

Abstract

Contention for shared resources on multi-core
processors has been a performance bottleneck. A
solution to manage contention would be to apply
knowledge about the shared resource utilization
behavior of programs running on multi-core
processors. In our previous work we used machine
learning techniques to predict solo-run-L2-cache-
stress, which can be utilized as a metric to characterize
such behavior of programs.
In this study we investigate the transferability of
trained regression models that estimate solo-run L2
cache stress of programs running on multi-core
processors. Machine learning techniques were used to
generate the trained regression models. Transferability
of a regression model is the utility of a regression
model trained on one architecture to predict the solo-
run L2 cache stress on another architecture. The
statistical methodology to assess model transferability
is discussed. We observed that regression models
trained on a given L2 cache architecture are
reasonably transferable to another L2 cache
architecture and vice versa.

1. Introduction

Multi-core processors generally have level-2 caches
(L2 caches) which are shared between cores or
hardware threads [1][2][3]. Contention for shared L2
cache between programs running on multi-core
processors is one of the performance bottlenecks. The
solutions proposed by researchers to reduce the
contention for shared L2 caches on multi-core
processors [4][5][6][7][8] [9][10] need to know about
the L2 cache related characteristics of the programs
running on a multi-core processor.

1.1 Metric for characterizing L2 cache
behavior of programs

L2 cache miss rate i.e. the number of L2 cache
misses per instruction retired, is one of the metric used
to characterize the L2 cache behavior of a program.
The observed L2 cache miss rate of a program, while it
shares L2 cache with another program running on a
different core, is different from its solo-run L2 cache
miss rate. This is so because the observed L2 cache
miss rate results from the interactions of the cache
access patterns of both the programs. The solo-run L2
cache miss rate is the L2 cache miss rate observed for a
program when it runs alone without sharing L2 cache
with another program running on other core.

Figure1. Solo-run and paired-run L2 cache
stress for 429.mcf on Intel Xeon X5482

We use solo-run L2 cache stress of a program to

characterize its L2 cache behavior while running on
multi-core processors. The solo-run L2 cache stress is
the total number of L2 cache lines brought in due to
miss and prefetch activities per Kilo (103) instructions

Characterizing L2 Cache Behavior of Programs on Multi-core Processors:
Regression Models and Their Transferability

Jitendra Kumar Rai,1#§ Atul Negi,2# Rajeev Wankar,3# K. D. Nayak4§

 ANURAG§ Department of Computer & Information Sciences#

 Hyderabad, India University of Hyderabad, Hyderabad, India
 jk.anurag@yahoo.com1 atulcs@uohyd.ernet.in2
anuragdir@satyam.net.in4 wankarcs@uohyd.ernet.in3

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)

http://www.mirlabs.org/ijcisim
ISSN: 2150-7988 Vol.2 (2010), pp.212-221

retired, when the program is running without sharing
the L2 cache with programs running on other cores.
The values the solo-run as well as paired-run L2 cache
stress of 429.mcf (one of the SPEC cpu benchmark)
measured on our Intel quad-core Xeon X5482
processor based experimental platform (described in
section 4.1) are shown in fig. 1. The names along the
horizontal axis are benchmark program names from
SPEC cpu2006, with which the 429.mcf was paired. It
can be seen that the paired run L2 cache stress for the
429.mcf differs between various runs based on co-
runner benchmark.
An operating system scheduler can use the solo-run L2
cache stress of programs to intelligently schedule them
to reduce the contention for shared L2 cache.

1.2 Consideration of the contention for other
shared resources

Apart from last level (L2) caches, there are various
other resources which are shared between processes
running on a system based on multi-core processors. In
a recent work [36] Sergey Zhuravlev et al observed
that along with contention for shared last level cache,
other factors like memory controller contention,
memory bus contention and prefetching hardware
contention also combine in complex ways to cause
degradation in performance for processes running on
multi-core processors. They performed experiments on
two socket server with two Intel X5365 “Clovertown”
quad-core processors. On that system the two sockets
shared the memory controller hub, which includes
memory controller. The four cores on each socket
shared a Front Side Bus (FSB). Each pair of cores on a
single socket shared last level (L2) cache.

On this system when the two processes run on
different sockets, they contend for memory controller.
When they run on the same socket, on the cores not
sharing last level (L2) cache, they contend for Front
Side Bus (FSB), in addition to memory controller.
When the two processes run on the same socket, on the
cores sharing last level (L2) cache, then they contend
for all the four resources i.e. last level (L2) cache,
prefetching unit, Front Side Bus (FSB) and the
memory controller. In their work [36] Sergey
Zhuravlev et al. used solo last level cache (LLC) miss
rate as a metric to study the performance degradation
due to contention for shared resources on multi-core
processor.

The metric used in our study i.e. solo-run L2 cache
stress includes the total number of L2 cache lines
brought in due to miss as well as prefetch activities. It
represents the amount of traffic happening between
memory and last level (L2) cache of the processor.

Thus by definition itself our metric takes into
consideration the contention for all the four resources
i.e. last level (L2) cache, prefetching unit, Front Side
Bus (FSB) and the memory controller.

We measured the solo-run last level (L2) cache miss
rate as well as solo-run last level (L2) cache miss and
prefetch rate (i.e. solo-run L2 cache stress) for
programs of SPEC cpu2006 suite on our Intel quad-
core Xeon X5482 processor based experimental
platform described in section 4.1. The values of the
same for some of the SPEC cpu2006 benchmarks are
shown in fig. 2, where names along the x-axis are
benchmark program names. The large difference
between the two indicates towards better suitability of
solo-run last level (L2) cache miss and prefetch rate
(i.e. solo-run L2 cache stress) as a metric to study the
shared resource contention on multi-core processors, as
it represents the total traffic happening between last
level (L2) cache and memory.

Figure2. L2 Miss+Prefetch and L2 Miss per Kilo
Instructions retired on Intel Xeon X5482

1.3 Regression models and their transferability

In our previous work [11] we observed that the
regression models generated by training machine
learning algorithms can be used to predict solo-run L2
cache stress of programs running on multi-core
processors. Transferability of a regression model
means how useful is a regression model (which is
trained on one scenario e.g. architecture) to predict the
dependent variable i.e. solo-run L2 cache stress on
another scenario (e.g. architecture). A regression model
trained on architecture A is considered transferable to
architecture B if it can be used to accurately predict the
solo-run L2 cache stress on architecture B.

213Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

We plan to use machine learning to train the
regression model offline and later on use the model
online to predict solo-run L2 cache stress of running
programs, to assist intelligent scheduling decisions on
multi-core processors. Transferability of regression
model is an important property for utilization of the
model across various scenarios. It amortizes the efforts
involved in training. Here scenario includes
interactions between architecture and application with
reference to L2 cache.

1.4 Organization of the paper

In this study we investigate the transferability of
trained regression models for predicting the solo-run
L2 cache stress. Run time data collected from hardware
performance counters of Intel quad core Xeon X5482
and Intel dual core Core2 6300 processors were used to
train the regression models. We used statistical
methods to assess the transferability of generated
regression model across quad core Xeon X5482 and
dual core Core2 6300 processors.

Rest of the paper is organized as follows. Section 2
gives brief account of related work. In section 3 we
give brief overview of the machine learning algorithms
used. Section 4 gives brief of the experimental setup
and data collection process used to train the models. In
section 5 the statistical methodology adopted for
assessing the transferability is described along with
results. Finally in section 6 we conclude.

2. Related work

There are mainly two kinds of approaches to
manage the contention for shared L2 caches on multi-
core and multi-threaded processors: hardware based
approach and software based approach.

The software based approach involve scheduling by
operating systems [9][10] which is based on analytical
models for cache behavior of running programs. Most
of the hardware based approaches [4] [5] [6] [7] [8]
rely on additional hardware support and analytical
modeling to perform cache partitioning. Analytical
cache models based on stack simulation [15] and
probability [16] have been developed for chip
multiprocessor systems. David Tam et al. [17] used
memory access trace of running programs for getting
L2 cache miss rate curves, which can be used for
partitioning the cache. They used a Performance
Monitoring Unit (PMU) feature called continuous data
address sampling, available on IBM POWER5
processor only.

Neural networks have been used [18] by Richard M.
et al. for workload characterization. They characterized

a 3-tier web service in terms of functional
characteristics of the application. Kumar and Negi [19]
[20] used machine learning to characterize the
workload and improve scheduling in Linux operating
system. In their work various attributes from ELF
executables and the previous execution history of the
processes were used to characterize the workload. In
[21] machine learning algorithms were used to study
the performance in terms of Instructions Per Cycle
(IPC) using the event data collected from hardware
performance counters. In [22] model trees have been
used in performance evaluation and in [23] the
transferability of regression models is discussed to
predict the performance across various work-loads in
term of their IPC. T Ramazan B. et al. [24] proposed
implementation of artificial neural networks based
framework in hardware to coordinate the management
of multiple interacting resources in chip
multiprocessors.

The objective of our work differs from the previous
work. We are characterizing the L2 cache behavior of
programs on multi-core processors. The knowledge
about the process characteristics in this respect can also
be used for mitigating the contention for other shared
resources on multi-core processors based systems. The
focus of the present study is to investigate the
transferability of trained regression models to predict
shared L2 cache related behavior of programs across
two multi-core processors having different L2 cache
organization.

3. Machine learning algorithms used

Different machine learning algorithms correspond

to different concept description spaces searched with
different biases. Some problems are served well by
different description languages and biases, while others
are not served well or even served badly. This entails
the study of various machine learning algorithms
belonging to different families to check their efficacy
to solve a given problem across various scenarios [31].
The machine learning algorithms used in the study are:
Linear Regression (LR), Artificial Neural Networks
(ANN), Model Trees (M5’), K-nearest neighbors
classifier (IBK), KStar (K*) and Support Vector
Machines (SVM).

Linear regression [31] performs least-squares linear
regression.

Artificial neural networks [26] are based on the
mechanism of co-operative processing of information,
as done by neurons in the brain. In a multilayer neural
network, there is an input layer, an output layer and a
number of hidden layers. Each layer has a number of
neurons (nodes) organized in it. The input layer takes

214 Rai et al.

the information to be processed as input. The first
hidden layer takes the results from input layers as its
inputs and forwards its results as inputs to the next
layer. The output layer takes the results of the last
hidden layer as inputs and produces the prediction
result. In this study back-propagation was used to train
feed-forward multilayer neural network.

K-nearest neighbors classifier (IBK) and KStar (K*)
[26][27][28] are lazy or instance-based learning
algorithms. In this case a new regression equation is
fitted each time, when the model needs to predict on a
new instance (i.e. a new query point).

Model trees are a kind of regression tree [14]. We
chose M5’ algorithm [12], which is an improved
version of original M5 algorithm invented by Quinlan
[13]. Model trees recursively partition the input space
until the linear models at the leaf nodes can explain the
remaining variability in those partitions.

Support Vector Machines (SVM) [29] tries to find
instances that are at the boundary of the classes. These
instances are called support vectors. Then it generates
functions that discriminate those vectors as widely as
possible. For training the support vector machine, a
generalization of Sequential Minimal Optimization
algorithm (SMO) by Shevade et al. [30] is used.

In this study we used weka-3.6.1 machine learning
workbench [31]. We used default settings of most of
the parameters to the above-mentioned machine
learning algorithms in weka-3.6.1 except few changes
described above.

4. Experimental setup

This section gives brief of the experimental setup
and the methodology used to collect data to train the
machine learning algorithms. The methodology used is
similar to our pervious work [11].

The data were collected from hardware performance
counters in two phase i.e. solo-run experiment and
paired-run experiment. Hardware performance
counters are special purpose registers provided on
modern processors for measuring various performance
events such as number of instructions retired, L2 cache
misses etc.

4.1. Platforms

We performed experiments on two platforms. The first
platform is a dual-socket DELL Precision T7400
workstation with two Intel quad-core Xeon X5482
processors (3.2 GHz) and 32 GB of memory. The other
platform is a single socket DELL Precision 390
workstation with one Intel dual-core Core2 6300
processor (1.86 GHz) and 2 GB of memory. The

operating system kernel on both platforms was Linux-
2.6.28. For collecting data from the hardware
performance counters [1] of both processors, we used
perfmon [32] interface.

4.2. L2 Cache Organization on Xeon X5482
and Core2 6300

It is necessary to note the difference between the
two processors with respect to their L2 cache
organization to have a view of differences in the
scenarios.

Figure3. L2 cache sharing on Intel Xeon X5482

Figure4. L2 cache sharing on Intel Core2 6300

On both quad-core Xeon X5482 and dual-core

Core2 6300 processor there is separate level-1 (L1)
instruction and data cache, each of size 32KB per core.

Core0 Core1

L2 cache (4 MB)

L2 cache (12 MB)

Core1

Core3

Core2

Core0

L2 cache (12 MB)

215Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

Both of the processors have unified level-2 (L2) cache
shared between two cores. The sharing of L2 caches
between cores of Xeon X5482 and Core2 6300
processors are shown in fig. 3 and fig. 4 respectively.
Table 1 shows the L2 cache related data [1] for both
the processors.. There is difference in the L2 cache
organization of the two processors in terms of cache
size and ways of associativity.

Table 1. L2 cache related data of Xeon X5482 and

Core2 6300

Processor

No of
cores

sharing L2
cache

Size (MB)
shared

between
two cores

Ways of
associativity

Xeon X5482 2 12 24

Core2 6300 2 4 8

4.3. Workload

We used benchmarks from SPEC cpu2006 suite

[33]. The benchmarks suit consists of 12 integer
programs and 17 floating point programs. We used
reference inputs. With reference inputs the total
workload consists of 35 integer programs and 20
floating point programs i.e. total 55 programs.

4.4. Solo-run-experiment

We ran each program from SPEC cpu2006 suite on
a core and disallowed scheduling programs on other
core sharing L2 cache with the previous core. The class
variable solo-run L2 cache stress was calculated from
hardware performance counter data collected for
complete run of each program.

4.5. Paired-run-experiment

The programs from SPEC cpu2006 benchmark suite
were run on the cores sharing L2 cache and the
hardware performance counter data for each program
were collected. Each of these programs takes different
amount of time for completion. Hence we allowed one
of the co-scheduled programs to run till completion.
The other program was run in an infinite loop to
execute it again as it finished and was stopped only as
the first program finished. The attributes were
generated from data collected from this phase.

With 55 programs, we have 55x55 (i.e. 3025) pairs
of programs to run on the system. Completion of one
run of 55 pairs takes about 7-10 hours on Xeon based
and 10-15 hours on Core2 processor based platform.

4.6. Attributes and class variables

The events collected from hardware performance
counters are:

INSTRUCTIONS_RETIRED
LAST_LEVEL_CACHE_REFERENCES
L2_LINES_IN__SELF__ANY

Out of afore mentioned events the second event
LAST_LEVEL_CACHE_REFERENCES measures
the number of references to L2 cache. While event
L2_LINES_IN__SELF__ANY measures the total
number of L2 cache lines brought in as a result of
encountering L2 cache misses as well as prefetching
activities.

 If two programs p1 and p2 are running on two cores
of Xeon X5482, and sharing the L2 cache. The
attributes and class variables are generated in following
manner:

The first attribute (p1_L2_REF_PKI) is L2 cache
references per kilo instructions retired

p1_L2_REF_PKI =
(p1_LAST_LEVEL_CACHE_REFERENCES*1000)/
p1_INSTRUCTIONS_RETIRED

The second attribute (p1_L2_IN_PKI) is L2 cache
lines brought in (due to miss and prefetch) per kilo
instructions retired. It is indicative of the stress put by
a program on L2 cache.

p1_L2_IN_PKI =
 (p1_L2_LINES_IN__SELF__ANY*1000)/
p1_INSTRUCTIONS_RETIRED

The third attribute (p1_L2_IN_PK_REF) is L2 cache
lines brought in (due to miss and prefetch) per kilo L2
cache lines referenced. It gives an indication of re-
referencing characteristic of the program. Lower value
of this attribute indicate higher tendency of the
program to re-reference the previously referenced L2
cache lines.

p1_L2_IN_PK_REF =
 (p1_L2_LINES_IN__SELF__ANY*1000)/
p1_LAST_LEVEL_CACHE_REFERENCES

 The fourth attribute (p1_L2_FO) is the fractional L2
cache occupancy of a program. It gives a ruff estimate
of fraction of space occupied by a program in L2
cache, while sharing it with other program.

216 Rai et al.

p1_L2_FO=
 p1_L2_LINES_IN__SELF__ANY/
(p1_L2_LINES_IN__SELF__ANY+
 p2_L2_LINES_IN__SELF__ANY)

The class variable to be predicted is “solo-run L2
cache stress”. It is similar as second attribute i.e. L2
cache lines brought in (due to miss and prefetch) per
kilo instructions retired, but for solo-run of the same
program p1. We represent it by s1_L2_IN_PKI (here
s1_ denotes solo-run of first program p1 out of pair p1
and p2).

5. Transferability of trained regression
models

The transferability of regression models is assessed
across processors i.e. regression models trained using
data from Intel Xeon X5482 were used to make
predictions on Intel Core2 6300 and vice versa.
Please note that each data i.e. an instance refers to a
benchmark paired with a unique benchmark form
55x55 pairs. We used statistical tests and prediction
accuracy metrics to assess the transferability of trained
regression models. Statistical tests try to make
inference on population from a given sample, while
prediction accuracy metrics are confined to sample
only. Here population refers to the data generated
from interactions of all real world applications with
architecture. While data collected for the pairs formed
by SPEC cpu 2006 are 55X55 (i.e. 3025), represents a
sample from population of the real world data set.
These methods are discussed in next subsections.

5.1. Statistical tests

We followed the statistical methods [25] [34] to

compare two alternatives for assessing the
transferability of trained regression models. These
methods fall in two categories parametric and non-
parametric. Parametric methods include t-test, where
the data are assumed to be normally distributed. If
there is any reason to doubt the assumption of
normality of data, then we can use a distribution free
test i.e. Wilcoxon test, which falls under non-
parametric methods. We used R [34] for performing
statistical computations.

The significance testing is done using p-values,
where p-values less than the threshold (0.05) indicate
towards rejection of null hypothesis [25] [35].

First we test about the normality of the data (i.e.
class variable) and then test about the difference
between predicted and actual values of the class
variable.

Testing for Normality of data:

The class variable solo-run L2 cache stress was
collected for all 55 benchmarks in solo-run experiment.
We test the normality of class variable by three
methods: quantile-quantile (Q-Q) plot, Kolmogorov-
Smirnov test and Shapiro-Wilk test [34]. The Q-Q plot
is shown in fig. 5, where the sampled data is shown as
circles against theoretical quantiles (i.e from normal
distribution) shown as straight line.
If the sampled data comes from normal distribution
then it should follow the theoretical quantiles on
quantile-quantile (Q-Q) plot. The calculated p-values
from tests for normality are shown below:

Kolmogorov-Smirnov test : 1.050e-13
Shapiro-Wilk test : 1.542e-09

The p-values are much below threshold (0.05). The Q-
Q plot (i.e. points shown as circles v/s straight line)
also indicates towards rejection of the null hypothesis
(i.e. the data follows normal distribution). Hence we
observe that there is doubt to assume that the data
come from normal distribution.
The number of pairs of benchmarks i.e. instances of
data used in study is 418. The 418 instances collected
from XeonX5482 and Core2 6300 are used to generate
regression models for XeonX5482 and Coere2 6300

Figure5. Q-Q plot for class variable

respectively. The trained model for XeonX5482 was
used to predict solo-run L2 cache stress for Core2 6300
and vice versa. To assess transferability we perform the

217Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

statistical tests to check the difference between actual
values and the predicted values.

Testing for difference between actual and predicted
values:

We have two samples to compare against each other
for presence of any significant difference between
them. First sample consists of predicted and the other
sample consists of actual values of solo-run L2 cache
stress on a given processor. The parametric method (t-
test) assumes the data to have normal distribution.

Table 2. p-values for t-test and Wilcoxon test across

XeonX5482 and Core2 6300

Algorithm
used

Trained
using data

from
processor

Tested
using data

from
processor

p-value
for

t-test

p-value
for

Wilco-
xon test

LR Xeon Core2 0.7646 0.1947

LR Core2 Xeon 0.7893 0.3319

ANN Xeon Core2 0.541 0.00018

ANN Core2 Xeon 0.9977 0.3938

M5’ Xeon Core2 0.7022 0.9486

M5’ Core2 Xeon 0.8162 0.8084

IBK Xeon Core2 0.4535 0.9556

IBK Core2 Xeon 0.2067 0.05917

K* Xeon Core2 0.03878 0.2088

K* Core2 Xeon 0.7028 0.0143

SVM Xeon Core2 0.6147 0.09743

SVM Core2 Xeon 0.928 0.5135

The number of instances 418 is quite large, whereby
the parametric method (t-test) becomes robust enough
to be used for non-normal data [35]. Hence to assess
the transferability we use both parametric method (t-
test) as well as non-parametric method (Wilcoxon test).
The acceptance of null hypothesis indicates the
absence of significant difference between the predicted
and actual values. In other words we can say that the
given regression model used to predict solo-run L2
cache stress is transferable across the two processors
viz. one on which it was trained and the other on which
it was used to make predictions.

The results of p-values for t-test as well as Wilcoxon
test are shown in Table-2 against the machine learning
algorithm and processor used for training and testing.
For most of the cases p-values for both tests is greater
than threshold (0.05), indicating the acceptance of the
null hypothesis, which says there is not significant
difference between actual and predicted values of class
variable solo-run L2 cache stress. There are few cases
where one of the test gives p-values lower than
threshold, we plan to investigate it in our future work.

5.2. Prediction accuracy metrics

The prediction accuracy of the trained models can be
expressed in terms of the prediction metrics [31] given
below. Here pi and ai refer to predicted and actual
values of i th instance and N is total number of
instances.

Correlation Coefficient (C): It measures the extent of
relationship between predicted (pi) and actual (ai)
values. Its value ranges from –1 to 1, where 1
corresponds to ideal case.

Table 3. Prediction accuracy metrics of different
algorithms across XeonX5482 and Core2 6300

Algori
thm
used

Trained
using data

from
processor

Tested
using data

from
processor

C MAE RMSE

LR Xeon Core2 0.9928 1.1549 1.869

LR Core2 Xeon 0.9922 0.7285 1.1699

ANN Xeon Core2 0.9718 1.8035 3.7943

ANN Core2 Xeon 0.9844 0.8603 1.6337

M5’ Xeon Core2 0.9766 1.3619 3.4289

M5’ Core2 Xeon 0.9844 0.8603 1.6337

IBK Xeon Core2 0.9247 2.5865 5.7782

IBK Core2 Xeon 0.9485 1.6731 5.0481

K* Xeon Core2 0.8754 2.4519 7.3883

K* Core2 Xeon 0.9524 1.0873 2.7824

SVM Xeon Core2 0.9938 1.0508 1.6873

SVM Core2 Xeon 0.9930 0.6135 1.1400

It is given by:

218 Rai et al.

AP

PA

SS

S
C = , where

)()(
1

1

−
−−

= ∑ =

N

aapp
S

N

i ii

PA ,

()
1

1

2

−
−

= ∑ =

N

pp
S

N

i i

P

()
1

1

2

−
−

= ∑ =

N

aa
S

N

i i

A

p and a are mean of predicted and actual values.

Mean Absolute Error (MAE): For calculating this, the
absolute value of error between predicted and actual
values is used. In ideal case it should have 0 value. It is
calculated as shown below:

N

ap
MAE

N

i ii∑ =
−

= 1

Root Mean Squared Error (RMSE): It is measured in
the same unit as that of the measured quantity (for this
case solo-run L2 cache stress). Its value ranges from 0
to infinity, where 0 indicates ideal case. It is calculated
in following manner:

()
N

ap
RMSE

N

i ii∑ =
−

= 1

2

The prediction accuracy metrics for different
algorithms used in the study across XeonX5482 and
Core2 6300 processors are shown in Table 3. The
prediction accuracy metrics shown indicate that most
of the trained regression models perform reasonably
well across two different architectures, where one is
used for training and other is used for testing. The
instance based classifiers IBK and K* seem to be on
lower side with respect to performance accuracy
metrics. In their case a new regression equation is
fitted each time, for making prediction on a new
instance. This may be attributed to lower performance
metrics across different architectures.

6. Conclusions and future work

In this study we assessed the transferability of
trained regression model across two multi-core
processors viz. Intel quad-core Xeon X5482 and Intel
dual-core Core2 6300. It was observed that at 0.05
level of significance, most of the regression models
under study are transferable across the L2 cache
architecture of these two processors. The prediction
accuracy metrics indicate that most of the trained
regression models are transferable across the two
processors used in the study.

The model transferability is an important property
for the trained regression models for predicting solo-
run L2 cache stress of programs running on multicore
processors. A transferable regression model can later
be used on various multi-core processors to predict the
solo-run L2 cache stress of running programs. The
predicted solo-run L2 cache stress of a program
provides information about the L2 cache related
behavior of that program on given multi-core
processor. One of the potential uses of the predicted
solo-run L2 cache stress is to help in intelligent
scheduling of programs on multi-core processors.
Implementing the intelligent scheduler is part of our
future work.

7. References

[1] Intel® 64 and IA-32 Architectures Software Developer's
Manuals. http://www.intel.com/products/processor/manuals.
[2]] Poonacha Kongetira, Kathirgamar Aingaran, Kunle
Olukotun, “Niagara, a 32-way Multithreaded Sparc
Processor” in IEEE Micro, March-April 2005 (pp. 21-29).
[3] Niagara2:A Highly Threaded Server-on-a-Chip
http://www.opensparc.net/pubs/preszo/06/04-Sun-Golla.pdf.
[4] Yuejian Xie Gabriel H. Loh, “Dynamic Classification of
Program Memory Behaviors in CMPs”, in Proceedings of
CMP-MSI: 2nd Workshop on Chip Multiprocessor Memory
Systems and Interconnects in conjunction with the 35th
International Symposium on Computer Architecture (ISCA-
35) Beijing, China, June 22nd, 2008.
[5] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting
Inter-Thread Cache Contention on a Multi-Processor
Architecture”, in Proceedings of the 12th International
Symposium on High Performance Computer Architecture
HPCA, 2005 (pp. 340-351) .
[6] N. Rafique, W. T. Lim, and M. Thottethodi,
“Architectural Support for Operating System-driven CMP
Cache Management”, in Proceedings of the 15th
International Conference on Parallel Architectures and
Compilation Techniques, Seattle, Washington, Sept. 2006
(pp. 2-12).
[7] G. E. Suh, S Devadas, and L. Rudolph, “A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning”, in Proceedings of the 8th International

219Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

Symposium on High Performance Computer Architecture
HPCA, 2002 (pp. 117-128).
[8] Lisa R., Steven K., Ravishankar I. and Srihari M.,
“Communist, Utilitarian, and Capitalist Cache Policies on
CMPs: Caches as a Shared Resource”, in Proceedings of the
15th International Conference on Parallel Architectures and
Compilation Techniques, Seattle, Washington, Sept. 2006
(pp. 13-22).
[9] A. Fedorova, M. Seltzer and M. D. Smith, “Improving
Performance Isolation on Chip Multiprocessors via an
Operating System Scheduler”, in Proceedings of the
Sixteenth International Conference on Parallel Architectures
and Compilation Techniques, Brasov, Romania, Sept. 2007
(pp. 25-38).
[10] A. Fedorova, M. Seltzer, C. Small and D. Nussbaum,
“Performance Of Multithreaded Chip Multiprocessors And
Implications For Operating System Design”, in Proceedings
of USENIX 2005 Annual Technical Conference Anaheim,
CA, April 2005 (pp. 395-398).
[11] Jitendra Kumar Rai, Atul Negi, Rajeev Wankar, K.D.
Nayak: “On Prediction Accuracy of Machine Learning
Algorithms for Characterizing Shared L2 Cache Behavior of
Programs on Multicore Processors”, in Proceedings of The
2009 IEEE International Conference on Computational
Intelligence, Communication Systems and Networks
(CICSyN2009), July 23-25 2009, Indore, India (pp. 213-219).
[12] Y. Wang and I. Witten, “Inducing model trees for
continuous classes”, in Proceedings of the 9th European
Conf. on Machine Learning, Poster Papers, 1997.
[13] R. Quinlan, “Learning with continuous classes”, in
Proceedings of the 5th Australian Joint Conference on
Artificial Intelligence (AI’92), 1992.
[14] L. Breiman, J. Friedman, R. Olshen, and C. Stone,
Classification and Regression Trees. Wadsworth
International Group, 1984.
[15] Xudong S., Feiqui S., Jih-kwon P., Ye Xia and Zhen
Yang, “CMP Cache Performance Projection: Accessibility
vs. Capacity”, in Proceedings of dasCMP2006, 2006.
[16] Pavlos P., Georgios K., Hakan Z., Stefanos K. and Erik
Hagersten,“Modeling Cache Sharing on Chip Multiprocessor
Architectures”, in Proceedings of IEEE International
Symposium on Workload Characterization (IISWC), 2006
(pp. 160-171).
[17] D. K. Tam, R. Azimi, L. B. Soares and M. Stumm,
“RapidMRC: Approximating L2 Miss Rate Curves on
Commodity Systems for Online Optimizations”, in
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Washington, DC, USA. March, 2009
(121-132).
[18] Richard M. Y., Han L., Kingsum C. and Hsien-Hsin S.
L., “Constructing a Non-Linear Model with Neural Networks
for Workload Characterization”, in Proceedings of the
IISWC, 2006 (pp. 150-159).
[19] K. K. Pusukuri and A. Negi, “Applying machine
learning techniques to improve GNU/Linux process
scheduling”, in Proceedings of IEEE Tencon Conference,
Australia, Dec., 2005 (pp. 393-398).
[20] K. K. Pusukuri, A. Negi, “Characterizing process
execution behavior using machine learning techniques” in

Proceedings of HiPC International Conference, DpROM'4
workshop, Bangalore, India, Oct., 2004.
[21] ElMoustapha O. and James W., Charles Y. and Kshitij
A. D., “On the Comparison of Regression Algorithms for
Computer Architecture Performance Analysis of Software
Applications”, in Proceedings of the First Workshop on
Statistical and Machine learning approaches applied to
ARchitectures and compilaTion (SMART'07), Ghent,
Belgium, January 27 2007.
[22] ElMoustapha O. and James W. and Charles Y., Kshitij
A. D. and Seth A., “Using Model Trees for Computer
Architecture Performance Analysis of Software
Applications”, in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems & Software,
ISPASS 2007. (pp. 116-125).
[23] ElMoustapha O.., Doshi, K.A., Yount, C., Woodlee, J.,
“Characterization of SPEC CPU2006 and SPEC OMP2001:
Regression Models and Their Transferability”,. in
Proceedings of the 2008 IEEE International Symposium on
Performance Analysis of Systems and Software. ISPASS 2008
(pp. 179-190).
[24] Ramazan B., Engin I. and Jose F. Martinez,
“Coordinated Management of Multiple Interacting Resources
in Chip Multiprocessors: A Machine Learning Approach”, in
Proceedings of the International Symposium on
Microarchitecture (MICRO), Lake Como, Italy, Nov. 2008
(pp. 318-329).
[25] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye,
Probability and statistics for engineer and scientists, 8th
Edition, Pearson Education, Delhi, 2007 (pp. 413-467).
[26] T. Mitchel, Machine Learning, McGraw Hill 1997.
[27] D. Aha, D. Kibler (1991). Instance-based learning
algorithms. Machine Learning. (pp. 6:37-66).
[28] John G. Cleary, Leonard E. Trigg: K*: An Instance-
based Learner Using an Entropic Distance Measure. In: 12th
International Conference on Machine Learning, 1995 (pp.
108-114).
[29]Alex J. Smola, Bernhard Scholkopf (1998), “A Tutorial
on Support Vector Regression”, NeuroCOLT2 Technical
Report Series - NC2-TR-1998-030.
[30] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K.
Murthy, “Improvements to SMO Algorithm for SVM
Regression”, Technical Report CD-99-16, Control Division
Dept of Mechanical and Production Engineering, National
University of Singapore.
[31] Ian H. Witten and Eibe Frank (2005) Data Mining:
Practical machine learning tools and techniques, 2nd
Edition, Morgan Kaufmann, San Francisco, 2005.
[32] S. Eranian “Perfmon2: The Hardware-based erformance
Monitoring Interface for Linux”, in Proceedings of the 2006
Linux Symposium, Vol. I (pp. 269-288).
[33] Standard performance evaluation corporation. SPEC
CPU2006. http://www.spec.org/cpu2006/.
[34] R Development Core Team.: R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. (2004)
[35] Non parametric test with small and large samples.
http://www.graphpad.com
[36] Sergey Zhuravlev, Sergey Blagodurov and . Alexandra.
Fedorova, “Addressing Shared Resource Contention in
Multicore Processors via Scheduling”, in Proceedings of the

220 Rai et al.

15th International Conference on Architectural Support for
Programming Languages and Operating Systems
ASPLOS’10, Pittsburgh, Pennsylvania, USA March 13-17,
2010 (pp. 129-142).

221Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

