International Journal of Computer Information Systems and Industrial Management Applications (1JCISIM)
ISSN: 2150-7988 Vol.2 (2010), pp.212-221
http://www.mirlabs.org/ijcism

Characterizing L2 Cache Behavior of Programs on Multi-core Processors:
Regression Models and Their Transferability

Jitendra Kumar Rai,” Atul Negi* Rajeev Wankar?* K. D. Nayak*

ANURAG? ' Department of Computer & Information Sciences”
Hyderabad, India 1 University of Hyderabad, Hyderabad, India
Jk.anur c'zg@yahoo.com‘) atulcs@uohyd.ernet.in’
anuragdir@satyam.net.in wankarcs@uohyd.ernet.in’
Abstract 1.1 Metric for characterizing L2 cache

behavior of programs

Contention for shared resources on multi-core

processors has been a performance bottleneck. A L2 cache miss rate i.e. the number of L2 cache
solution to manage contention would be to apply Misses per instruction retired, is one of the retsed
knowledge about the shared resource utilization o characterize the L2 cache behavior of a program.
behavior of programs running on multi-core The observed L2 cache miss rate of a program, vithile
processors. In our previous work we used machineshares L2 cache with another program running on a
|earning techniques to predict solo-run-L2-cache- different core, is different from its solo-run Laache
stress, which can be utilized as a metric to chekze miss rate. This is so because the observed L2 cache
such behavior of programs. miss rate results from the interactions of the each
In this study we investigate the transferability of access patterns of both the programs. The sold-2un
trained regression models that estimate solo-run L2 cache miss rate is the L2 cache miss rate obséoved
cache stress of programs running on multi-core Program when it runglonewithout sharing L2 cache
processors. Machine learning techniques were used t With another program running on other core.

generate the trained regression models. Transfétabi

of a regression model is the utility of a regressio I paired run L2 cache stress M solo run L2 cache stress
model trained on one architecture to predict théoso

run L2 cache stress on another architecture. The '
statistical methodology to assess model transféitabi 60 —
is discussed. We observed that regression models 30 7
trained on a given L2 cache architecture are 407
reasonably transferable to another L2 cache 301
architecture and vice versa. 20 7
10 -
1. Introduction 0 ' '
&é& ‘b‘b“v .erpb 4“.';\ &O
Multi-core processors generally have level-2 caches &19 ' “‘Q'Q ,\x@c’ ‘559.0 1;2?"
(L2 caches) which are shared between cores or N W L3

hardware threads [1][2][3]. Contention for share?l L
cache between programs running on multi-core
processors is one of the performance bottlenedks. T
solutions proposed by researchers to reduce the
contention for shared L2 caches on multi-core
processors [4][5][6][7][8] [9][10] need to know atio We use solo-run L2 cache stress of a program to

the L2 cache related characteristics of the program char_acterize its L2 cache behavior while running on
running on a multi-core processor multi-core processors. The solo-run L2 cache sti®s

the total number of L2 cache lines brought in doe t
miss and prefetch activities per Kilo € Onstructions

Figurel. Solo-run and paired-run L2 cache
stressfor 429.mcf on Intel Xeon X5482

Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

retired, when the program is running without shgrin
the L2 cache with programs running on other cores.
The values the solo-run as well as paired-run lchea
stress of 429.mcf (one of the SPEC cpu benchmark)
measured on our Intel quad-core Xeon X5482
processor based experimental platform (described in
section 4.1) are shown in fig. 1. The names aldwg t
horizontal axis are benchmark program names from
SPEC cpu2006, with which the 429.mcf was paired. It
can be seen that the paired run L2 cache streghdor
429.mcf differs between various runs based on co-
runner benchmark.

An operating system scheduler can use the sold-2un
cache stress of programs to intelligently schethden

to reduce the contention for shared L2 cache.

1.2 Consideration of the contention for other
shared resour ces

Apart from last level (L2) caches, there are vasiou

other resources which are shared between processes

running on a system based on multi-core procesbors.
a recent work [36] Sergey Zhuravlev et al observed
that along with contention for shared last levetheg
other factors like memory controller contention,
memory bus contention and prefetching hardware
contention also combine in complex ways to cause
degradation in performance for processes running on
multi-core processors. They performed experiments o
two socket server with two Intel X5365 “Clovertown”
qguad-core processors. On that system the two socket
shared the memory controller hub, which includes
memory controller. The four cores on each socket
shared a Front Side Bus (FSB). Each pair of conez o
single socket shared last level (L2) cache.

On this system when the two processes run on
different sockets, they contend for memory congrll

When they run on the same socket, on the cores not

sharing last level (L2) cache, they contend fornEro
Side Bus (FSB), in addition to memory controller.
When the two processes run on the same sockelieon t
cores sharing last level (L2) cache, then they exmht
for all the four resources i.e. last level (L2) loac
prefetching unit, Front Side Bus (FSB) and the
memory controller. In their work [36] Sergey
Zhuravlev et al. used solo last level cache (LLG3sm
rate as a metric to study the performance degrauati
due to contention for shared resources on mulg-cor
processor.

The metric used in our study i.e. solo-run L2 cache
stress includes the total number of L2 cache lines
brought in due to miss as well as prefetch acésitilt
represents the amount of traffic happening between
memory and last level (L2) cache of the processor.

213

Thus by definition itself our metric takes into
consideration the contention for all the four reses
i.e. last level (L2) cache, prefetching unit, Fr@&itle
Bus (FSB) and the memory controller.

We measured the solo-run last level (L2) cache miss
rate as well as solo-run last level (L2) cache raisd
prefetch rate (i.e. solo-run L2 cache stress) for
programs of SPEC cpu2006 suite on our Intel quad-
core Xeon X5482 processor based experimental
platform described in section 4.1. The values & th
same for some of the SPEC cpu2006 benchmarks are
shown in fig. 2, where names along the x-axis are
benchmark program names. The large difference
between the two indicates towards better suitghdlft
solo-run last level (L2) cache miss and prefetde ra
(i.e. solo-run L2 cache stress) as a metric toysthd
shared resource contention on multi-core procesasrs
it represents the total traffic happening betwesst |
level (L2) cache and memory.

W L2 MISS + PREFETCH PK1 B 12 MISS PKI
L |

40 -

—

O,

$

9
W
e&%

»

Figure2. L2 Miss+Prefetch and L2 Miss per Kilo
Instructionsretired on Intel Xeon X5482

1.3 Regression models and their transferability

In our previous work [11] we observed that the
regression models generated by training machine
learning algorithms can be used to predict sofok®
cache stress of programs running on multi-core
processors. Transferability of a regression model
means how useful is a regression model (which is
trained on one scenario e.g. architecture) to ptede
dependent variable i.e. solo-run L2 cache stress on
another scenario (e.g. architecture). A regressiodel
trained on architecture A is considered transferdol
architecture B if it can be used to accurately jutettie
solo-run L2 cache stress on architecture B.

214 Rai et al.

We plan to use machine learning to train the a 3-tier web service in terms of functional
regression model offline and later on use the modelcharacteristics of the application. Kumar and N&8i
online to predict solo-run L2 cache stress of rogni [20] used machine learning to characterize the
programs, to assist intelligent scheduling decision workload and improve scheduling in Linux operating
multi-core processors. Transferability of regressio system. In their work various attributes from ELF
model is an important property for utilization dfet executables and the previous execution historyhef t
model across various scenarios. It amortizes tluetef ~ processes were used to characterize the workload. |
involved in training. Here scenario includes [21] machine learning algorithms were used to study
interactions between architecture and applicaticth w the performance in terms of Instructions Per Cycle

reference to L2 cache. (IPC) using the event data collected from hardware
performance counters. In [22] model trees have been
1.4 Organization of the paper used in performance evaluation and in [23] the

transferability of regression models is discussed t

In this study we investigate the transferability of predict the performance across various work-loads i
trained regression models for predicting the sal-r term of their IPC. T Ramazan B. et al. [24] prombse
L2 cache stress. Run time data collected from hardw implementation of artificial neural networks based
performance counters of Intel quad core Xeon X5482 framework in hardware to coordinate the management
and Intel dual core Core2 6300 processors weretosed of — multiple interacting resources in chip
train the regression models. We used statistical multiprocessors.
methods to assess the transferability of generated The objective of our work differs from the previous
regression model across quad core Xeon X5482 andwork. We are characterizing the L2 cache behavior o
dual core Core2 6300 processors. programs on multi-core processors. The knowledge

Rest of the paper is organized as follows. Secion about the process characteristics in this resgecatso
gives brief account of related work. In section 8 w be used for mitigating the contention for otherrsia
give brief overview of the machine learning algomiis resources on multi-core processors based systemes. T
used. Section 4 gives brief of the experimentaliset focus of the present study is to investigate the
and data collection process used to train the nsotlel transferability of trained regression models todre
section 5 the statistical methodology adopted for shared L2 cache related behavior of programs across
assessing the transferability is described alonth wi two multi-core processors having different L2 cache
results. Finally in section 6 we conclude. organization.

2. Related work 3. Machinelearning algorithms used

There are mainly two kinds of approaches to Different machine learning algorithms correspond
manage the contention for shared L2 caches on-multi to different concept description spaces searchel wi
core and multi-threaded processors: hardware basedlifferent biases. Some problems are served well by
approach and software based approach. different description languages and biases, wthiliers

The software based approach involve scheduling byare not served well or even served badly. Thisilenta
operating systems [9][10] which is based on aiadyt the study of various machine learning algorithms
models for cache behavior of running programs.tMos belonging to different families to check their eécy
of the hardware based approaches [4] [5] [6] []] [8 to solve a given problem across various scenaBibs [
rely on additional hardware support and analytical The machine learning algorithms used in the study a
modeling to perform cache partitioning. Analytical Linear Regression (LR), Artificial Neural Networks
cache models based on stack simulation [15] and(ANN), Model Trees (M5’), K-nearest neighbors
probability [16] have been developed for chip classifier (IBK), KStar (K*) and Support Vector
multiprocessor systems. David Tam et al. [17] used Machines (SVM).
memory access trace of running programs for getting Linear regression [31] performs least-squares tinea
L2 cache miss rate curves, which can be used forregression.
partitioning the cache. They used a Performance Artificial neural networks [26] are based on the
Monitoring Unit (PMU) feature called continuous @at mechanism of co-operative processing of information
address sampling, available on IBM POWERS5 as done by neurons in the brain. In a multilayerake
processor only. network, there is an input layer, an output layed a

Neural networks have been used [18] by Richard M. number of hidden layers. Each layer has a number of
et al. for workload characterization. They chardzesl neurons (nodes) organized in it. The input lay&esa

Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability 215

the information to be processed as input. The first operating system kernel on both platforms was Linux
hidden layer takes the results from input layerstas 2.6.28. For collecting data from the hardware
inputs and forwards its results as inputs to thet ne performance counters [1] of both processors, wel use
layer. The output layer takes the results of th&t la perfmon [32] interface.
hidden layer as inputs and produces the prediction
result. In this study back-propagation was usetlatio 4.2. L2 Cache Organization on Xeon X5482
feed-forward multilayer neural network. and Core2 6300

K-nearest neighbors classifier (IBK) and KStar (K*)

[26][27][28] are lazy or instance-based learning |t js necessary to note the difference between the

algorithms. In this case a new regression equason two processors with respect to their L2 cache
fitted each time, when the model needs to predich0 organization to have a view of differences in the

new instance (i.e. a new query point). scenarios.

Model trees are a kind of regression tree [14]. We
chose M5’ algorithm [12], which is an improved
version of original M5 algorithm invented by Quinla
[13]. Model trees recursively partition the inpytase
until the linear models at the leaf nodes can enpitee
remaining variability in those partitions.

Support Vector Machines (SVM) [29] tries to find
instances that are at the boundary of the cla3$ese
instances are called support vectors. Then it rgéee
functions that discriminate those vectors as widsly L2 cache (12 ME
possible. For training the support vector machiae,
generalization of Sequential Minimal Optimization
algorithm (SMO) by Shevade et al. [30] is used. L2 cache (12 ME

In this study we used weka-3.6.1 machine learning
workbench [31]. We used default settings of most of
the parameters to the above-mentioned machine
learning algorithms in weka-3.6.1 except few change
described above.

4. Experimental setup

This section gives brief of the experimental setup
and the methodology used to collect data to trhen t
machine learning algorithms. The methodology used i
similar to our pervious work [11].

The data were collected from hardware performance
counters in two phase i.e. solo-run experiment and
paired-run experiment. Hardware performance Core0 Corel
counters are special purpose registers provided on
modern processors for measuring various performance
events such as number of instructions retired, dche
misses etc.

Figure3. L2 cache sharing on Intel Xeon X5482

4.1. Platforms

L2 cache (4 MB)

We performed experiments on two platforms. The firs
platform is a dual-socket DELL Precision T7400
workstation with two Intel quad-core Xeon X5482 Figure4. L2 cachesharing on Intel Core2 6300
processors (3.2 GHz) and 32 GB of memory. The other

platform is a single socket DELL Precision 390 On both quad-core Xeon X5482 and dual-core
workstation with one Intel dual-core Core2 6300 Core2 6300 processor there is separate level-1 (L1)
processor (1.86 GHz) and 2 GB of memory. The instruction and data cache, each of size 32KB pee.c

216 Rai et d.

Both of the processors have unified level-2 (L2ZQhea 4.6, Attributesand classvariables

shared between two cores. The sharing of L2 caches

between cores of Xeon X5482 and Core2 6300 The events collected from hardware performance
processors are shown in fig. 3 and fig. 4 respeltiv counters are:

Table 1 shows the L2 cache related data [1] foh bot

the processors.. There is difference in the Lzheac INSTRUCTIONS RETIRED

organization of the two processors in terms of each |AST LEVEL CACHE_REFERENCES

size and ways of associativity. L2_LINES_IN__SELF__ANY
Table 1. L2 cacherelated data of Xeon X5482 and Out of afore mentioned events the second event
Core2 6300 LAST_LEVEL _CACHE_REFERENCES measures
the number of references to L2 cache. While event
No of Size (MB) L2_LINES_IN__SELF__ANY measures the total
cores shared Ways of number of L2 cache lines brought in as a result of
Processor . o . . .
sharing L2 | between | associativity encountering L2 cache misses as well as prefetching
cache two cores activities.
Xeon X5482 2 12 24
Core2 6300 2 4 8 If two programs pl and p2 are running on twreso

of Xeon X5482, and sharing the L2 cache. The

attributes and class variables are generated lmwivig
4.3. Workload manner:

We used benchmarks from SPEC cpu2006 suiteThe first attribute (p1_L2_REF_PKI) is L2 cache
[33]. The benchmarks suit consists of 12 integer references per kilo instructions retired
programs and 17 floating point programs. We used
reference inputs. With reference inputs the total p1 L2 REF PKI=
workload consists of 35 integer programs and 20 (p1_LAST_LEVEL CACHE_REFERENCES*1000)/
floating point programs i.e. total 55 programs. pl INSTRUCTIONS_ RETIRED

4.4. Solo-run-experiment The second attribute (p1_L2_IN_PKI) is L2 cache
lines brought in (due to miss and prefetch) peo kil
We ran each program from SPEC cpu2006 suite oninstructions retired. It is indicative of the stgsut by
a core and disallowed scheduling programs on othera program on L2 cache.
core sharing L2 cache with the previous core. Tassc
variable solo-run L2 cache stress was calculatesh fr pl L2 IN_PKI =

hardware performance counter data collected for (p1_L2_LINES_IN__SELF__ANY*1000)/
complete run of each program. pl_INSTRUCTIONS_RETIRED
4.5, Paired-run-experiment Thethird attribute (p1_L2_IN_PK_REF) is L2 cache

lines brought in (due to miss and prefetch) pev ki?

The programs from SPEC cpu2006 benchmark suitecache lines referenced. It gives an indication ef r
were run on the cores sharing L2 cache and thereferencing characteristic of the program. Lowdusga
hardware performance counter data for each programof this attribute indicate higher tendency of the
were collected. Each of these programs takes differ ~program to re-reference the previously referenced L
amount of time for completion. Hence we allowed one cache lines.
of the co-scheduled programs to run till completion
The other program was run in an infinite loop to pl_L2_IN_PK_REF =
execute it again as it finished and was stoppey asl (p1_L2_LINES_IN__SELF__ANY*1000)/
the first program finished. The attributes were p1_LAST_LEVEL_CACHE_REFERENCES
generated from data collected from this phase.

With 55 programs, we have 55x55 (i.e. 3025) pairs Thefourth attribute (p1_L2_FO) is the fractional L2
of programs to run on the system. Completion of one cache occupancy of a program. It gives a ruff estim
run of 55 pairs takes about 7-10 hours on Xeondase of fraction of space occupied by a program in L2
and 10-15 hours on Core2 processor based platform. cache, while sharing it with other program.

Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability

pl_L2_FO=
pl_L2_LINES_IN__SELF__ANY/
(pl_L2_LINES_IN__SELF__ ANY+
p2_ L2 LINES_IN__SELF__ANY)

The class variable to be predicted is “solo-run L2
cache stress”. It is similar as second attribute Li2
cache lines brought in (due to miss and prefeten) p
kilo instructions retired, but for solo-run of tlsame
program pl. We represent it by s1 L2 IN_PKI (here
sl denotes solo-run of first program pl out of pdi
and p2).

5. Transferability of trained regression
models

The transferability of regression models is assksse
across processors i.e. regression models trained us
data from Intel Xeon X5482 were used to make
predictions on Intel Core2 6300 and vice versa.

Please note that each data i.e. an instance refeas
benchmark paired with a unique benchmark form
55x55 pairs. We used statistical tests and predficti
accuracy metrics to assess the transferabilityaified
regression models. Statistical tests try to make
inference on population from a given sample, while
prediction accuracy metrics are confined to sample
only. Here population refers to the data generated
from interactions of all real world applications thvi
architecture. While data collected for the painsrfed

by SPEC cpu 2006 are 55X55 (i.e. 3025), represents
sample from population of the real world data set.
These methods are discussed in next subsections.

5.1. Statistical tests

We followed the statistical methods [25] [34] to
compare two alternatives for assessing the
transferability of trained regression models. These
methods fall in two categories parametric and non-
parametric. Parametric methods include t-test, eher
the data are assumed to be normally distributed. If
there is any reason to doubt the assumption of
normality of data, then we can use a distributime f
test i.e. Wilcoxon test, which falls under non-
parametric methods. We used R [34] for performing
statistical computations.

The significance testing is done using p-values,
where p-values less than the threshold (0.05) @tdic
towards rejection of null hypothesis [25] [35].

First we test about the normality of the data (i.e.
class variable) and then test about the difference

between predicted and actual values of the class

variable.

217

Testing for Normality of data:

The class variable solo-run L2 cache stress was
collected for all 55 benchmarks in solo-run expertn
We test the normality of class variable by three
methods: quantile-quantile (Q-Q) plot, Kolmogorov-
Smirnov test and Shapiro-Wilk test [34]. The Q4Qtp

is shown in fig. 5, where the sampled data is shas/n
circles against theoretical quantiles (i.e from makr
distribution) shown as straight line.

If the sampled data comes from normal distribution
then it should follow the theoretical quantiles on
qguantile-quantile (Q-Q) plot. The calculated p-wsu
from tests for normality are shown below:

1.050e-13
1.542e-09

Kolmogorov-Smirnov test:
Shapiro-Wilk test

The p-values are much below threshold (0.05). The Q
Q plot (i.e. points shown as circles v/s straighe)

also indicates towards rejection of the null hyesik

(i.e. the data follows normal distribution). Henee
observe that there is doubt to assume that the data
come from normal distribution.

The number of pairs of benchmarks i.e. instances of
data used in study is 418. The 418 instances tetlec
from XeonX5482 and Core2 6300 are used to generate
regression models for XeonX5482 and Coere®630

o]

20 30

Sample Quantiles

10

Theoretical Quantiles
Figure5. Q-Q plot for classvariable
respectively. The trained model for XeonX5482 was

used to predict solo-run L2 cache stress for C68£0D
and vice versa. To assess transferability we pertoe

218

statistical tests to check the difference betwegtnah
values and the predicted values.

Rai et al.

The results of p-values for t-test as well as Witoo
test are shown in Table-2 against the machine ilegrn
algorithm and processor used for training and rigsti

Testing for difference between actual and predicted For most of the cases p-values for both testsdatgr

values:

than threshold (0.05), indicating the acceptancehef
null hypothesis, which says there is not significan

We have two samples to compare against each othedifference between actual and predicted valuedasic
for presence of any significant difference between variable solo-run L2 cache stress. There are fesgsa
them. First sample consists of predicted and therot where one of the test gives p-values lower than
sample consists of actual values of solo-run Lzheac threshold, we plan to investigate it in our futwerk.
stress on a given processor. The parametric method
test) assumes the data to have normal distribution. 5.2. Prediction accuracy metrics
Table 2. p-valuesfor t-test and Wilcoxon test acr oss
XeonX5482 and Core2 6300

The prediction accuracy of the trained models can b
expressed in terms of the prediction metrics [ty
below. Herep; and g refer to predicted and actual

. values of i instance andN is total number of
Trained Tested value p-value inst

Algorithm | using data| using data| P for for Instances.

used from from t-test Wilco-

processor| processor xon test Correlation Coefficient (C)It measures the extent of
relationship between predictegy)(and actual &)
LR Xeon Core2 0.7646| 0.1947 values. Its value ranges from -1 to 1, where 1
corresponds to ideal case.
LR Core2 Xeon 0.7893 0.3319
Table 3. Prediction accuracy metrics of different

ANN Xeon Core2 0.541| 0.0001p algorithms acr oss XeonX5482 and Core2 6300

ANN Core2 Xeon 0.9977 0.393§

M5’ Xeon Core2 | 0.7022| 0.9486 Algori | Trained | Tested

using data| using data|
M5’ Core2 Xeon 0.8162 0.8084 azrend from from c MAE | RMSE
processor| processor

IBK Xeon Core2 0.4535 0.9554

K* Xeon Core2 0.03878 0.2089§ LR Core2 Xeon 0.9922 0.7285 1.1699

K* Core2 Xeon 0.7028 0.0143 ANN Xeon Core2 0.971§ 1.803p 3.7943

SVM Xeon Core2 0.6147 0.09743 ANN Core2 Xeon 0.9844 0.86083 1.6337

SVM Core2 Xeon 0.928 0.5135 M5’ Xeon Core2 0.9766 1.3619 3.4289

. . . M5’ Core2 Xeon 0.9844 0.8603 1.6337
The number of instances 418 is quite large, whereby|
the parametric method (t-test) becomes robust énoug| IBK Xeon Core2 0.9247 2.586p 5.7782
to be used for non-normal data [35]. Hence to &sses
. . g

the transferability we use both parametric methted (IBK Core2 Xeon 09489 16731 50431
test) as well as non-parametric method (Wilcoxa)te K* Xeon Core2 0.8754 2.4519 7.3883
The acceptance of null hypothesis indicates the]
absence of significant difference between the ptedi K* Core2 Xeon | 0.9524 1.0878 2.7824
a_nd actual val_ues. In other words we can say tatt | qym Xeon Core2 0.9938 10508 1.6873
given regression model used to predict solo-run L2
cache stress is transferable across the two pmsess | SVM Core2 Xeon 0.9930 0.6135 1.1400

viz. one on which it was trained and the other drctv
it was used to make predictions.

It is given by:

Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability 219

6. Conclusions and futurework

C=—_— ,where
SpSa In this study we assessed the transferability of
trained regression model across two multi-core
ZN (_ _)(a —5) processors viz. Intel quad-core Xeon X5482 andl Inte
g = Lz P~ PA& dual-core Core2 6300. It was observed that at 0.05
PA N -1 ! level of significance, most of the regression medel

under study are transferable across the L2 cache
v architecture of these two processors. The predictio
p — p) accuracy metrics indicate that most of the trained

S = regression models are transferable across the two
N-1 processors used in the study.
The model transferability is an important property
z’\i (ai _5)2 for the trained regression models for _predictin(pa;o
S, =/ run L2 cache stress of programs running on mukicor
N-1 processors. A transferable regression model cam lat
be used on various multi-core processors to preiaect
P and & are mean of predicted and actual values. solo-run L2 cache stress of running programs. The

predicted solo-run L2 cache stress of a program

Mean Absolute Error (MAE)For calculating this, the ~ Provides information about the L2 cache related
absolute value of error between predicted and hctuabehavior of that program on given multi-core

values is used. In ideal case it should have Oevatus ~ Processor. One of the potential uses of the prediict
calculated as shown below: solo-run L2 cache stress is to help in intelligent

scheduling of programs on multi-core processors.
Implementing the intelligent scheduler is part ofr o

MAE = Z,N:1| Pi — a'i| future work.
N

7. References

Root Mean Squared Error (RMSH}: is measured in

the same unit as that of the measured quantitytiffer . :
case solo-run L2 cache stress). Its value ranges @& Manuals. http.//www.|nteI_.com/proqucts/proc_essonluais.
o S . . [2] 1 Poonacha Kongetira, Kathirgamar Aingaran, kun
_to mﬂmty, where 0 indicates ideal case. It iscctated Olukotun, *“Niagara, a 32-way Multithreaded Sparc
in following manner: Processor” inEEE Micro, March-April 2005 (pp. 21-29).
[3] Niagara2:A Highly Threaded Server-on-a-Chip
N 5 http://www.opensparc.net/pubs/preszo/06/04-SunaCGudf.
zi:l(pi - 31) [4] Yuejian Xie Gabriel H. Loh, “Dynamic Classifitan of
Program Memory Behaviors in CMPs”, iroceedings of
N CMP-MSI: 2nd Workshop on Chip Multiprocessor Memory
Systems and Interconnecis conjunction with the 35th
The prediction accuracy metrics for different International Symposium on Computer Architectur@QA-
algorithms used in the study across XeonX5482 and35) Beijing, China, June 22nd, 2008. - o
Core2 6300 processors are shown in Table 3. Thel5] D Chandra, F. Guo, S. Kim, and Y. Solihin, é8licting
prediction accuracy metrics shown indicate thattmos Inter-Thread = Cache Contention on a Multi-Processor
of the trained regression models perform reasonanyArCh'teCFure’ In P.roceedmgs of the 12th Internaponal
. . . Symposium on High Performance Computer Architecture
well across two different architectures, where e HPCA 2005 (pp. 340-351)
used for training and other is used for testinge Th 6] N. Rafiqué, W, T.' Lim, and M. Thottethodi,
instance based classifiers IBK and K* seem to be on«architectural Support for Operating System-driv@MP
lower side with respect to performance accuracy Cache Management”, inProceedings of the 15th
metrics. In their case a new regression equation isinternational Conference on Parallel Architecturemnd
fitted each time, for making prediction on a new Compilation TechniquesSeattle, Washington, Sept. 2006

instance. This may be attributed to lower perforcean (PP 2-12).)
metrics across different architectures. [7] G. E. Suh, S Devadas, and L. Rudolph, "A Newnhey

Monitoring Scheme for Memory-Aware Scheduling and
Partitioning”, in Proceedings of the 8th International

[1] Intel® 64 and IA-32 Architectures Software Déyger's

RMSE=

220

Symposium on High Performance Computer Architecture
HPCA 2002 (pp. 117-128).

[8] Lisa R., Steven K., Ravishankar |. and Srihhfi,
“Communist, Utilitarian, and Capitalist Cache P& on
CMPs: Caches as a Shared ResourceProteedings of the
15th International Conference on Parallel Architeets and
Compilation TechniquesSeattle, Washington, Sept. 2006
(pp- 13-22).

[9] A. Fedorova, M. Seltzer and M. D. Smith, “Impiog
Performance Isolation on Chip Multiprocessors via a
Operating System Scheduler”, ifProceedings of the
Sixteenth International Conference on Parallel Arettures
and Compilation Technique8rasov, Romania, Sept. 2007
(pp. 25-38).

[10] A. Fedorova, M. Seltzer, C. Small and D. Nussi,
“Performance Of Multithreaded Chip Multiprocess@sd
Implications For Operating System Design”,Rnoceedings
of USENIX 2005 Annual Technical Conferengeaheim,
CA, April 2005 (pp. 395-398).

[11] Jitendra Kumar Rai, Atul Negi, Rajeev WankKtD.
Nayak: “On Prediction Accuracy of Machine Learning
Algorithms for Characterizing Shared L2 Cache Bébragf
Programs on Multicore Processors”, Pmoceedings of The
2009 IEEE International Conference on Computational
Intelligence, Communication Systems and Networks
(CICSYyN2009)July 23-25 2009, Indore, India (pp. 213-219).
[12] Y. Wang and |. Witten, “Inducing model treeer f
continuous classes”, ifProceedings of the 9th European
Conf. on Machine Learnindgoster Papers, 1997.

[13] R. Quinlan, “Learning with continuous classesfi
Proceedings of the 5th Australian Joint Confererme
Artificial Intelligence (AI'92) 1992.

[14] L. Breiman, J. Friedman, R. Olshen, and C.n8fo
Classification and Regression Trees Wadsworth
International Group, 1984.

[15] Xudong S., Feiqui S., Jih-kwon P., Ye Xia adden
Yang, “CMP Cache Performance Projection: Accessibil
vs. Capacity”, inProceedings of dasCMP2005)06.

[16] Pavlos P., Georgios K., Hakan Z., Stefanosaid Erik
Hagersten,“Modeling Cache Sharing on Chip Multigssor
Architectures”, in Proceedings of IEEE International
Symposium on Workload Characterization (11ISWep06
(pp. 160-171).

[17] D. K. Tam, R. Azimi, L. B. Soares and M. Stumm
“RapidMRC: Approximating L2 Miss Rate Curves on
Commodity Systems for Online Optimizations”, in
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating SystemsWashington, DC, USA. March, 2009
(121-132).

[18] Richard M. Y., Han L., Kingsum C. and Hsienii$.

L., “Constructing a Non-Linear Model with Neural M@rks

for Workload Characterization”, inProceedings of the
1ISWC 2006 (pp. 150-159).

[19] K. K. Pusukuri and A. Negi, “Applying machine
learning techniques to improve GNU/Linux process
scheduling”, inProceedings of IEEE Tencon Conference
Australig Dec., 2005 (pp. 393-398).

[20] K. K. Pusukuri, A. Negi, “Characterizing prase
execution behavior using machine learning techrgtjue

Rai et al.

Proceedings oHiPC International Conference, DpROM'4
workshopBangalore, IndiaOct., 2004.

[21] EIMoustapha O. and James W., Charles Y. anlitiks
A. D., “On the Comparison of Regression Algorithifos
Computer Architecture Performance Analysis of Safev
Applications”, in Proceedings of the First Workshop on
Statistical and Machine learning approaches applitd
ARchitectures and compilaTion (SMART,07}Ghent,
Belgium, January 27 2007.

[22] EIMoustapha O. and James W. and Charles Yhjtiks
A. D. and Seth A., “Using Model Trees for Computer
Architecture Performance Analysis of Software
Applications”, in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems &&eft
ISPASS 20Q7pp. 116-125).

[23] EIMoustapha O.., Doshi, K.A., Yount, C., Woed| J.,
“Characterization of SPEC CPU2006 and SPEC OMP2001:
Regression Models and Their Transferability”,. in
Proceedings of th@008 IEEE International Symposium on
Performance Analysis of Systems and Software. ISPAE3
(pp. 179-190).

[24] Ramazan B., Engin I. and Jose F. Martinez,
“Coordinated Management of Multiple Interacting Baexes

in Chip Multiprocessors: A Machine Learning Apprbgdn
Proceedings of the International Symposium on
Microarchitecture (MICRQO) Lake Como, Italy, Nov. 2008
(pp. 318-329).

[25] R. E. Walpole, R. H. Myers, S. L. Myers and Xe,
Probability and statistics for engineer and scietgi 8"
Edition, Pearson Education, Delhi, 2007 (pp. 413)46

[26] T. Mitchel, Machine LearningMcGraw Hill 1997.

[27] D. Aha, D. Kibler (1991). Instance-based leagn
algorithms. Machine Learning. (pp. 6:37-66).

[28] John G. Cleary, Leonard E. Trigg: K*: An Instz-
based Learner Using an Entropic Distance Measuarelath
International Conference on Machine Learning, 199p.
108-114).

[29]Alex J. Smola, Bernhard Scholkopf (1998), “Atdual

on Support Vector Regression”, NeuroCOLT2 Technica
Report Series - NC2-TR-1998-030.

[30] S.K. Shevade, S.S. Keerthi, C. Bhattachary¢&.K.
Murthy, “Improvements to SMO Algorithm for SVM
Regression”, Technical Report CD-99-16, Controlifion
Dept of Mechanical and Production Engineering, ol
University of Singapore.

[31] lan H. Witten and Eibe Frank (200Bata Mining:
Practical machine learning tools and technigue2nd
Edition, Morgan Kaufmann, San Francisco, 2005.

[32] S. Eranian “Perfmon2: The Hardware-based eréorce
Monitoring Interface for Linux”, inProceedings of the 2006
Linux SymposiunVol. | (pp. 269-288).

[33] Standard performance evaluation corporatioRES
CPU2006. http://www.spec.org/cpu2006/.

[34] R Development Core Team.: R: A language and
environment for statistical computing. R Foundatifor
Statistical Computing, Vienna, Austria. (2004)

[35] Non parametric test with small and large samspl
http://www.graphpad.com

[36] Sergey Zhuravlev, Sergey Blagodurov and . Afedra.
Fedorova, “Addressing Shared Resource Contention in
Multicore Processors via Scheduling”, fmoceedings of the

Characterizing L2 Cache Behavior of Programs on Multi-core Processors: Regression Models and Their Transferability 221

15th International Conference on Architectural Sogpfor
Programming Languages and Operating Systems
ASPLOS'10,Pittsburgh, Pennsylvania, USA March 13-17,
2010 (pp. 129-142).

