Service Diffusion in a Market Considering Consumers’ Subjective Valuations

Kousuke Fujita
Research into Artifacts, Center for Engineering, The University of Tokyo, Japan
fujita@race.u-tokyo.ac.jp

Takeshi Takenaka
Center for Service Research, National Institute of Advanced Industrial Science and Technology, Japan
takenaka-t@aist.go.jp

Nariaki Nishino
Research into Artifacts, Center for Engineering, The University of Tokyo, Japan
nishino@race.u-tokyo.ac.jp

Kanji Ueda
National Institute of Advanced Industrial Science and Technology, Japan
k-ueda@aist.go.jp

Abstract

With increasing networking and market globalization, it is becoming increasingly difficult to understand how social valuations of products or services emerge based on the interaction of consumers’ value judgments. This paper presents a description of a service market model and constructs an agent model of consumers considering a consumer’s subjective value using data obtained from a lifestyle survey. Results of the survey elucidate the relation between the usage of information technologies and other consumer attributes. Results of a multi-agent simulation show that the service diffusion pattern can change according to the influence of the intensity of network externalities.

Keywords: service diffusion, lifestyle, network externality, agent-based modeling, multi-agent simulation

1. Introduction

Recently, prediction of the diffusion of products and services is becoming more complicated. Along with development of information technologies, we can select products and services fitting our preferences and be affected by others. As consumers’ preferences become increasingly diversified through the growth of information networking, “long-tail” phenomena emerge in the market. This phenomenon shows that our culture and economy specifically examine numerous niches in the tail of the demand curve. On the other hand, some products or services become a big hit. This is called the “winner-take-all” phenomenon [7]. This is true because such products provide innovative functions and the platform for it is given on the internet. Because of the value of networking, we cannot ignore the social factor. To understand such phenomena, we must devote due attention to consumers’ behaviors and their decision-making. Many researchers of services are becoming increasingly interested in consumer behavior and lifestyles. However, elucidation of consumer decision-making necessitates consideration not only of their lifestyles but also of their mutual interaction because consumers make decisions depending not only on subjective valuations but also on social factors [20].

Network externalities are social factors determining interaction among people in the market. It is an externality by which a consumer’s utility depends on the number of users who consume the same product [11-13,15]. Studies on the network externality address the diffusion of technologies. Katz classified network externalities into two groups: direct network externality and indirect network externality [11]. The former is an externality by which utility depends on the number of units or users connected through a physical network through which information exchange can be done. The latter is an externality by which utility depends on the interdependent relation to the consumption of complementary goods [2][3]. Another aspect of a network externality arises in markets such as that of cellular phone services [14][18]. In such markets, the charge between two different networks is set high, and the charge within a network is set low. Consequently, consumers can obtain higher benefit from companies which have a large network: it is attractive to select such a large company.

The adoptions of information technologies are studied
by using questionnaire data. Davis farmed hypotheses related to the decision making of the adoption of the information technology and developed TAM model [4]. In this model, the results of a questionnaire survey verified the validity of these hypotheses. Moreover, Hong et al. [8] and Lopez-Nicolas [16] et al. proposed the models developed on the TAM model, in which the importance of the social influence exerted on a person to use information service is emphasized. However, these models cannot account for the dynamic process of diffusions considering social factors.

It is an effective technique to clarify the spreading process of a service because the agent-based model facilitates incorporation of diversity and interaction of individuals’ preferences [17]. For instance, Janssen demonstrated the dynamics of various markets considering product characteristics and the structure of interactions among agents [9][10]. Beck et al. demonstrated the impact of direct and indirect network effects on the adoption of technology [1].

We construct consumers’ agent models based on actual data obtained from a lifestyle survey. We also conduct multi-agent system simulations to verify service diffusion mechanisms. Using real data, we try to produce consumer agents resembling real consumers, considering their subjective values. Moreover, the model incorporates network externalities as social factors.

Section 2 presents some lifestyle survey results. This section includes an outline of the survey and results of the analysis. Section 3 presents a model of service markets comprising producer(s) and consumers. In this section, we describe consumer agents based on real data. Section 4 presents results of multi-agent simulations.

2. Lifestyle Survey

This section presents results of the lifestyle survey. We conducted a lifestyle survey comprising multiple questionnaires that assessed daily behavior, leisure, personality, and attitudes toward information technologies. This survey was designed to identify effective segmentations of lifestyles and to specify effective parameters to build human agent models. Takenaka and Ueda explained the effective segmentation of lifestyles through factor analysis [19]. This paper presents other results of the survey to identify relations among consumers’ characteristics of various topics.

The survey was conducted for eight days during July 2007 using a membership questionnaire system on a cell phone network. In this system, participants’ information about age, sex, jobs, and living area were available.

In all, 8177 people (4443 female and 3744 male) participated in the survey. Including the missing value, two questionnaires were excluded.

We asked 41 questions. Table 1 presents some questions.

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q6</td>
<td>How much time do you spend watching television or videos?</td>
</tr>
<tr>
<td>Q7</td>
<td>How much time do you spend using the internet on a PC?</td>
</tr>
<tr>
<td>Q8</td>
<td>How much time do you spend on telecommunications or text messages on cell phones?</td>
</tr>
<tr>
<td>Q9</td>
<td>How much time do you spend using functions other than communication services on cell phones?</td>
</tr>
<tr>
<td>Q10</td>
<td>How often do you do online shopping?</td>
</tr>
<tr>
<td>Q11</td>
<td>Do you put information on the internet (e.g. homepages, blogs, bulletin boards, and SNS)?</td>
</tr>
<tr>
<td>Q12</td>
<td>Do you easily change your mood?</td>
</tr>
<tr>
<td>Q16</td>
<td>Do you plan ahead for holidays?</td>
</tr>
<tr>
<td>Q19</td>
<td>Do you rely on other opinions on the internet?</td>
</tr>
<tr>
<td>Q20</td>
<td>Do you often watch rental DVDs or videos?</td>
</tr>
<tr>
<td>Q24</td>
<td>Are you sensitive to fashion and items?</td>
</tr>
<tr>
<td>Q26</td>
<td>Do you prefer lively places?</td>
</tr>
</tbody>
</table>

As described in this paper, we particularly examine the relation between the usage of information technologies (the internet on PC and cell phone services) and other attributes (daily behaviors and personalities). This relation was elucidated using Spearman’s rank method. Table 2 presents the coefficients of correlation.

These results suggest that the usage of information technologies might be related to daily behaviors and personalities. People who often use cell phone services show different tendencies from those who often use the internet on PCs. We identify cell phone service users’ characteristics and those of internet users on PCs as discussed briefly below.

First, in terms of personalities (Q12, Q16, Q24, and Q26), cell phone service users and internet users show quite different tendencies. The amount of the internet use on PCs (Q7) correlates with Q16 and negatively correlates with Q12 and Q26. People who often use the internet on PCs might tend to be emotionally stable and scheduled; they are less open. In contrast, the amount of cell phone
service use (Q8 and Q9) correlates with Q12, Q24, and Q26. People who often use cell phone services tend to be emotionally unstable and more open. Additionally, they are prone to sensitivity to fashion and consumption of items, which suggests that cell phone service usage is related to a person’s sensitivity to trends.

Furthermore, these attitudes are related to daily behaviors. All three questions (Q7, Q8, and Q9) correlate with Q11 and Q19. Both PC users and cell phone users might tend to put information on the internet and rely on opinions received from other internet users. However, only Q7 correlates with Q10 (Q8 and Q9 negatively correlates with it). Only the internet on PCs might be related to the online shopping services. It is also noteworthy that Q8 and Q9 correlate with Q6 and Q20 but Q7 does not, which suggests that people who often use cell phone services tend to use media such as TV.

Table 2. Spearman’s rank-correlation coefficient.

<table>
<thead>
<tr>
<th></th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q6</td>
<td>0.018</td>
<td>0.121*</td>
<td>0.165**</td>
</tr>
<tr>
<td>Q10</td>
<td>0.263**</td>
<td>-0.029*</td>
<td>-0.063**</td>
</tr>
<tr>
<td>Q11</td>
<td>0.145**</td>
<td>0.168*</td>
<td>0.183**</td>
</tr>
<tr>
<td>Q12</td>
<td>-0.050**</td>
<td>0.131**</td>
<td>0.163**</td>
</tr>
<tr>
<td>Q16</td>
<td>0.051**</td>
<td>0.005</td>
<td>-0.070**</td>
</tr>
<tr>
<td>Q19</td>
<td>0.060**</td>
<td>0.066**</td>
<td>0.106**</td>
</tr>
<tr>
<td>Q20</td>
<td>-0.008</td>
<td>0.063**</td>
<td>0.036**</td>
</tr>
<tr>
<td>Q24</td>
<td>0.000</td>
<td>0.118**</td>
<td>0.077**</td>
</tr>
<tr>
<td>Q26</td>
<td>-0.035**</td>
<td>0.095**</td>
<td>0.042**</td>
</tr>
</tbody>
</table>

Significance levels: *p < 0.05, **p < 0.01

From these results, we identified the relations between the use of information technologies and other attributes. These results of analyses enable us to understand consumers’ characteristics and design new services. In the next section, we describe construction of a market model. The market is assumed to resemble that for cell phone services. We consider the relation between this service and sensitivity to fashions.

3. Modeling of Service Markets

3.1. Outline of the model

Artificial society models are used for explication of social phenomena through application of agent-based computer modeling techniques to social studies [6]. Agent-based modeling enables consideration of individual heterogeneity [17]. We describe the market model as an artificial society model comprising one or two producer(s) and N consumers. Moreover, by setting a parameter based on actual data, we attempt to construct a realistic model.

In this model, the producer offers a service and each consumer decides, based on a personal reservation value and demand, whether to use the service. In this model, the value of services is not dependent solely on its functionality: it is dependent on each consumer’s value assessment. We do not seek to distinguish products from services in the following model because both include some functions related to consumer demand. In this study, we particularly assume a service such as a cell phone service as an integration of products and services. Detailed models of a service, consumers, and a producer are described below.

Let each service, S, comprise some functions. We define sj as the service provided by provider j. In this study, we set three functions:

\[s_j = \{ f_1, f_2, f_3 \}, \quad \text{where } f_1, f_2, f_3 \in \{0,1,2,3\}. \]

Here, fi (i = 1,2,3) is the level of each function; Pj is the price of a service sj, which is given as

\[P_j = s_j \Gamma^T = \left(f_1 \quad f_2 \quad f_3 \right) \left(\gamma_1 \quad \gamma_2 \quad \gamma_3 \right), \quad (1) \]

where \(\Gamma = (\gamma_1 \quad \gamma_2 \quad \gamma_3) \) denotes the unit prices of f1, f2, and f3. The price is determined by the unit prices multiplied by the functions of the service. The unit prices are given as a cost-plus price in the market in advance.

The one or two producer agent(s) is (are) indexed by j \(\in \{A,B\} \). The producer produces services with unit cost \(T = (\tau_1 \quad \tau_2 \quad \tau_3) \). The profit the producer gains when providing sj is defined as \(\Pi_j \).

\[\Pi_j = (P_j - s_j \Gamma^T) \times N_j \quad (2) \]

In that equation, \(\tau_1, \tau_2, \) and \(\tau_3 \) denote the unit cost of f1, f2, and f3. The difference between the price and the cost is the producer’s profit. Here, \(N_j \) represents the number of consumers using sj.

The producer is modeled as a learning agent with a Q-learning mechanism, which is a reinforcement approach [21]. The producer acquires a policy through repeated interaction with the environment. The producer decides which service to produce at each step, with the intention of creating a service to maximize his total profit.

Each consumer \(C_n \) \((n = 1, 2, \ldots, N) \) has a demand level:

\[d_n = (d_a, d_b, d_c) \quad \text{where } d_a, d_b, d_c \in \{0,1,2\}. \]

A consumer’s own reservation value \(V_a = (\nu_a \quad v_{a2} \quad v_{a3}) \) expresses the willingness to pay for one level of each function. Furthermore, \(RP_n \) is the reservation price; price \(C_n \) represents a willingness to pay for a service, given as the following.
For example, consumers for whom demand is high gain the decision of whether to use \(s_j \) or not based on the uncompensated rule [5]: \(C_n \) uses \(s_j \) when the following two equations are satisfied.

\[
RP_n - P_j \geq 0
\]

\[
f_1 \geq d_{s1} \land f_2 \geq d_{s2} \lor f_2 \geq d_{s3}
\]

When \(C_n \) uses \(s_j \), it gains utility \(U_n \).

\[
U_n = RP_n - P_j
\]

Furthermore, the network externality is introduced only into the second function.

\[
v_{n,2} = a + bN_j
\]

In that equation, parameter \(a \) is its own value of \(f_2 \). Parameter \(b \) is the value of the network scale. With the increasing number of users of service \(s_j \), the value of the producer \(j \)'s service \(s_j \) increases.

3.2. Consumer demand modeling based on a lifestyle survey

To consider a consumer's subjective value, this section determines the demand levels \(d_{s} \) of consumers based on actual data analyzed in the preceding section. As described above, we assume services such as cell phone services. The values associated with this service might be categorized into the following three types: (i) value linked to the functionality of the product, (ii) value connected with the communications themselves, and (iii) added value such as brand loyalty. Taking the example of cellular telephones, the types described above can be related as follows: (i) the amount of time spent on the use of functions other than talking and text messaging; (ii) the amount of time spent on the use of talking and text messaging; and (iii) sensitivity to styles and fashions. Based upon the answers of these, \(d_{s1} \), \(d_{s2} \), and \(d_{s3} \) are determined, respectively, using three levels (0, 1, 2). A market model of 767 consumers was constructed based on these survey data.

Details of consumers' demand are presented in Figure 1. For example, consumers for whom demand is \(d_s = (2, 2, 2) \) are most consumers. Furthermore, \(d_s = (2, 2, 2) \) are consumers with high demand levels for all functions. Their answers of those questions are (i) over 2 hours spent on the use of functions, (ii) over 2 hours a day spent on the use of talking and text messaging, and (iii) sensitive to styles and fashions. They can be considered as very active consumers. This reflects the result of the analysis as described in the preceding section. In addition, \(d_s = (1, 1, 2) \) denotes consumers with normal demand levels for \(f_1 \) and \(f_2 \) and high demand levels for \(f_3 \). They give great attention to the added value. Finally, \(d_s = (1, 1, 0) \) represents consumers who have normal demand levels for \(f_1 \) and \(f_2 \) and low demand level for \(f_3 \). Their answers of those questions are (i) under 30 min a day spent on the use of functions, (ii) under 30 min a day spent on the use of talking and text messaging, and (iii) not sensitive to styles and fashions. They have some demand for services but they are passive consumers.

![Figure 1. Consumers’ demand.](image-url)

4. Mult-Agent Simulation

4.1. Simulation setup

To examine service diffusion, this section presents three simulations designated as Case 1, Case 2, and Case 3. Case 1 has one producer. Case 2 has two producers (Producer A and Producer B). Competition holds in the market. Moreover, consumers’ preferences are considered in Case 3. Effects of network externalities on market selection are examined by changing coefficient \(b \) of the second function \((b=0, 0.005, 0.01) \) in all cases. We set the range of \(b \) so that consumers’ reservation prices were set within appropriate ranges. For example, setting \(b = 0.005 \), when the number of users (N) is 100, \(v_{n,2} \) increases by 0.5 points.

In Case 1 and Case 2, the reservation values \((v_n) \) of all consumers are determined uniformly, which signifies a lack of differences between the value of Producer A’s service and that of Producer B’s service. Therefore, considering consumers’ preferences in Case 3, we discern differences in the value of services. In Case 3, consumers are assumed to have their preferences: \(j > j' \) (\(j \neq j' \)). Based on their preferences, their reservation values for service \(s_k \in S \) are determined. We update the third function \((v_{n,3}) \) in \(V_n \) according to the consumer’s preferences:
\[v_{n3} \left\{ \begin{array}{ll}
 v_{n3} + 1 & k = j \\
 v_{n3} - 1 & k = j'
\end{array} \right. , \quad (8) \]

in which \(v_{n3} \) signifies the constant value of \(v_{n3} \) in Case 1 and Case 2. When the service is provided by the producer a consumer \((C_n) \) prefers, his reservation value is set higher than those in Case 1 and Case 2. Otherwise, it is set lower. \(j, j' \in \{A, B\} \) are stochastically set before simulations. Consequently, about half of consumers have their preferences \(A > B \); the remaining consumers have \(B > A \).

The other parameters are fixed as follows. We set those parameters so that the number of users can be maintained within appropriate ranges while ensuring the producer’s profit to some degree.

As a summary, Table 3 presents all parameters.

A trial of simulations contains \(5000 \times 10 \) steps. During steps, producers acquire their policy. Every 5000 steps, the parameters except for learning tables are initialized. Learning tables continue to be updated. We define the market situation in the last (50 000th) step. We conducted some trials of each simulation. The following results are representative examples.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of consumers ((N))</td>
<td>767</td>
</tr>
<tr>
<td>Consumer demand level ((d_i))</td>
<td>set using actual data (Figure 1)</td>
</tr>
<tr>
<td>Consumer reservation value ((V_n))</td>
<td>(\cdot)Case 1 or Case 2 (3.25 + bn/2)</td>
</tr>
<tr>
<td></td>
<td>(\cdot)Case 3 (3.25 + bn/1 or 3.25 + bn/3)</td>
</tr>
<tr>
<td></td>
<td>*According to consumer preferences.</td>
</tr>
<tr>
<td>Coefficient of network externality ((b))</td>
<td>{0, 0.005, 0.01} (Simulation settings)</td>
</tr>
<tr>
<td>Level of service function ((f_1, f_2, f_3))</td>
<td>{0, 1, 2, 3} (Producer sets this based on policy)</td>
</tr>
<tr>
<td>Unit prices of the service ((\Gamma))</td>
<td>(2 1.5 1.5)</td>
</tr>
<tr>
<td>Unit costs of the service ((T))</td>
<td>(1.5 0.5 1)</td>
</tr>
</tbody>
</table>

4.2. Simulation results (Case 1)

Table 4 and Figure 2 present results of Case 1; one producer exists in the market. They are the coefficient of the network externality, the selected service, the producer’s profit, and the consumers’ utility. Actually, \(s_j = (2 2 2) \) is selected in the market through learning processes when the network externality is not considered \((b=0)\); it is a service with sufficient inclusion of each function. Figure 1 shows that this service best meets the demands of most consumers. When the network externality is considered as mild \((b=0.005)\), although the same service is selected, the consumers’ utility, producer’s profit, and number of users all increase. Actually, \(s_j = (2 2 2) \) becomes accepted by users whose original demand levels were not high; positive network externality enhances their motivation. When the network externality is considered strong \((b=0.01)\), \(s_j = (2 3 3) \) is selected in the market through learning processes, which has higher functions than the most generally accepted service: \(s_j = (2 2 2) \). Moreover, the producer obtains higher profit, but consumers garner less utility than in Case 1 \((b=0.005)\).

Table 4. Diffusion of a service in Case 1

<table>
<thead>
<tr>
<th>Network externality ((b))</th>
<th>Selected service ((s_j))</th>
<th>Number of users ((N_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(2 2 2)</td>
<td>265</td>
</tr>
<tr>
<td>0.005</td>
<td>(2 2 2)</td>
<td>397</td>
</tr>
<tr>
<td>0.01</td>
<td>(2 3 3)</td>
<td>354</td>
</tr>
</tbody>
</table>

By increasing the value of the coefficient \(b \), the consumers’ reservation value becomes high and the number of users increases. However, when the value of \(b \) is too high \((b = 0.01)\), the service with high functions is selected and the number of users decreases. In a monopoly market, the producer is known to become a price maker and set prices high. However, we can not determine why a producer sets high functionality in this model, which remains as one issue to be clarified in future studies.

Figure 2. Producer’s profit and consumers’ total utility in Case 1.
4.3. Simulation results (Case 2)

Table 5 and Figure 3 present results obtained for Case 2; this case has two producers and the competition is considered. Whether the network externality is considered or not, service $s_B = (2 2 2)$ is selected in the market as one of two services. On the other hand, other selected services have lower level functions such as $s_A = (2 1 2), s_A = (1 2 2)$, and $s_A = (1 1 2)$. When the network externality is considered strong, consumers’ utility is much higher than that obtained in Case 1. This is true because, in Case 1, $s_A = (2 3 3)$ is selected: it has higher-level functions than those which consumers demand. However, in Case 2, $s_B = (2 2 2)$ is selected, which meets the demands of many consumers. As a result of competition among producers, appropriate services for consumers are provided in the market. In this case, by increasing the value of coefficient b, the total number of users increases and consumers can obtain much profit.

Additionally, when the network externality is considered strong, the gap separating Producer A’s profit and Producer B’s profit widens, which is considered to be one aspect of the effect of network externalities.

Table 5. Diffusion of services in Case 2

<table>
<thead>
<tr>
<th>Network externality (b)</th>
<th>Producer A’s service (s_A) / Number of users (N_A)</th>
<th>Producer B’s service (s_B) / Number of users (N_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(2 1 2) / 165$</td>
<td>$(2 2 2) / 180$</td>
</tr>
<tr>
<td>0.005</td>
<td>$(1 2 2) / 199$</td>
<td>$(2 2 2) / 236$</td>
</tr>
<tr>
<td>0.01</td>
<td>$(1 1 2) / 235$</td>
<td>$(2 2 2) / 357$</td>
</tr>
</tbody>
</table>

For Case 2, Figure 4, Figure 5, and Figure 6 show the distribution of users. These figures enable us to classify users. In Figure 4 and Figure 5, consumers are divisible into two groups according to their demand level for $f_2 (d_2)$. The value connected with the communications themselves (f_2) is not required much when the network externality is not considered. Consequently, users choose the service based on their demand level for $f_2 (d_2)$. Users who have a high demand level for f_2 (ex. $d_n = (2 2 2)$ or $d_n = (2 2 1)$ …) choose $s_B = (2 2 2)$. On the other hand, users who have a normal demand level for f_2 (ex. $d_n = (2 1 2)$ or $d_n = (1 1 2)$ …) choose $s_A = (2 1 2)$. In Figure 5, when the network externality is considered mildly, the value connected with the communications themselves is required. Therefore, users who have a high demand level for f_2, i.e., active users, choose the service based on the demand level for $f_2 (d_2)$. Here, active users are classifiable into $s_B = (2 2 2)$ users and $s_A = (1 2 2)$ users. Moreover, users who have a normal demand level for f_2 are considered as users following after active users; they choose the service based on the demand level for f_1.

For Case 2, Figure 4, Figure 5, and Figure 6 show the distribution of users. These figures enable us to classify users. In Figure 4 and Figure 5, consumers are divisible into two groups according to their demand level for $f_2 (d_2)$. The value connected with the communications themselves (f_2) is not required much when the network externality is not considered. Consequently, users choose the service based on their demand level for $f_2 (d_2)$. Users who have a high demand level for f_2 (ex. $d_n = (2 2 2)$ or $d_n = (2 2 1)$ …) choose $s_B = (2 2 2)$. On the other hand, users who have a normal demand level for f_2 (ex. $d_n = (2 1 2)$ or $d_n = (1 1 2)$ …) choose $s_A = (2 1 2)$. In Figure 5, when the network externality is considered mildly, the value connected with the communications themselves is required. Therefore, users who have a high demand level for f_2, i.e., active users, choose the service based on the demand level for $f_2 (d_2)$. Here, active users are classifiable into $s_B = (2 2 2)$ users and $s_A = (1 2 2)$ users. Moreover, users who have a normal demand level for f_2 are considered as users following after active users; they choose the service based on the demand level for f_1.

Figure 3. Each producer’s profit and consumers’ total utility in Case 2.

Figure 4. Distribution of users $(b = 0)$ in Case 2.

Figure 5. Distribution of users $(b = 0.005)$ in Case 2.
As shown in Figure 6, when the network externality is considered strong, all active users choose the same service, \(s_A = (2 \ 2 \ 2) \), because the effect of the network externality is so strong that consumers can not choose the service based on their own preference. This phenomenon might be considered as a winner-take-all phenomenon.

Additionally, \(f_3 \) of all services selected in the markets in every case is always 2: more users have a demand level for \(f_3 \) that is high \((d_3 = 2)\) than have a demand level for \(f_3 \) that is low or normal \((d_3 = 0 \ or \ 1)\). These phenomena suggest that users whose demand level for \(f_3 \) is high—users who are sensitive to fashions and styles—play an important role in service diffusion.

4.4. Simulation results (Case 3)

Table 6 and Figure 7 present results obtained for Case 3; consumers’ preferences are considered. When the network externality is considered, the same services \(s_A = s_B = (2 \ 2 \ 2) \) are selected. When consumers have the high reservation price for one service (A’s or B’s), the market is not segmented by producers.

The consumers’ total utility increases in all coefficients of \(b \) compared within Case 2. This is true because it is easy for consumers to select a service they prefer. When the network externality is not considered \((b = 0)\), the same services as those in Case 2 are selected and total service users \((N_A + N_B) \) increase compared within Case 2. This also results from the consideration of consumers’ preferences.

From the producers’ perspective, because some consumers potentially prefer each producer’s service, both producers acquired the same strategy. They did not segment the market. When the network externality is considered \((b = 0.005)\), the producers compete for consumers and obtain less profit than in Case 2. When the network externality is considered strong \((b = 0.01)\), Producer B got many more users than Producer A, which also results from a lack of market segmentation. When consumers’ preferences are considered, one producer obtains much profit. The other producer gets less profit.

<table>
<thead>
<tr>
<th>Network externality ((b))</th>
<th>Producer A’s service ((s_A))/ Number of users ((N_A))</th>
<th>Producer B Selected service / Number of users</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>((2 \ 1 \ 2) / 158)</td>
<td>((2 \ 2 \ 2) / 253)</td>
</tr>
<tr>
<td>0.005</td>
<td>((2 \ 2 \ 2) / 149)</td>
<td>((2 \ 2 \ 2) / 194)</td>
</tr>
<tr>
<td>0.01</td>
<td>((2 \ 2 \ 2) / 61)</td>
<td>((2 \ 2 \ 2) / 471)</td>
</tr>
</tbody>
</table>

For Case 3, Figure 8, Figure 9, and Figure 10 portray the distribution of users. In Figure 8 and Figure 9, some consumers with the same demand level select Producer A’s services. Others select Producer B’s services. Especially, this phenomenon is apparent in Figure 9 because both producers produce the same services. Moreover, according to the network effects, Producer B obtained more users than Producer A. Consumers with \(d_n = (2 \ 2 \ 0) \) selected the Producer B’s service because of the network scale. On the other hand, when the network externality is considered strong \((b = 0.01)\), irrespective of consumers’ preferences, most consumers selected Producer B’s service. This is true because the network effects are so strong that consumers’ preferences have little effect on their decision-making. After exceeding a critical threshold of the number of users, one service might spread among all people, reflecting a winner-take-all phenomenon.
brand images have a strong influence on the selection of services with similar functions. In Japan, users are distributed among three large provider companies. In this case, consumers’ preferences for service providers such as cell phones can be influenced by social valuations of services through dynamic interaction making. Moreover, we will examine temporal changes in consumers' preferences for cell phone services and sensitivity to fashions. We considered this relation in the construction of a market model.

We constructed a market model using survey data. To clarify the diffusion mechanism, we specifically investigated the following three points: competition among providers, the effect of the network externality, and consideration of consumers’ preferences. Results of simulations show that, through competition, the services which meet demands for consumers are selected (Case 2). When consumers’ preferences are considered (Case 3), simulation results show that producers can select the service they prefer, but producers cannot segment the market. Overall, network externalities have positive effects on consumers, but widen the gap between producers’ profit levels. These factors might have great effects on service diffusion. Producers must consider these factors when they design a service.

As described in this paper, agents’ decision-making is implicitly assumed to be rational. However, in the real world, people do not always make decisions rationally. Future studies will address bounded rationality in decision making. Moreover, we will examine temporal changes in social valuations of services through dynamic interaction among consumers.

5. Conclusion

This paper presented discussion of the mechanism of service diffusion using multi-agent system simulations.

First, it denotes results of the lifestyle survey, showing relations between the usage of information technologies and other attributes. Especially, we identified different relations with personalities and daily behaviors between consumers who often use cell phones and those who often use the internet on a PC. Then it identified relations between cell phone services and sensitivity to fashions. We considered this relation in the construction of a market model.

We constructed a market model using survey data. To clarify the diffusion mechanism, we specifically investigated the following three points: competition among providers, the effect of the network externality, and consideration of consumers’ preferences. Results of simulations show that, through competition, the services which meet demands for consumers are selected (Case 2). When consumers’ preferences are considered (Case 3), simulation results show that consumers can select the service they prefer, but producers cannot segment the market. Overall, network externalities have positive effects on consumers, but widen the gap between producers’ profit levels. These factors might have great effects on service diffusion. Producers must consider these factors when they design a service.

As described in this paper, agents’ decision-making is implicitly assumed to be rational. However, in the real world, people do not always make decisions rationally. Future studies will address bounded rationality in decision making. Moreover, we will examine temporal changes in social valuations of services through dynamic interaction among consumers.

6. References

In the Japanese market of cell phone services, similarly to the simulation results, some service providers produce services with similar functions. In Japan, users are distributed among three large provider companies. In this case, consumers’ preferences for service providers such as brand images have a strong influence on the selection of services. In this model, similar phenomena might emerge through simulations.

Author Biographies

Kousuke Fujita is a graduate student of precision engineering at The University of Tokyo, from which he received a B.E. in 2008. He studies Co-creation Engineering at Research into Artifacts, Center for Engineering (RACE), The University of Tokyo. His current research interests include service-market modeling using multi-agent systems and elucidation of consumers’ lifestyle using psychological surveys and data mining. He especially investigates the cell phone market in Japan. His latest article was published in 2008 in CIRP Journal of Manufacturing Science and Technology.

Takeshi Takenaka is a Research Scientist of the Large Scale Data Based Modeling Research Team, the Service Research Center (CISR) at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. He received his Ph.D. in Psychology from Kobe University in 2002, Japan. He was an Associate Professor at Research into Artifacts, Center for Engineering (RACE), The University of Tokyo during 2007–2009. His research fields are Cognitive Psychology, Service Engineering, and Co-creation Engineering. His current research specifically addresses service design based on consumers’ lifestyle and values. He was a member of the Committee on Technology Road Map of Service Engineering hosted by the Japanese Ministry of Economy, Trade and Industry (METI) in 2007 and in 2008.

Naruki Nishino received his B.E. and M.E. from Kobe University and a Ph.D. from The University of Tokyo in 2004. He is an Assistant Professor of the Co-creation Engineering Research Division, Research into Artifacts, Center for Engineering (RACE) at The University of Tokyo. He was a Postdoctoral Fellow at RACE during 2004–2005. He is engaged in studies of social systems introducing the method of experimental economics and agent-based simulation. His research interests include game theory, network externalities, auction theories, and service system design. He is also active in collaborative studies of decision-making problems with manufacturing and service industries in Japan.

Kanji Ueda is the Vice-President of the National Institute of Advanced Industrial Science and Technology (AIST). He has served as the Director and a Professor of Research into Artifacts, Center for Engineering (RACE) at The University of Tokyo. He received his Dr. Eng. in Precision Engineering from Osaka University, Japan. He has engaged in research and teaching at several universities for more than 30 years since 1972 in the fields of manufacturing systems, emergent synthesis, and complex adaptive systems. He is a Fellow of the International Academy for Production Engineering (CIRP). His current research interests include co-creation engineering, and service and value co-creation.