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Abstract 
 

This research investigates the use of Ridge 

Polynomial Neural Network (RPNN) as non-linear 

prediction model to forecast the future trends of 

financial time series. The network was used for the 

prediction of one step ahead and five steps ahead of 

two exchange rate signals; the British Pound to Euro 

and the Japanese Yen to British Pound. In order to 

deal with a dynamic behavior which exists in time 

series signals, the functionality and architecture of the 

ordinary feedforward RPNN were extended to a novel 

recurrent neural network architecture called Dynamic 

Ridge Polynomial Neural Network (DRPNN). 

Simulation results indicate that the proposed DRPNN 

offers significant advantages over feedforward RPNN 

and Multilayer Perceptron including such increment in 

profit return, reduction in network complexity, faster 

learning, and smaller prediction error. 

 

1. Introduction 
 

Most research on time-series prediction has 
traditionally concentrated on linear methods, which are 
computationally inexpensive and mathematically 
convenient. Unfortunately, most systems that are of 
interest are non-linear. An important class of non-linear 
systems appears in financial forecasting, which 
typically include the prediction of exchange rates and 
share prices. Forecasting an exchange rate is 
undoubtedly very challenging and important task in the 
international monetary markets. The foreign exchange 
market is the largest and most liquid of the financial 
market with an estimated $1 trillion traded everyday 
[1]. Foreign exchange rates are among the most 
important economic indices in the international 
monetary markets. The trading of currencies has grown 
enormously due to the general trend of globalization, 
the increase of the import and export of commodities 
all over the world, and an increased interest in

 international investments [2]. The ability to simulate 
exchange rate prediction quickly and accurately is of 
crucial important in the trading market operations. 

The traditional methods for exchange rate 

forecasting are based around statistical approaches. 

This includes Moving Average, Autoregressive model, 

 Autoregressive Moving Average model, linear 

regression and exponential smoothing. None of these 

methods are completely satisfactory due to the 

nonlinear nature of most of the financial time series. 

With the growth of cheap computing power, there has 

been in recent years an increased interest in non-linear 

models, chief amongst these models are neural 

networks [3]. 

The applications of neural network for financial time 

series prediction have shown better performance in 

comparison to statistical methods because of its 

nonlinear nature and learning capability. However, not 

all of these researches can be used in real commercial 

applications. This is normally because the size of the 

neural networks can be potentially so large, therefore 

preventing the problem solution from being 

commercialized in the real world applications.  

In this paper, a new recurrent network with ridge 

polynomial structure is introduced. The proposed 

network combines the properties of both higher-order 

and recurrent neural networks and it is called Dynamic 

Ridge Polynomial Neural Network (DRPNN). The 

structure of DRPNN is similar to the feedforward 

Ridge Polynomial Neural Network [4] with the 

addition of feedback connections. The network was 

used to predict the one step ahead and five steps ahead 

of the daily exchange rates between the British Pound 

and the Euro (UK/EU) and the Japanese Yen to British 

Pound (JP/UK).  
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2. Ridge Polynomial Neural Network 
 

The use of Higher Order Neural Network (HONN) 
[5] is circumvented by the fact that the higher the order 
of the network, the more complex the network becomes 
and learning is significantly slower. A simple yet 
efficient alternative to HONN is the Pi-Sigma Neural 
Network (PSNN) [6]. A PSNN is a feedforward 
network with a single “hidden” layer of summing units 
and a product unit in the output layer. The motivation 
was to develop a systematic method for maintaining the 
fast learning property and powerful mapping capability 
of single layer HONN whilst avoiding the 
combinatorial explosion in the number of free 
parameters when the input dimension is increased. In 
contrast to HONN, the number of free parameters in 
PSNN increases linearly to the order of the network. 
Figure 1 shows a PSNN, whose output is determined 
according to the following equations: 

where Wkj are adjustable weights, Wj0 are the biases of 
the summing units, Xk is the input vector, K is the 
number of summing units (alternatively, the order of 
the network), N is number of input nodes, and ‘σ’ is a 
nonlinear transfer function. 

For each increase in order, only one extra summing 
unit is required. The product units give the networks 
higher-order capabilities without suffering from the 
exponential increase in weights, which is a major 
problem in a single layer HONN.  Shin and Ghosh [6] 
argued that PSNN not only requires less memory 
(weights and nodes), but typically needs at least two 
orders of magnitude less number of computations as 
compared to the MLP for similar performance level, 
and over a broad class of problems. The presence of 
only one layer of adaptive weights results in fast 
learning, however the network is not a universal 
approximator.  

 
 
 
 
 
 
 
 
 
 
 

A generalization of PSNN is the Ridge Polynomial 
Neural Network (RPNN). RPNN, as shown in Figure 2, 
is a feedforward network which is constructed by the 
addition of PSNNs of varying orders until the desired 
mapping task is carried out with the required degree of 
accuracy. The network provides a natural mechanism 
for incrementally growing the networks until it is of 
appropriate size, and the network decides which higher 
order terms are necessary for the task at hand. Similar 
to PSNN, RPNN has only a single layer of adaptive 
weights; therefore the network preserves all the 
advantages of PSNN.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Any multivariate polynomial can be represented in 

the form of a ridge polynomial and realized by RPNN 
whose output is determined according to the following 
equations [4]: 

where N is the number of PSNN blocks used, ‘σ’ 
denotes a suitable nonlinear transfer function, typically 
the sigmoid transfer function, Wj0 are the biases of the 
summing units in the corresponding PSNN units, N is 
the number of PSNN units used (or alternatively, the 

order of the RPNN), and W,X  is the inner product of 
weights matrix W, and input vector X.  

 

3. Dynamic Ridge Polynomial Neural 

Network  
 
In order to model dynamical properties of financial 
time series, it is essential to utilize a system that is 
capable of storing internal states and implementing 
complex dynamics. Since the behavior of the time  
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Fig. 1.  Pi-Sigma Neural Network of K-th order 
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Fig. 2. Ridge Polynomial Neural Network of N-th order 
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series itself related to some past inputs on which the 
present inputs depends, the introduction of recurrence 
feedback in a network will lead to a proper input-
output mapping. Motivated by the ability of recurrent 
dynamic systems in real world applications, in this 
work, we propose the extension of the functionality and 
architecture of feedforward RPNN by introducing a 
feedback from the output layer to the input layer in 
order to represent a dynamic system for financial time 
series prediction. As shown in Figure 3, the new 
recurrent neural network is called Dynamic Ridge 
Polynomial Neural Network (DRPNN). The structure 
of DRPNN is constructed from a number of increasing 
order Pi-Sigma units. The feedback connection feeds  
the activation of the output node to the summing nodes 
in each Pi-Sigma units, thus allowing each block of Pi-
Sigma unit to see the resulting output of the previous 
patterns. In contrast to RPNN, the proposed DRPNN is 
provided with memories which give the network the 
ability of retaining information to be used later. All the 
connection weights from the input layer to the first 
summing layer are learnable, while the rest are fixed to 
unity. 

The rational of placing the recurrent connection 
from the output layer back to the input layer in the 
proposed DRPNN is that instead of learning with 
complex and fully connected recurrent architectures, 
redundant connections should be eliminated in order to 
significantly increase the network’s generalization 
capability. This architecture is similar to the Jordan 
recurrent network [7]. The feedforward part of Jordan 
network is a restricted case of a non-linear 
Autoregressive Model (AR), while the configuration 
with context units fed by the output layer is a restricted 
case of non-linear Moving Average model (MA) [8]. 
From this, the proposed DRPNN which has the 
feedback connection from the output layer to the input 
layer is seen to have an advantage over feedforward 
RPNN in much the same way that ARMA models have 
advantages over the AR. 
 

 
 
 
 
 
 
 
 
 
 

 

Suppose that M is the number of external inputs 
U(n) to the network, and let y(n-1) to be the output of 
the DRPNN at previous time step. The overall input to 
the network are the concatenation of U(n) and y(n-1), 
and is referred to as Z(n) where:  

The output of the kth order DRPNN is determined as 
follows:  

where k is the number of Pi-Sigma units used, Pi(n) is 
the output of each PSNN block, hj(n) is the net sum of 
the sigma unit in the corresponding PSNN block, Wjo is 
the bias, σ is the sigmoid activation function, and n is 
the current time step. 

DRPNN uses a constructive learning algorithm 
based on the asynchronous updating rule of the Pi-
Sigma unit. The network adds a Pi-Sigma unit of 
increasing order to its structure when the difference 
between the current and the previous errors is less than  
a predefined threshold value. DRPNN follows the same 
training steps used in feedforward RPNN [4], in 
addition to the Real Time Recurrent Learning 
algorithm [9] for updating the weights of the Pi-Sigma 
unit in the network. 

A standard error measure used for training the 

network is the Sum Squared Error:  

The error between the target and forecast signal is 
determined as follows: 

where d(n) is the target output at time n, y(n) is the 
forecast output at time n.  
At every time n, the weights are updated according to: 

where η  is the learning rate.  

The value 
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Fig. 3. Dynamic Ridge Polynomial Neural Network of K-th order 
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where 

and 

where ikδ  is the Krocnoker delta. Assume D as the 

dynamic system variable (the state of the ij
th neuron), 

where D is: 

Substituting Equation (10) and (11) into (9) results in: 

 
Then the weights updating rule is: 

where Wij are adjustable weights and ∆Wij are total of 
weight changes. 
 
DRPNN use the following steps to update its weights: 
1. Start with low order DRPNN  
2. Carry out the training and update the weights 
asynchronously after each training pattern. 
3. When the observed change in error falls below the  
predefined threshold r, i.e.,  

( )
r

)1n(e

)1n(e)n(e
<

-

--  , a higher order PSNN is added. 

4. The threshold, r, for the error gradient together 
with the learning rate, n, are reduced by a suitable 
factor dec_r and dec_n, respectively. 

5. The updated network carries out the learning 
cycle (repeat steps 1 to 4) until the maximum number 
of epoch is reached. 

Notice that every time a higher order PSNN is 
added, the weights of the previously trained PSNN 
networks are kept frozen, whilst the weights of the 
latest added PSNN are trained.  
 

4. Forecasting the exchange rates 
 

Financial time series are among the best application 
domains for intelligent processing and advanced 
learning techniques [10]. The prediction of financial 
time series is an interesting problem to traders and 
individuals. Researchers and practitioners have been 
striving for an explanation of the movement of 
financial time series. To maximize profits from the 
liquidity market, forecasting techniques have been used 
by different traders. Assisted by powerful computer 
technologies, traders no longer rely on a single 
technique to provide information about the future of the 
market. Thus, various kinds of forecasting methods 
have been developed by many researchers and experts 
[11]. From statistical to artificial intelligence, there are 
various choices of techniques which can be used to 
make a forecast. Current research have shown that 
neural networks are promising tools for forecasting 
financial times series [12], as they were most 
implemented in mapping the underlying movement in 
the financial market 

Two daily exchange rate signals are considered in 
this paper; the UK/EU and JP/UK exchange rates. The 
signals were obtained from a historical database 
provided by DataStream® [13], dated from 03/01/2000 
until 04/11/2005, giving a total of 1525 data points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Financial data exhibit high volatility, complex, 

nonlinear, and noise properties. The Prediction of 
financial time series is very difficult and a nontrivial 
problem since it depends on several known and  
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Table 1. Calculations for input and output variables 
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where EMAn(i) is the n-day exponential moving average of the i-th day, 
p(i) is the signal of the i-th day,  α is weighting factor, and k is forecast 
horizon; 1 or 5. 
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unknown factors, and frequently data used for the 
prediction is noisy, uncertain and incomplete. The 
series are affected by many highly correlated economic, 
political and even psychological factors. As a result, 
they need adequate pre-processing before presenting 
them to the neural network. To smooth out the noise 
and to reduce the trend, the original raw data was pre-
processed into a stationary series by transforming them 
into measurements of relative different in percentage of 
price (RDP) [14]. The advantage of this transformation 
is that the distribution of the transformed data will 
become more symmetrical and will follow more closely 
to normal distribution, as illustrated in the histogram 
plots in Figure 4. The calculations for the 
transformation of input and output variables are 
presented in Table 1. The RDP series were 
subsequently scaled using standard minimum and 
maximum normalization method which then produces a 
new bounded dataset.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Simulation results 
 

In this simulation, we focus on how the networks 
generate profits, as this is the main interest in financial 
time series forecasting. Therefore, during 
generalization, the network model that endows the 
highest profit on unseen data is considered the best 
model. The prediction performance of all networks was 
evaluated using two financial metrics (refer to Table 2); 
the Annualized Return (AR) and Maximum Drawdown 
(MD), where the objective is to use the networks 
predictions to make money [3], and one statistical 
metric; the Normalized Mean Squared Error (NMSE) 
which is used to measure the deviation between the 
actual and the predicted signals [15]. 

For all neural networks, an average performance of 
20 trials was used and the network parameters were 
experimentally selected as shown in Table 3. A 
sigmoid activation function was employed and all 
networks were trained with a maximum of 3000 
epochs. MLP and RPNN were trained with the 
incremental backpropagation algorithm [16] and 
constructive learning algorithm [4], respectively. We 
trained the DRPNN with the learning algorithm as 
described in section 3. The MLP was trained with one 
hidden layer, and the hidden nodes were 
experimentally varied from 3 to 8, whereas for RPNN 
and DRPNN, the network’s order was incrementally 
grown from 1 to 5. 

The simulation results of the proposed DRPNN are 
benchmarked against the MLP and the ordinary 
feedforward RPNN. Tables 4 and 5 demonstrate the 
average results for the AR, MD, and NMSE obtained 
on out-of-sample data for the prediction of one step 
ahead and five steps ahead, respectively. Results on the 
Annualized Return (AR) from both Tables 4 and 5 
obviously demonstrate that the proposed DRPNN 
profitably attained the highest profit return when used 
to forecast all the exchange rate signals compared to 
other network models. DRPNN successfully 
outperformed other networks on the average AR by 
6.53% to 7.73% (Table 4) and 0.24% to 0.93% (Table 
5). By looking at the Maximum Drawdown (MD), 
results in Tables 4 and 5 clearly show that the best 
values were mostly dominant by DRPNN, except for 
the prediction of one step ahead UK/EU in which 
feedforward RPNN gave better MD. This suggests that 
DRPNN have lower maximum loss and less downside 
risk compared to other networks when predicting the 
financial signals. It is worth pointing here that for the 
AR and MD, a bigger value is preferable. When 
measuring the NMSE, it can be noticed that DRPNN 
outperformed other networks with lower NMSE when  
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(a) Histogram of UK/EU signal before and after pre-processing  

(b) Histogram of JP/UK signal before and after pre-processing  
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used to predict the one step ahead RDP. On the other 
hand, for the prediction of five steps ahead MLP 
achieved the lowest NMSE on both signals. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The average number of epochs reached during the 
training of the networks for the prediction of one step 
ahead and five steps ahead are shown in Tables 6 and 
7, respectively. In the same tables, the amount of CPU 
time used to learn all the signals is presented in order to 
compare the speed of the networks to execute and 
complete the training. The CPU time was based on a 
machine with Windows XP 2000, Intel processor 
(Pentium 4), CPU of 3.00 GHz, and 1 GB of RAM.  
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results in Table 6 show that the proposed DRPNN 

reveal to use the least number of epochs to converge 
during the training and took least CPU time to learn the 
signals in comparison to other networks. Meanwhile, 
results from Table 7 demonstrate that DRPNN made 
the fastest convergence and took least CPU time when 
learning the JP/UK signals. For the prediction of 
UK/EU signal, RPNN revealed to use smaller number 
of epochs and finish the training in shorter CPU time. 
In both Tables 6 and 7, MLP appeared to utilize more  

Table 3. Parameters used in all networks 

Neural 
Networks 

Learning 
Rate (n) 

dec_n 
Threshold  

(r) 
dec_r 

MLP 
 

0.1 or 0.05 - - - 

RPNN 
DRPNN 

[0.05, 0.5] 0.8  
[0.00001, 

0.7] 
[0.05,0.2] 

 

Table 4. Average results for the prediction of one 

step ahead RDP 

Performance 
Measures 

Neural 
Networks 

UK/EU JP/UK 

MLP 69.653 74.169 
RPNN 69.430 74.243 AR(%) 

DRPNN 77.164 80.776 

MLP -0.572 -0.645 
RPNN -0.564 -0.648 MD 

DRPNN -0.568 -0.495 

MLP 0.451 0.462 

RPNN 0.456 0.452 NMSE 

DRPNN 0.366 0.374 

Table 5. Average results for the prediction of five 

steps ahead RDP 

Performance 
Measures 

Neural 
Networks 

UK/EU JP/UK 

MLP 86.645 88.971 
RPNN 86.644 89.252 AR(%) 

DRPNN 87.573 89.497 

MLP -1.543 -1.983 
RPNN -1.431 -1.488 MD 

DRPNN -1.013 -1.355 

MLP 0.221 0.208 

RPNN 0.231 0.209 NMSE 

DRPNN 0.223 0.212 

Table 7. Average epoch and CPU time usage 

for the  prediction of five steps ahead RDP 

The Networks Measures UK/EU JP/UK 

MLP 
Epoch 

CPU time 
1365 

299.72 
1179 

311.08 

RPNN 
Epoch 

CPU time 
44 

6.05 
298 

51.84 

DRPNN 
Epoch 

CPU time 
57 

38.97 
42 

21.77 

Table 2. Performance metrics and their calculations 
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,)iŷ)(iy(ifiy

iR

n

i
iRCR

=

=

+

=

=
==

=








���������
�������������� ���������������������

 

MD 

( )




















∑

+

=

=
=

=

=






−=

otherwiseiy
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        n is the total number of data patterns 

   y and ŷ represent the target and predicted output value, respectively 

Table 6. Average epoch and CPU time usage 

for the  prediction of one step ahead RDP 

The Networks Measures UK/EU JP/UK 

MLP 
Epoch 

CPU time 

415 

139 

638 

315 

RPNN 
Epoch 

CPU time 

172 

43 

142 

67 

DRPNN 
Epoch 

CPU time 

132 

37 

96 

38 

 

 

Forecasting the UK/EU and JP/UK trading signals using Polynomial Neural  Networks 115



epochs to complete the training and used longer CPU 
time in comparison to other networks. 

For demonstration purpose, Figure 5 shows the best 
prediction on out of sample signal using DRPNN. In 
order to give a closer view, the plots depict just part of 
the prediction, which are the first 100 data points from 
the out of sample signal. As it can be noticed, the plots 
for the original and predicted signals are very close to 
each other and at some points they are nearly 
overlapping. This indicates that DRPNN are capable of 
learning the behavior of chaotic and highly non-linear  
financial data and they can capture the underlying 
movements in financial markets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 6. Discussions 
 

The use of Dynamic Ridge Polynomial Neural 

Network in the exchange rate time series prediction 

showed that the proposed network provides a 

promising tool to forecasting. The network offers the 

following advantages: 

• It provides better prediction in terms of the profit 
returns in comparison to other neural network 
architectures. The prediction attained by the 
DRPNN for the UK/EU and JP/UK exchange rates 
is significantly better than the prediction generated 
by the feedforward RPNN and the MLP.  

• In view of the fact that the behavior of the 
financial signal itself related to some past inputs on 
which the present inputs depends, it therefore 
requires explicit treatment of dynamics. The merit 
of DRPNN, as compared to the feedforward 
RPNN is its increased inherited nonlinearity which 
results from the use of recurrent neural network 
architecture, giving it an advantage when dealing 
with financial time series forecasting. 

• The proposed network demonstrated faster training 
when used to learn the signals in comparison to 
other network models.  

Simulation results clearly demonstrate that the 
proposed DRPNN is potentially profitable and 
beneficial as money-making predictor. The network 
manifests highly nonlinear dynamical behavior induced 
by the recurrent feedback, therefore leads to a better 
input-output mapping and a better forecast. With the 
recurrent connection, the network outputs depend not 
only on the initial values of external inputs, but also on 
the entire history of the system inputs. Therefore, the 
DRPNN is provided with memory which gives the 
network the ability of retaining information to be used 
later. The superior performance of DRPNN is 
attributed to the natural mechanism for incremental 
network growth, therefore giving the network a very 
well regulated structure and smaller network size which 
led to network robustness. The presence of higher order 
terms in the network equipped the DRPNN with the 
ability to forecast the upcoming trends in financial time 
series signals. The network can robustly process the 
underlying dynamics of a nonlinear environment with a 
vast speed in convergence time. A noteworthy 
advantage of DRPNN and feedforward RPNN is the 
fact that there is no requirement to select the number of 
hidden units as in the MLP. 
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(a) The one step ahead forecast by DRPNN 
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(b) The five steps ahead forecast by DRPNN 
          

         Fig. 5 

(a) DRPNN forecast the one step ahead RDP 

(b) DRPNN forecast the five steps ahead RDP            
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7. Conclusion 
 

This work underlines the predictive capability and 
an important contribution of a new developed Dynamic 
Ridge Polynomial Neural Network; namely its elegant 
ability to approximate nonlinear financial time series. 
The performance of the network was tested for the 
prediction of one step ahead and five steps ahead of 
nonlinear UK/EU and JP/UK exchange rate signals. 
The extensive simulation results were benchmarked 
against the performance of the feedforward RPNN and 
the MLP. The DRPNN has shown its advantages in 
attaining higher profit return, vast speed of training, 
and low forecast error when compared to other network 
models. Hence, it is anticipated that DRPNN can be 
used as an alternative method for predicting financial 
variables and thus justified the potential use of this 
model by practitioners. The superior property hold by 
DRPNN could promise more powerful applications in 
many other real world problems.  
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