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Abstract.  Over the last few decades medical ultrasound has 
become an established diagnostic and therapeutic tool since it 
produces detailed and high resolution images of tissues in 
human body. Harmonic imaging is among the recent 
developments which has brought further improvements to 
the image quality. Harmonic imaging for tissue or with 
contrast agent induced a rapid evolution of this modality to 
diverse clinical uses, among which myocardial perfusion 
determination seems to be the most important application. 
This brought the need to understand the physical processes 
involved in the propagation of finite amplitude sound beams, 
and the issues for redesigning and optimizing the transducers 
with higher performances for both tissue imaging and 
contrast imaging. Concerning tissue harmonic imaging, the 
advantage of the harmonic beam generated at two times the 
transmit frequency are translated by reduced reverberations 
, greater depth of penetration at higher frequencies and 
improved resolution. In order to characterize the harmonic 
beam, a time domain solution of the parabolic nonlinear wave 
equation is used. This equation is traditionally applied in a 
propagation direction along the central transducer axis, and 
has been shown to model the pulse propagation satisfactorily. 
In this work, the characteristics and performances of the 
second harmonic acoustic beam from a focused piston 
aperture are described and the physical principles behind 
tissue harmonic imaging are computed. The field properties 
are then discussed regarding image quality. Special attention 
is given to the transmitted and received bandwidths variation 
and the reception of the pure echo signal. 
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I. INTRODUCTION 
 

he echocardiographic community has seen wide 
technical advances over the last two decades. This 
increasing ascendancy is explained by the advent seen, 

such as high resolution images (high frequency 
transducers), blood flow measurements, real time three-
dimensional imaging and contrast imaging. In addition to 
its diagnostic applications, ultrasound has advantage for 
use in therapy where it is used as a surgical tool when 
higher intensities are transmitted. Major recent 

improvements have been achieved in medical ultrasound 
imaging by exploiting the characteristics of nonlinear 
fields [1]-[3]. Harmonic generation has been used to create 
images offering improvements over conventional B-mode 
images in spatial resolution and, more significantly, in the 
suppression of acoustic clutter and side-lobe artifacts [4]. 
The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is 
often used to study nonlinear characteristics of medical 
ultrasound beams [5]. This equation is applied in a 
propagation direction along the central transducer axis 
towards the human body for imaging. In second harmonic 
imaging mode, a transducer transmits at one frequency and 
receives at double this frequency. The major advantage of 
imaging at the second harmonic frequency is a significant 
reduction of reverberations and artifacts from off axis 
scatterers in addition to an improved resolution. In this 
work, we present the advantage of second harmonic over 
the fundamental in ultrasound imaging, namely the 
problem of the near field which is a source of artifacts in 
the medical image, particularly cardiac imaging among 
obese patients or by reflexion on the ribs, and side-lobes 
level which are also the origin of artifacts. Improvements 
in the axial and radial resolutions and surmount of 
undesirable field parameters. A comparison between the 
fundamental and harmonic pressure fields is carried out at 
various excitation parameters to understand the influence 
of these parameters on the harmonic generation. In order to 
effectively employ the information, comprised in the 
second harmonic of the received signal, this information 
should be properly extracted.  
 
 

II. BASIC THEORETICAL MODEL 
 
All finite amplitude ultrasonic waves undergo a degree of 
nonlinear distortion when traveling through real media. 
The distortion is due to slight nonlinearities in sound 
propagation that gradually deform the shape of the 
propagating wave, and result in the development of 
additional harmonic frequencies that were not present in 
the initial transmitted wave. More precisely, the reason of 
the distortion of the wave shape is that the medium (tissue) 
is not a completely incompressible medium. At the 
positives cycles of the acoustic pressure wave 
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(compression) the temperature increases and, the density 
will increase proportionally while during the negatives 
cycles of the acoustic pressure wave (expansion) the 
temperature decreases and also the density of the medium 
[6]-[8]. This change in medium density influences the 
local propagation speed of sound. Indeed, the positive part 
of the wave propagates a bit faster than the negative part, 
leading to a slight deformation in the shape of the wave. 
This deformation accumulates in depth with propagation 
distance and is more significant for high acoustic pressure 
intensities. The distortion manifests itself in the frequency 
domain by the appearance of additional harmonic signals 
at integer multiples of the original excitation frequency. 
The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is 
usually used to describe nonlinear wave propagation [9]. 
We consider a pressure field generated from each point of 
the transducer surface propagating in a thermoviscous 
fluid in the axial direction oz. The KZK equation which 
describes the combined effects of diffraction, losses and 
nonlinearity is based on a parabolic approximation and is 
given by the expression [6]: 
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Where p is the sound pressure, z is the axis of propagation, 
τ=t-z/c0 is the retarded time, t is the time, c0 is the speed of 
sound, δ is the sound diffusivity corresponding to 
thermoviscous absorption, ρ0 is the ambient density of the 
medium, and β is the coefficient of nonlinearity of the 
medium (β = 1+B/A where B/A is the nonlinearity 

parameter). The operator2⊥∇  is the Laplacian in the plane 

perpendicular to the axis of the propagation. For circular 
sources (axisymmetric beams), the Laplacian is given 

by:
rrr ∂

∂+
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2 . The first term on the right hand 

side of equation (1) accounts for diffraction, the second 
term accounts for absorption (attenuation) and the third 
term accounts for nonlinearity. The KZK equation 
describes accurately the propagation of sound fields 
produced by directive sound sources [6]. However, since 
this equation is based on a parabolic approximation, its 
accuracy is limited to distances beyond a few source radii 
and in a region close to the axis of the transducer [10]. 
 
 

III. COMPUTATIONAL MODEL 
 
The numerical algorithm employed solves the equation in 
time domain and is based on finite differences method 
with a stepping in the axis of propagation direction. This 
algorithm follows similar lines as the algorithm described 
by Lee and Hamilton [11]. For circular sources, the 
equation is solved in the half space r≥0 and the boundary 
condition (∂p/∂r) = 0 is applied when r = 0. The numerical 
algorithm employed has been previously validated [16]. 
The simulation is able to determinate the ultrasound field 
at any point in space and gives information about localized 

maximun and minimum energy produced by the 
transducer. Simulations were carried out considering a 
circular transducer of 20mm of diameter and 60mm of 
focal distance. 
In harmonic imaging, the presence of nonlinear frequency 
components in the received echo signal is caused either by 
nonlinear propagation effects of the medium or by the 
presence of a scatterers that are capable of reflecting (or 
reradiating) the transmitted energy in nonlinear manner, 
e.g., contrast agents [17]. As a consequence, several 
imaging modalities have been developed to acquire the 
pure harmonic information. These methods require data 
processing sequences more or less complex. In this paper, 
the KZK equation is used to characterize the harmonic 
pressure field and to define scanning parameters that 
provide optimal harmonic signals. Among the limitations 
encountered in harmonic imaging is the trade off between 
resolution and sensitivity. In order to effectively employ 
the information, contained in the higher harmonics (second 
harmonic) of the received signals, this information should 
be properly extracted. On account of the limited 
transducers bandwidth, the transmitted ultrasound waves 
must have narrow bandwidths for reduce overlap between 
fundamental and second harmonic bandwidths. Harmonic 
received band must not contain components from transmit 
band and, its components must sufficiently separable from 
fundamental spectral component for better filtering around 
second harmonic. Therefore the transmitted fundamental 
bandwidth should be large enough to ensure resolution 
while overlapping with harmonic frequencies should be 
minimized (Fig. 1). 
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Figure 1:  Overlap between the fundamental and second harmonic 

frequency bands. 

 
 

IV. RESULTS AND DISCUSSION 
 
Figures 2 and 3 show examples of pressure waveforms at 
the source and at the focal distance of the piston 
transducer. Figure 2 shows the results at 50 KPa, 2 MHz 
and 3 cycles transmit waveform while Fig. 3 shows the 
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results for a 500 kPa acoustic pressure. The distortion of 
the waveform after propagation is more significant for the 
high transmitted pressure (fig. 3B), where we appreciate a 

larger number of harmonic components located at multiple 
frequencies of the excitation frequency. 
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           A.                                                                                           B. 
 

Figure 2:  50 KPa, 2 MHz and 3 cycles transducer excitation. A. Top: waveform at piston plane; bottom: corresponding spectrum. 
B. Top: distortion of the waveform in focal depth; bottom: corresponding spectrum. 
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            A.                                                                                              B. 

Figure 3:  500 KPa, 2 MHz and 3 cycles transducer excitation. A. Top: waveform at piston plane; bottom: corresponding spectrum. 
B. Top: distortion of the  waveform in focal depth; bottom: corresponding spectrum. 
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The improvement in image quality for harmonic imaging 
is related to three principal characteristics of the harmonic 
sound field. The harmonic components are generated 
gradually according to the distance of propagation. Thus, 
near to the probe, the second harmonic signal level is very 
low, and as a consequence, all the interferences and 
reverberations resulting from obstacles of near field such 
as skin, ribs or fatty tissue will be strongly reduced. These 
reverberations are responsible indeed for many artifacts in 
the ultrasound image. Figures 4 and 5 show respectively 
the variations of the second harmonic near field pressure 
level and the variations of the second harmonic side lobes 
level with the duration of the excitation. Both the near 
field level and side lobe levels increase when the length of 
the transmitted signal is increased. Thus, decreasing  
undesirable near field and side lobe levels obliges 
excitations of narrow durations. 
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 Figure 4: Second harmonic axial near field variation with the number of 

cycle in excitation. Case of 2MHz frequency excitation. 

 
 
Figure 6 shows fundamental (F) and, second harmonic 
(2F) ultrasound field in direction of propagation from a 
circular transducer of 20 mm of diameter. The  
demonstrates that the build up of the second harmonic 
field is cumulative as explained by very low field intensity 
near the source and then increases with the propagation 
distance. In the case of high excitation pressure, the second 
harmonic ultrasound field level in focal point is much 
better in its level than in the case of low pressure, leading 
to a better contrast and consequently to improved image 
quality. As it was mentioned earlier, the second harmonic 
component provides a better penetration. Figure 7 
illustrates the difference in focal depth between the 
fundamental and the second harmonic fields. In figure 8 is 
shown the difference in focal depth between the 
fundamental and the second harmonic axial field as a 
function of the excitation frequency. This difference in 
depth decreases when the frequency of excitation 
increases. This phenomenon is due primarily to the 
attenuation. The second main acoustic property of the 
second harmonic field is the low level of the side lobes and 
grating lobes. 
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Figure 5: Second harmonic side lobes level variation with the number of 

cycle in excitation. Case of 2MHz frequency excitation. 
 
 
Indeed, considering the nonlinear relationship between 
fundamental and harmonic components, the second 
harmonic field presents a significant suppression of side 
lobes and grating lobes. These lobes are known to be 
responsible of the artifacts coming from obstacles or 
reflectors located off-axis. This characteristic is shown in 
figure 9 in which are displayed the normalized radial 
ultrasound field profiles at fundamental and second 
harmonic frequencies. The second harmonic field shows a 
consequent suppression of the side lobes level expressed 
here by a reduction of about 5 dB. The third property of 
second harmonic field responsible for the improvement of 
image quality is its beam width. Figure 9 shows also that 
the second harmonic beam width is narrower than the 
fundamental one with a reduction of the about 60 %. The 
following table shows that beam widths are definitely 
better than if we consider linear propagation. This 
reduction in beam width indicates an improvement in 
lateral resolution of ultrasound image at this frequency. 
In order to ensure that the higher frequencies are due only 
to harmonics generated by a nonlinear process, the 
transmitter must be restricted to a band of frequencies 
around the fundamental frequency. Therefore overlap 
between fundamental band and second harmonic band 
should be avoided. Figure 10.A shows the frequency 
bandwidths of the fundamental and second harmonic 
components as a function of number of cycles in the 
transmit pulse as calculated at -10 dB and -20 dB levels. 
 
 

TABLE I 
BEAM WIDTH OF 20mm PISTON DIAMETER AT 2MHz, 3 CYCLES 

OF EXCITATION. 
 

 
Transmit     Fundamental beam width    2nd harmonic beam width 
   pulse          at -10dB          at -20dB      at -10dB          at -20dB 
 intensity 
 
50KPa           3.6mm                5mm           2.2mm             2.9mm 
500KPa         3.8mm               5.2mm         2.4mm             3.1mm 
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The curves demonstrate a similar trend for both 
fundamental and second harmonic bandwidths. Figure 
10.B shows the bandwidth of second harmonic component 
as a function of transmit fundamental bandwidth at two 
different applied acoustic pressures (50KPa and 500KPa). 
The bandwidth of the second harmonic component 
increases when the transmit bandwidth increases. For 
example, at 500 KPa transmit pressure, 80% fundamental 
bandwidth engenders a 50% harmonic bandwidth. This 

means that the second harmonic component extends from 
3 MHz to 5 MHz; while 80% transmit bandwidth extends 
from 1.2 MHz to 2.8 MHz. At 50 KPa transmit pressure, 
80% fundamental bandwidth engenders a 56% harmonic 
bandwidth and, the second harmonic component extends 
from 2.88 MHz to 5.12 MHz, either 240KHz of band is 
gained. At this level, we conclude that the second 
harmonic component is purely a nonlinear component and 
has not been transmitted since no overlap occurred 
between the linear and the nonlinear components. 
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                   A.                                                                                      B. 
Figure 6: Axial field towards axe of propagation focalised at 60 mm. A. Low pressure (50 KPa). Dashed line: fundamental field; solid line: 2nd harmonic field. B. High 

pressure (500 KPa). Dashed line: fundamental  field; solid line: 2nd harmonic  field. 
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                 Figure 7: Illustration of the difference in focal depth.  
                Dashed line: fundamental field; solid line: 2nd harmonic field 

Figure 8 : Difference in focal depth between the fundamental 
 and second harmonic as function of the frequency. 
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Figure 9: Radial field. A. Low pressure (50 KPa). Dashed line: fundamental field; solid line: 2nd harmonic field. B. High pressure (500 KPa). Dashed line: 

fundamental field; solid line: 2nd harmonic field. 
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Figure 10: Bandwidth. A. Bandwidth as a function of number of cycle in transmit pulse.  B. Fundamental and second harmonic bandwidth in percentage. 

 
 
 
 

TABLE II 
OVERLAPPING BETWEEN FUNDAMENTAL AND SECOND 

HARMONIC COMPONENT BANDS CATHES AT -40dB.  
 

Transmit pulse Frequency 
Number of 

cycle Overlap 
[Kpa] [MHz] in excitation [MHz] 

50 2 1 > 2 

    1,5 1,176 

    2 0,3654 

    2,5 N. O 

  3 1 > 3 

    1,5 2,0146 

    2 0,8626 

    2,5 0,1075 

    3 N. O 

500 2 1 > 2 

    1,5 1,4923 

    2 0,5058 

    2,5 N. O 

  3 1 > 3 

    1,5 2,3196 

    2 0,5964 

    2,5 N. O 
 
 
 
Table II shows the calculated values of frequency 
overlapping between fundamental and second harmonic 
components at two different pressures and frequencies (N. 
O means no overlapping). Bands were calculated at -40dB 
to show the overlapping and, in order to acquire the 
maximum of information contained in the received second 
harmonic signal as illustrated in figure 11. For a given 
pressure and frequency, the overlapping decrease if the 
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excitation duration is increased. Overlapping is significant 
for small durations because the frequency band is inversely 
proportional with duration thus, we return again to the 
compromise but in this case between overlapping and axial 
resolution. According to table II, we can say that the 
overlapping increases for few hundreds of kilohertz when 
the excitation pressure is increased by a factor of 10. 
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 Figure 11: Overlapping illustration. Case of an excitation of 500KPa, 

2MHz frequency and 1,5 cycles. 

 
 
 

V. CONCLUSION 
 
   The quality of the ultrasound image depends strongly on 
the axial and radial field profiles characteristics. Moreover 
the level and the frequency bandwidth of transmitted 
acoustic pressure are important. Restriction of the receive 
bandwidth degrades the resolution of the resulting image, 
thus framing again a fundamental compromise in harmonic 
imaging between contrast and resolution. Also, in a 
spectrum of a same ultrasound wave the second harmonic 
band is broad compared to the fundamental one. To 
receive correctly and without overlap the pure nonlinear 
component of the second harmonic, a novel method differs 
from the conventional filtering approaches must be studied 
(filters are never ideal). 
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