (Figure 1).

Figure 1 - Basic idea: primary concepts are specific

to a document class while secondary concepts may be
held in common by several document classes

A knowledge base defined in this way it is not only a

simple ‘data descriptor’, but also a descriptor of possible
semantic links between these data. The form generated
starting from this knowledge base is very useful because
it is a help for the user who, following the keyword
defined in the knowledge base, may define his/her own
document index structure both for the intrinsic
characteristics and for the secondary ones that best define
the document.

270 Barchetti et al.

6.3. Definition of the knowledge base

It is important to define in detail how the knowledge
base has been designed. In the design of the knowledge
base for this work, we addressed two different problems:
• The knowledge base must represent all the concepts

about a document class both primary concepts and
secondary ones;

• The ontology is the base both for the form generation
(where the keyword will be put) and for the database
generation (where the keyword will be stored).
Therefore all the information useful for the generation
of the forms and/or of the underlying database, not
just for characterizing documents, must be defined in
it.

6.3.1. Ontological classes. The first idea in order to
define the ontological classes was to devise all the
possible typologies of document and, subsequently, to
define as a data type property every attribute that
characterizes the document. This solution was
immediately discarded because it didn’t solve the two
problems previously defined. This solution does not
define each attribute of the document in order to generate
both the database and the forms. We observed that every
attribute was characterized by different properties that
define it such as, for example, the dimension and the data
type: these attributes are very important for the on-the-fly
data entry form generation. If we think, moreover, about
the semantic relationships between specific characteristics
of the documents, each attribute may be semantically
related to other attributes and, if we define attributes as
data type property, we cannot define these semantic
relationships.

Starting from these considerations, we defined three types
of ontological classes:

• Documents: subsequently divided into subclasses
(primary concepts and secondary concepts). They
define the possible typologies of documents that the
system allows to be stored. The subclass ‘Primary’
defines several documents and the subclass
‘Secondary’ defines those concepts that do not
characterize the document. Of course, well defined
object properties will allow, where necessary, the
semantically connection of Primary and Secondary
concepts. For example, if the system allows to store
‘Pictures’, ‘Fiscal Documents’, ‘Video’, ‘Curriculum
vitae‘ and so on, these concepts will be subclasses of
the subclass ‘Primary’. Properties of these subclasses
will characterize each type of document while

• Attributes: The class has several subclasses and
defines all the possible attributes that can be
individualized in the several typologies of documents
examined. In turn every attribute is an ontological
class that can contain other subclasses. An example of
an attribute’s subclass is ‘date’. The class ‘date’ has
its own properties (date format, allowed date, and so
on) and it is possible to specialize this class with other
subclasses in order to define, for example, special
types of date (for example to separate Italian format
from American format). An important characteristic
that is possible to define when we define each
attribute is the priority level. The documents inserted
by the user will be stored in the WebOs in a specific
folder and the user may retrieve their own documents
just as they would retrieve a document in their hard
disk. The documents will be stored in a specific folder
hierarchy and the level of the hierarchy will be
defined as a special characteristic of the attribute. This
will be done by assigning a ‘priority level’ to the
attribute. If an attribute has a priority level value of 1,
the root of the folder where the document will be
stored has the same name as this attribute.

• Support: this defines all those concepts that are not
tightly bound to the document but which allow to
better specify its characteristics. For example if we
want to specify that the attribute ‘date’ will have only
two possible dates from which user may select, these
two available dates are instances of the subclass
‘allowed_date’ of the class ‘support’.

6.3.2. Ontological properties. We defined three different
types of properties:

• The object property that links together each type of
document and each subclass of the class Attributes.
The name of these properties is ‘has_attributeName’
and they have as their range the class that represents
the attribute previously defined. For example, if the
document ‘curriculum vitae’ has the field ‘date’ the
class ‘curriculum vitae’ will have, among its
properties, ‘has_date’ and the range will be the ‘date’
subclass of the class Attribute.

• The object property that links together primary and
secondary concepts. Secondary concepts can group
together several attributes or concepts in order to
better define (and through properties that do not
characterize the document) a document. For example
if to describe a ‘curriculum vitae’ it is important to
add information about the person and the ‘person’ is a
secondary concept, in the class ‘curriculum vitae’
there will be the object property that links to the
‘person’ concept.

271How can Ontologies Support Digital and Paper Archives? A Case Study

properties of the ‘Secondary’ class will describe
properties that do not characterize documents.

• The data type property that characterizes in a specific
way each attribute of the document. For example the
data type, the length etc. of each attribute will be
property of the class that is a subclass of ‘attributes’.

In the definition of the ontological properties we also
used the ‘owl:hasValues’ restriction. This restriction
allows the definition of the value that a very specific
property assumes in a well defined context. We use this
restriction to define the properties that characterize each
attribute (length, type of data and so on).

6.3.3 Individuals. The Individuals was used in this work
in order to add a semantic layer to the concepts defined in
terms of classes and properties. Individuals was added in
the ‘support’ classes. For example, if for a specific
property the user may define only two (or more) values,
these values will be defined as individuals of the property:
the data entry form automatically generated will provide
to the user the possibility to select one of these values
thereby avoiding error.

6.4. The persistence layer

The knowledge base is the starting point for the form
generation but the problem remains of where to store
information about documents inserted by the final user?

We analyzed three different hypotheses of work.
The first hypothesis was to make the ontological

representation of all possible concepts that a user may
define for a specific document. To do so, it is important to
define, for all the document classes individuated, as many
subclasses as possible documents that a customer would
like to insert. For example if we consider the concept of
‘WhiteWine’ it is possible to define it by adding the
individual ‘White’ to the ‘colour’ property of the class
‘Wine’. The concept ‘WhiteWine’ with the property
Colour ‘White’ is a subclass of the class Wine. In the
ontology definition, the focus, using this approach, is on
the concept of ‘WhiteWine’ that, in the knowledge base, is
defined clearly. Using this strategy would mean to think
and design in advance all the possible cases for every
type of document and this would be very hard work.

The approach has been discarded for two main reasons:
• We plan to manage many documents so the number of

subclasses to define would be excessively high.
• For each type of document several special

requirements may exist for each user (for example to
add or delete some field or to define a specific field
better). To foresee in advance all the possible
requirements of the users is impossible, so the
situation would be that the user would often require
the data storage company to update the ontology. This
on the one hand increases the work load for the
operator and on the other could easily lead customers

to abandon the portal when their needs are not
immediately satisfied.
Another hypothesis was to define in the knowledge

base all the concepts and the semantic relations between
them (related to well defined document classes). When
the user adds their own documents to the portal, the
specific information about the document will be an
individual of ontological classes and/or property.

Using this hypothesis the focus moves from the
concept to the metadata: the ontology will be used not to
describe the specific typology of document that the user
wants to store but the metadata that allows the user to add
their own typology of document. In other words, the
ontology defines a basic structure that guides the user in
classifying and in retrieving their own documents.

If a user, for example, wants to store photos related to
a specific landscape, the user will add an individual to the
concept of photos and of landscape which are related to
each other by a semantic relationship. If another user
wants to store another photo that records another
landscape he/she will use the same concepts but with
another meaning.

Through this approach, each time that the user adds a
new document, there will be a new individual in the
knowledge base: the persistence will be in the knowledge
base.

Another hypothesis was to define a scheme that allows
the semantic characterization of the documents and to
define a layer of persistence inside the database. When
the user adds their own documents to the portal, the
specific information about the document will be an
individual of ontological classes and/or property. In an
optimistic vision, if the YouFile portal were to become
heavily accessed and used, this would bring about the
creation of a large knowledge base but, to date, the
technology is not ready to allow the management of very
large ontologies and, at the same time, it is not possible to
manage the security access to the knowledge base. These
issues are however well known and supported in the
database field. For these reasons, the solution chosen has
been to define a scheme that allows the semantically
characterization of the documents and the definition of a
layer of persistence inside the database.

Thus the adopted solution has been to combine the
undisputed advantages attached to the definition of an
ontology with the advantages springing from the use of a
database that will constitute, therefore, the layer of
persistence. In this way both the syntactic and semantic
expressiveness of the knowledge bases and the
technologies already consolidated within the database
field to manage massive structures of data can be fully
exploited.

6.4.1. From the knowledge base to the database. To
realize the persistence layer we define a simple algorithm

272 Barchetti et al.

that allows the automatic generation of the database
where the individuals that the final user adds to the
system are stored.

• Each subclass of the primary concepts and each
subclass of the secondary concepts is a table in the
database: each record set in this table has its own
primary key.

• Each ontological class that is a subclass of the
ontological class ‘Attribute’ is a field in a table (either
primary or secondary). Each field is defined following
the property of the related ontological class (for the
type of data, the length of the field and so on).

• The ‘functional’ object properties we define in a table
of the database that represents the range of the object
property the primary key of the table of the database
that represents the domain of the object property (the
idea is the same as that of the mapping between ER
model and relational model for the 1:N relationship).

• For the other object properties (not functional) we
define a new table that represents the object property
and it takes, as key, the key of the domain and the key
of the range of the relation (the idea is the same as that
of the mapping between ER model and relational
model for the N:M relationship).

• The concept subclass of the class ‘Support’ does not
have a related concept in the database: these
subclasses will be used only in the engine for the
generation of the form in order to obtain specific
information of interest.
The names of the tables and of the attributes are the

same as those of the corresponding concepts and
properties. This strategy foresees, obviously, the
synchronization between knowledge base layer and the
persistence layer: each change in the ontology must be
reflected in a change in the database.

6.4.2. Knowledge base update: methodological
guidelines. Using the designed and implemented portal it
is possible that, in order to answer to new user
requirements or to new company needs it is important to
update the realized knowledge base. The update must
regard several aspects and, for each of them, we provide
some methodological guidelines to update the knowledge
base.

• Add/delete an attribute to an existing document. To
add an attribute to an existing document in the
knowledge base predicates a first step of analysis of
the knowledge base to ascertain that the same attribute
has not been defined for some other document. In this
case, it will be sufficient to analyze the attribute and,
if it has the same characteristic of the already defined
attribute, it is possible to reuse the same object
property that links the already existing attribute to the

document. If the attribute to add has different
characteristics it is important to realize a subclass of
the attribute adding the specific restrictions.

• Add/delete a semantic relationship between a
document and a new or already existing secondary
concept. It is possible that, to assist the user in the
definition of his own document, is helpful to add
information related to the document that does not
characterize the document but that represents only
some way of reasoning employed by the user. This
information will be searched in the ontology and, if it
is not already defined, this is inserted as subclass of
the class ‘secondary’. It is important to define the
class that defines the concept and an Object Property
will link the document with the secondary subclass
just created.

• Add a new typology of document. To add a new
typology of document it is important to follow
different steps:
o To create a subclass of the class ‘Document’ with

the name of the type of document to add. The
subclass may be or a subclass of the ‘document’
that is at the same level as the classes that have
other documents as subclasses, or a subclass of a
class that has other documents as it subclass.

o To link the class defined in the previous step with
already existing attributes (see add/delete an
attribute to an existing document).

o If the document has several attributes that are
possible to group together, it is necessary to add a
subclass of the ontological class
‘SecondaryConcept’ where these several attributes
can be defined.

o If the document has properties that do not
characterize the document but that are useful to the
user to provide the document with a semantic
meaning, these properties must be defined as a
subclass of the class ‘SecondaryConcept’.

6.4.3. Database update. For each change to the
knowledge base, there must be a corresponding change to
the database. The change must on the one hand protect
information already in the knowledge base and on the
other hand must allow the insertion of the new
information according to the new knowledge base. The
update of the knowledge base must consider several
possibilities:

• Add an attribute to an already existing document: the
only thing to do is to add the attribute to the table
related to the document;

• Add a semantic relationship between a document and
a new or already existing secondary concept. When
the secondary concept is new, it must create a new
table to represent the concept. The table that

273How can Ontologies Support Digital and Paper Archives? A Case Study

represents the document and the table that represents
the secondary concept will be linked together through
a 1:N or an N:M relationship. The cardinality of the
relationship depends upon whether the object property
is functional or not functional;

• Add a new typology of document. A table must be
added in the database with all the attributes that
characterize the document.
A specific software tool has been developed to detect

the differences between two versions of the knowledge
base and to automatically update the database in order to
align the two information sources (knowledge base and
database).

7. Experimental implementation of the YouFile
service prototype system

7.1. System architecture

As previously stated, we selected WebOS as the
architectural paradigm to inspire our system. Among all
the reviewed implementations of either commercial or
academic WebOS, the one that seemed most stable and
complete was eXo Enterprise WebOS by Object Forge
Web (http://www.exoplatform.com/portal/public/en/).
The reasons that lead us to choose eXO were:

• eXO is an Open Source project.
• eXO is developed under J2EE, so it guarantees the

future scalability of the entire system.
• eXO is a Portlet Container, so every web application

can be developed as a Portlet compliant with the
JSR168 standard.

• eXO is not only a WebOS but also a Portal Server, so
it can also be used to host the front end traditional
web site of the company.
In the eXo platform all the business logic is

encapsulated in services that are dependant but loosely
coupled thanks to Inversion Of Control (IoC). Therefore,
each product, as shown in Figure 2, is composed of a set
of services, portlets that query them and one or several
portal instances that are simple web applications (war)
with dedicated configurations and web designs (each
portal instance can define its own preconfigured
organization model or security policy as well as many
other configurations such as the predefined portal
template pages to use when new users are created which
can be useful for hosting environments). The service
container layer is responsible for gluing the services. To
customize the specific WebOS selected, a new layer
called OMS (Ontology Management System) has been
developed. Figure 2 represents the YouFile system
architecture in the large; basically it is the infrastructure

of the eXO platform to which have been added some
modules (boxes with continuous dash lines).

eXO Platform

JEE

Services Container
Inversion of Control (IoC)

Portlet Container
(JSR 168)

WCAG 1.0, US-508, JSR 94, Velocity, JSF

JCR-JSR170

CMS
Portlet

Storage
&

Indexing
Portlet

Documen
t Picking
Portlet

Portal

Ontology
Management

System (OMS)

File
System

Repository

Ontology
DB

Persistence Layer

eXO
WebOs

Interface

eXO Platform

JEE

Services Container
Inversion of Control (IoC)

Portlet Container
(JSR 168)

WCAG 1.0, US-508, JSR 94, Velocity, JSF

JCR-JSR170

CMS
Portlet

Storage
&

Indexing
Portlet

Documen
t Picking
Portlet

Portal

Ontology
Management

System (OMS)

File
System

Repository

Ontology
DB

Persistence Layer

eXO
WebOs

Interface

Figure 2 - YouFile software architecture

There are two portlets developed from scratch and

deployed under eXO:
• Storage and indexing portlet: is the module that,

based on the concepts stored in the document
knowledge base, guides the user to choose the most
efficient search keys to index their own document.
The same search keys can be subsequently used to
retrieve the correct stored documents.

• Document picking portlet: this is the module
supporting the process of the paper documents’
physical storage in the company warehouses. It is
organized as a wizard.
Besides the ontological search another more

immediate way to access indexed files is the proprietary
File Explorer module of the eXO platform (Figure 3).
Through this interface every user needing to view and/or
download their files, has the opportunity to navigate
through the virtual file system provided by the WebOS
system, in the very same way they do at their own
desktop computer. As shown previously (in Figure 2), the
OMS module is partially overlapped by the Portlet
Container. This means that a part of it, in particular the
front end of the visual generation of the data entry forms,
has been developed as a portlet. The remaining part,
indeed, as the database and its business logic, file

274 Barchetti et al.

repository (see at the bottom of Figure 2) are directly
integrated inside the eXO platform.

Figure 3 - eXO portal file explorer

In Figure 4 the interaction between the OMS layer and
the persistence layer is shown. Here we find two main
subsystems:
• Storage repository of document classes, developed

through the ontology language OWL (ontology web
language): the document class descriptions are stored
here in an XML file over the server file system.

• Persistence layer: Here are stored concepts (every
keyword’s value selected by the user to fully
characterize his document) in the Ontology DB and
electronic documents in the File System repository.

Figure 4 - OMS and persistence layer interaction

One of the main problems of this approach is the need

to maintain the synchronization of the knowledge base of
the document models and the ontology. This
synchronization is important because every concept
(expressed in the knowledge base layer) has to be
translated in one or more tables inside the database.

7.2. Use case

In this paragraph we present a use case relevant for

this system: the indexing of a document (see Figure 5).
The core of the architecture, as said, is the knowledge
base and it is stored as an OWL file on the file system.
Once the user selects the document type he/she wants to
upload and store (message 1:), the Jena Parser module
will search the ontology for all the attributes/fields needed
to describe this document class (message 3:) and then it
will extract a subset of all the ontology concepts (message
4:), that fully represent the desired document type, writing
it in a temporary XML file (message 5:). From this file
the XSD Gen module will generate the corresponding
XML schema file, containing all the attributes and their
allowable value ranges (message 6:). Then, through an
XSL-T transformation a XFORMS 1.1 document will be
generated, and it will be loaded in the browser (message
8:). Finally, the user will input the desired values (the
index keys) in the interface just loaded (message 10:) and
they will be stored in the database being associated to the
corresponding file (message 12:).

Figure 5 - Document indexing sequence diagram

It is important, now, to pay attention to a complete use
case. We consider the storage and indexing portlet of the
system and we show, using several screenshots of the
developed system, two cases: the first is the storage (and
retrieval) in the system of a document already defined in
the knowledge base, the second is the storage of a custom
document that is a new, user defined document.

In the first use case, we consider the type of document
‘picture’, and we define the overall process that starts
with the selection of the type of document that the user
wants to store and ends with the upload of the picture file.
The characteristics of the picture are already present in
the knowledge base so the user must select the typology
of document and add his/her own data in the specific field.
Clearly, the description of the data comes from the
knowledge base. We take a look at the knowledge base,
and we highlight the most important concepts that define
a picture and how they were modelled.

275How can Ontologies Support Digital and Paper Archives? A Case Study

We suppose that the picture is characterized by the
year, the file name, the period of the day, the scenario, the
recurrence, the location where the user took the photo, the
orientation, the camera used, the colour of the picture
(colour or black and white). It is clear that in the listed
concept the file name, the year, the colour, the period of
the day and the orientation characterize the picture,
whereas the other concepts do not characterize the picture
but they are very helpful in order to allow the user to
remember their own keywords.

To define the part of the knowledge base for picture,
first of all, we define as a subclass the primary concepts
the ontological class ‘Picture' that has in its properties
‘hasFileName’, ‘hasYear’, ‘hasColour’, ‘hasOrientation’
as well as the properties ‘hasScenario’, ‘hasRecurrence’,
‘madeByCamera’, ‘hasPlace’. The concept of ‘Place’, for
example, is a secondary concept and it is a subclass of the
‘SecondaryConcepts’ class: the object property ‘hasPlace’
has as a range the ‘Place’ concept. The ‘Place’ concept
has four attributes: ‘Province’, ‘Nation’, ‘PlaceInTheCity’
and ‘City’ that refer to the relative subclasses of the class
‘Attribute’. The subclass of the attribute class ‘Year’, for
example, has as a property ‘hasMaxLength’ and
‘hasTypeOfData’ in order to better describe the year
name attribute. The ‘Year’ attribute has, also, a priority
level defined with the restriction ‘hasValue Priority 1’.
This means that the pictures will have the year as root of
the folder.

Figure 7 A screenshot of the YouFile system for the

document ‘picture’

The secondary concepts here listed may be held in
common with several typologies of document: we can
conceive of a drawing or a screenshot or of another image
that a user may want to archive. They are defined one
time in the knowledge base and used again if this is
necessary. In Figure 7 we present a screenshot of the form
obtained starting from the knowledge base that describes
the document ‘picture’ and the OWL code related to the
concept Picture.

Figure 8 Confirmation

We highlight that the priority level 1 is defined for the
field year. This means that the root of the folder will be,
in this case, ‘2008’.

The user fills in the form and uploads the document by
selecting the file from his own hard disk. The system
confirms the upload (Figure 8). Starting from this
moment the picture is in the virtual hard drive of the data
storage company. The user may search for his/her
document.

To search for the document, the user has two
possibilities. The first is to search for a document in the
virtual hard drive. The user will find the document in the
folder following the priority level defined in the
knowledge base. Another possibility is to search for the
document by the keywords that the user inserted in the
system when he/she uploaded the document. If the user
wants to retrieve his/her pictures that have, as type of
scenario, ‘Outdoor’, he/she must select the type of
document to search and then he/she must type ‘Outdoor’
in the specific field (Figure 9). The system will find the
document.

In this case, the system finds two pictures that have the
type of scenario ‘Outdoor’ (Figure 10). If the user clicks
on the link with the specific path, s/he can download
his/her pictures.

We consider, now the possibility of the upload of a
document that has not been defined in the knowledge
base.

The user must select the option ‘Store a custom
document ‘and the system will drive the user in the
definition of his/her own document. The user will add the

276 Barchetti et al.

document name (in Figure 11 ‘curriculum vitae’) and will
define each name of the field that he/she wants to add.
For each field, the user must define the name, the type
and the folder layer.

Figure 9 Research

This information will be added in the knowledge base:
the name of the document is a new primary concept
subclass of the class ‘Document’. At present the system
does not allow the adding of a secondary concept (this is
a future work) but it does allow the definition of all the
attributes that characterize the documents. All the fields
that the user adds will be subclasses of the class
‘Attributes’ with the properties ‘typeOfField’ and
‘priorityLevel’ with the range defined by the user in the
form.

Figure 10 Results

At this point, the user may select the new document
that s/he has just defined and may store it in the system.
The knowledge base of the user will be updated with the
new document: this document will be shown only to the
user that has added it; only if the company wants to share
it to the public knowledge base will the new document be
made visible to all the users.

The system, in an experimental phase, will be online
soon.

Figure 11 Definition of a new document

8. CONCLUSIONS

The large quantity of paper or electronic documents
that every company manages in its daily business
processes raises the problem of their storage (either
physical or digital) in order to be able to retrieve them
when necessary. A solution to this problem is to convert
paper documents into electronic documents in order to
simplify the process of indexing. This is a problem not
only holds for companies but also for private citizens who
may want to store both printed paper and electronic
documents that can be of several types such as photos,
video, word processed documents and so on.

The idea of the present research work is to provide a
system able to store both paper documents and electronic
documents and to guarantee easy research of what has
been archived. This tool must be able, for the paper
documents, to define the keywords strictly related to the
document that the user wants to archive and, for the
electronic documents, beside the possibility to define
keywords, also to allow for the possibility to store the
document in a ‘virtual hard drive’. This means the
opening of the system not only to people who work in the
companies that provide the service of filing but also to
private users and thus increase the number of possible
document types and consequently the number data entry
forms needed to index them. The architecture proposed
in this research work which makes up a part of the eSCI
project considers two main aspects:
• the need to generate on the fly the data entry forms;
• the possibility to provide a ‘virtual hard drive’ to the

user in order to access their documents just as they
would do on their personal computer.

277How can Ontologies Support Digital and Paper Archives? A Case Study

For the first aspect we defined a knowledge base and
so, with the OMS layer of the architecture proposed, the
system is able to generate on the fly the data entry form.
For the second, the provision of a virtual hard drive, we
use the WebOS technology. The use of the knowledge
bases for the representation of the documents allows the
know-how already acquired by the company in the field
of the document indexing to be made explicit, avoiding,
in this way, its fragmentation among the several divisions
specialized in a particular, specific set of documents. The
proposed architecture allows, moreover, the
transformation of the know-how acquired by the company
in a service that the company offers to its customers.
Thanks to the formal and precise description of each
document that the company allows to be stored, the data
entry forms help the end user in the indexing of his/her
own documents without any need for the intervention of
the data storage company’s personnel. The use of the
WebOS technology allows the provision of a virtual
unlimited memory space where a user may upload his/her
files after the indexing phase. In the WebOS, through
portlet technology, all the business processes of the
company may be outsourced to the final user.

The project, currently, is under a test phase. The main
problem that has been raised during the experimentation
is that the tools to manage ontologies are not very
efficient regarding performance and so, the on the fly
data entry form generation was too slow. In the future
work, it should be useful to pre-generate data entry forms,
starting from, and maintaining synchronization with, the
knowledge base in order to avoid their regeneration every
time the same form is requested.

9. Acknowledgements

We would thank the Memar Monteassegni Company

and Tommaso Mezzina for their tangible support, and
WebScience SRL for their help in the experimentation
and testing phase. Moreover, particular thanks to the
Apulia Region that founded the eSCI project.

10. References

[1] Greenstein, D., and Thorin, S.E., 2002, “The Digital
Library: A Biography,” Digital Library Federation .

[2] Broughton, V., 2001, “Faceted classification as a basis
for knowledge organization in a digital environment; the
Bliss Bibliographic Classification as a model for
vocabulary management and the creation of multi-
dimensional knowledge structures,” The New Review of
Hypermedia and Multimedia, pp. 67–102.

[3] Berardi, M., Lapi, M., and Malerba, D., 2004, “An
integrated approach for automatic semantic structure
extraction in document images,” In S. Marinai & A.
Dengel (Eds.), Document Analysis Systems VI., 6th
International Workshop, DAS 2004, Lecture Notes in
Computer Science, pp. 179–190.

[4] Vikram T.N, Shalini R. Urs, and Chidananda Gowda ,
K., 2008, “Person Specific Document Retrieval Using
Face Biometrics”, Digital Libraries: Universal and
Ubiquitous Access to Information Vol. 5362/2008, pp.
371–374

[5] Zhao N., Fang F., and Fan, L., 2008, “An Ontology-
based Model for Tags Mapping and Management,” In
Computer Science and Software Engineering, 2008 Vol.
5, pp. 483–486.

[6] Hendler, J., 2009, “Web 3.0 Emerging,” In Computer
Vol. 42 (1), pp. 111–113.

[7] Vahadat, A., Eastham, P., Yoshokawa, C., Belani, E.,
David Culler, T., and Dahlin, M., 1997, “WebOS:
Operating System Services for Wide Area Applications”
Technical Report: CSD-97-938 of EECS.

[8] Weiss, A., 2005, “WebOS say goodbye to desktop
application,” Networker, Vol. 9 (4) pp. 18–26.

[9] Uschold, M., and King, M., 1995, “Towards a
Methodology for Building Ontologies,” In Workshop on
Basic Ontological Issues in Knowledge Sharing, held in
conjunction with IJCAI-95, Montreal, Canada.

[10] Grϋninger, M., and Fox, M.S, 1995, “Methodology
for the Design and Evaluation of Ontologies,” In
Proceedings of IJCAI’95, Workshop on Basic
Ontological Issues in Knowledge Sharing, Montreal,
Canada.

[11] Corcho, O., Mariano, F., Gómez-Pérez, A., and
López-Cima, A., 2005, “Building Legal Ontologies with
METHONTOLOGY and WebODE,” In Benjamins, R.;
Casanovas, P.; Breuker, J. and Gangemi, A. (ed.): Law
and the Semantic Web, Springer-Verlag 3369, pp. 142–
157

[12] Noy, N. F., and McGuinness, D., 2001, “Ontology
Development 101: A Guide to Creating Your First
Ontology,” Technical Report Stanford Knowledge
Systems Laboratory, Stanford Medical Informatics
Technical Report.

[13] W3C OWL Web Ontology language Reference W3C,
2004.

278 Barchetti et al.

