
 
Abstract 

 
Contention for shared resources on multi-core 
processors has been a performance bottleneck. A 
solution to manage contention would be to apply 
knowledge about the shared resource utilization 
behavior of programs running on multi-core 
processors. In our previous work we used machine 
learning techniques to predict solo-run-L2-cache-
stress, which can be utilized as a metric to characterize 
such behavior of programs.  
In this study we investigate the transferability of 
trained regression models that estimate solo-run L2 
cache stress of programs running on multi-core 
processors. Machine learning techniques were used to 
generate the trained regression models. Transferability 
of a regression model is the utility of a regression 
model trained on one architecture to predict the solo-
run L2 cache stress on another architecture. The 
statistical methodology to assess model transferability 
is discussed. We observed that regression models 
trained on a given L2 cache architecture are 
reasonably transferable to another L2 cache 
architecture and vice versa. 
 
1. Introduction 
 

Multi-core processors generally have level-2 caches 
(L2 caches) which are shared between cores or 
hardware threads [1][2][3]. Contention for shared L2 
cache between programs running on multi-core 
processors is one of the performance bottlenecks. The 
solutions proposed by researchers to reduce the 
contention for shared L2 caches on multi-core 
processors [4][5][6][7][8] [9][10] need to know about 
the L2 cache related characteristics of the programs 
running on a multi-core processor. 
 

1.1 Metric for characterizing L2 cache 
behavior of programs  
 

L2 cache miss rate i.e. the number of L2 cache 
misses per instruction retired, is one of the metric used 
to characterize the L2 cache behavior of a program. 
The observed L2 cache miss rate of a program, while it 
shares L2 cache with another program running on a 
different core, is different from its solo-run L2 cache 
miss rate. This is so because the observed L2 cache 
miss rate results from the interactions of the cache 
access patterns of both the programs. The solo-run L2 
cache miss rate is the L2 cache miss rate observed for a 
program when it runs alone without sharing L2 cache 
with another program running on other core.  

 

 
 

Figure1.  Solo-run and paired-run L2 cache 
stress for 429.mcf on Intel Xeon X5482 

 
We use solo-run L2 cache stress of a program to 

characterize its L2 cache behavior while running on 
multi-core processors.  The solo-run L2 cache stress is 
the total number of L2 cache lines brought in due to 
miss and prefetch activities per Kilo (103) instructions 
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retired, when the program is running without sharing 
the L2 cache with programs running on other cores. 
The values the solo-run as well as paired-run L2 cache 
stress of 429.mcf (one of the SPEC cpu benchmark) 
measured on our Intel quad-core Xeon X5482 
processor based experimental platform (described in 
section 4.1) are shown in fig. 1. The names along the 
horizontal axis are benchmark program names from 
SPEC cpu2006, with which the 429.mcf was paired. It 
can be seen that the paired run L2 cache stress for the 
429.mcf differs between various runs based on co-
runner benchmark. 
An operating system scheduler can use the solo-run L2 
cache stress of programs to intelligently schedule them 
to reduce the contention for shared L2 cache.  
 
1.2 Consideration of the contention for other 
shared resources 
 

Apart from last level (L2) caches, there are various 
other resources which are shared between processes 
running on a system based on multi-core processors. In 
a recent work [36] Sergey Zhuravlev et al observed 
that along with contention for shared last level cache, 
other factors like memory controller contention, 
memory bus contention and prefetching hardware 
contention also combine in complex ways to cause 
degradation in performance for processes running on 
multi-core processors. They performed experiments on 
two socket server with two Intel X5365 “Clovertown” 
quad-core processors. On that system the two sockets 
shared the memory controller hub, which includes 
memory controller. The four cores on each socket 
shared a Front Side Bus (FSB). Each pair of cores on a 
single socket shared last level (L2) cache. 

On this system when the two processes run on 
different sockets, they contend for memory controller. 
When they run on the same socket, on the cores not 
sharing last level (L2) cache, they contend for Front 
Side Bus (FSB), in addition to memory controller. 
When the two processes run on the same socket, on the 
cores sharing last level (L2) cache, then they contend 
for all the four resources i.e. last level (L2) cache, 
prefetching unit, Front Side Bus (FSB) and the 
memory controller. In their work [36] Sergey 
Zhuravlev et al. used solo last level cache (LLC) miss 
rate as a metric to study the performance degradation 
due to contention for shared resources on multi-core 
processor. 

The metric used in our study i.e. solo-run L2 cache 
stress includes the total number of L2 cache lines 
brought in due to miss as well as prefetch activities. It 
represents the amount of traffic happening between 
memory and last level (L2) cache of the processor. 

Thus by definition itself our metric takes into 
consideration the contention for all the four resources 
i.e. last level (L2) cache, prefetching unit, Front Side 
Bus (FSB) and the memory controller.  

We measured the solo-run last level (L2) cache miss 
rate as well as solo-run last level (L2) cache miss and 
prefetch rate (i.e. solo-run L2 cache stress) for 
programs of SPEC cpu2006 suite  on our Intel quad-
core Xeon X5482 processor based experimental 
platform described in section 4.1. The values of the 
same for some of the SPEC cpu2006 benchmarks are 
shown in fig. 2, where names along the x-axis are 
benchmark program names. The large difference 
between the two indicates towards better suitability of 
solo-run last level (L2) cache miss and prefetch rate 
(i.e. solo-run L2 cache stress) as a metric to study the 
shared resource contention on multi-core processors, as 
it represents the total traffic happening between last 
level (L2) cache and memory. 

 

 
 

Figure2.  L2 Miss+Prefetch and L2 Miss per Kilo 
Instructions retired on Intel Xeon X5482 

 
1.3 Regression models and their transferability    
 

In our previous work [11] we observed that the 
regression models generated by training machine 
learning algorithms can be used to predict  solo-run L2 
cache stress of  programs running on multi-core 
processors. Transferability of a regression model 
means how useful is a regression model (which is 
trained on one scenario e.g. architecture) to predict the 
dependent variable i.e. solo-run L2 cache stress on 
another scenario (e.g. architecture). A regression model 
trained on architecture A is considered transferable to 
architecture B if it can be used to accurately predict the 
solo-run L2 cache stress on architecture B. 
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We plan to use machine learning to train the 
regression model offline and later on use the model 
online to predict solo-run L2 cache stress of running 
programs, to assist intelligent scheduling decisions on 
multi-core processors. Transferability of regression 
model is an important property for utilization of the 
model across various scenarios. It amortizes the efforts 
involved in training. Here scenario includes 
interactions between architecture and application with 
reference to L2 cache. 

 
1.4   Organization of the paper    
 

In this study we investigate the transferability of 
trained regression models for predicting the solo-run 
L2 cache stress. Run time data collected from hardware 
performance counters of Intel quad core Xeon X5482 
and Intel dual core Core2 6300 processors were used to 
train the regression models. We used statistical 
methods to assess the transferability of generated 
regression model across quad core Xeon X5482 and 
dual core Core2 6300 processors. 

Rest of the paper is organized as follows. Section 2 
gives brief account of related work. In section 3 we 
give brief overview of the machine learning algorithms 
used. Section 4 gives brief of the experimental setup 
and data collection process used to train the models. In 
section 5 the statistical methodology adopted for 
assessing the transferability is described along with 
results. Finally in section 6 we conclude. 

 
2. Related work 
 

There are mainly two kinds of approaches to 
manage the contention for shared L2 caches on multi-
core and multi-threaded processors: hardware based 
approach and software based approach.  

The software based approach involve scheduling by 
operating systems [9][10] which is based on  analytical 
models for cache behavior of  running programs. Most 
of the hardware based approaches [4] [5] [6] [7] [8] 
rely on additional hardware support and analytical 
modeling to perform cache partitioning. Analytical 
cache models based on stack simulation [15] and 
probability [16] have been developed for chip 
multiprocessor systems. David Tam et al. [17] used 
memory access trace of running programs for getting 
L2 cache miss rate curves, which can be used for 
partitioning the cache. They used a Performance 
Monitoring Unit (PMU) feature called continuous data 
address sampling, available on IBM POWER5 
processor only.  

Neural networks have been used [18] by Richard M. 
et al. for workload characterization. They characterized 

a 3-tier web service in terms of functional 
characteristics of the application. Kumar and Negi [19] 
[20] used machine learning to characterize the 
workload and improve scheduling in Linux operating 
system. In their work various attributes from ELF 
executables and the previous execution history of the 
processes were used to characterize the workload. In 
[21] machine learning algorithms were used to study 
the performance in terms of Instructions Per Cycle 
(IPC) using the event data collected from hardware 
performance counters. In [22] model trees have been 
used in performance evaluation and in [23] the 
transferability of regression models is discussed to 
predict the performance across various work-loads in 
term of their IPC. T Ramazan B. et al. [24] proposed 
implementation of artificial neural networks based 
framework in hardware to coordinate the management 
of multiple interacting resources in chip 
multiprocessors. 

The objective of our work differs from the previous 
work. We are characterizing the L2 cache behavior of 
programs on multi-core processors. The knowledge 
about the process characteristics in this respect can also 
be used for mitigating the contention for other shared 
resources on multi-core processors based systems. The 
focus of the present study is to investigate the 
transferability of trained regression models to predict 
shared L2 cache related behavior of programs across 
two multi-core processors having different L2 cache 
organization.  
 
3. Machine learning algorithms used 

 
Different machine learning algorithms correspond 

to different concept description spaces searched with 
different biases. Some problems are served well by 
different description languages and biases, while others 
are not served well or even served badly. This entails 
the study of various machine learning algorithms 
belonging to different families to check their efficacy 
to solve a given problem across various scenarios [31]. 
The machine learning algorithms used in the study are: 
Linear Regression (LR), Artificial Neural Networks 
(ANN), Model Trees (M5’), K-nearest neighbors 
classifier (IBK),  KStar (K*) and Support Vector 
Machines (SVM). 

Linear regression [31] performs least-squares linear 
regression. 

Artificial neural networks [26] are based on the 
mechanism of co-operative processing of information, 
as done by neurons in the brain. In a multilayer neural 
network, there is an input layer, an output layer and a 
number of hidden layers. Each layer has a number of 
neurons (nodes) organized in it. The input layer takes 
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the information to be processed as input. The first 
hidden layer takes the results from input layers as its 
inputs and forwards its results as inputs to the next 
layer. The output layer takes the results of the last 
hidden layer as inputs and produces the prediction 
result. In this study back-propagation was used to train 
feed-forward multilayer neural network.   

K-nearest neighbors classifier (IBK) and KStar (K*) 
[26][27][28] are lazy or instance-based learning 
algorithms. In this case a new regression equation is 
fitted each time, when the model needs to predict on a 
new instance (i.e. a new query point).  

Model trees are a kind of regression tree [14]. We 
chose M5’ algorithm [12], which is an improved 
version of original M5 algorithm invented by Quinlan 
[13]. Model trees recursively partition the input space 
until the linear models at the leaf nodes can explain the 
remaining variability in those partitions. 

Support Vector Machines (SVM) [29] tries to find 
instances that are at the boundary of the classes. These 
instances are called support vectors.  Then it generates   
functions that discriminate those vectors as widely as 
possible. For training the support vector machine, a 
generalization of Sequential Minimal Optimization 
algorithm (SMO) by Shevade et al. [30] is used.  

In this study we used weka-3.6.1 machine learning 
workbench [31]. We used default settings of most of 
the parameters to the above-mentioned machine 
learning algorithms in weka-3.6.1 except few changes 
described above. 
 
4. Experimental setup 
 

This section gives brief of the experimental setup 
and the methodology used to collect data to train the 
machine learning algorithms. The methodology used is 
similar to our pervious work [11]. 

The data were collected from hardware performance 
counters in two phase i.e. solo-run experiment and 
paired-run experiment. Hardware performance 
counters are special purpose registers provided on 
modern processors for measuring various performance 
events such as number of instructions retired, L2 cache 
misses etc.  

 
4.1. Platforms 
 
We performed experiments on two platforms. The first 
platform is a dual-socket DELL Precision T7400 
workstation with two Intel quad-core Xeon X5482 
processors (3.2 GHz) and 32 GB of memory. The other 
platform is a single socket DELL Precision 390 
workstation with one Intel dual-core Core2 6300 
processor (1.86 GHz) and 2 GB of memory. The 

operating system kernel on both platforms was Linux-
2.6.28. For collecting data from the hardware 
performance counters [1] of both processors, we used 
perfmon [32] interface. 
 
4.2. L2 Cache  Organization on  Xeon X5482 
and Core2 6300 
 

It is necessary to note the difference between the 
two processors with respect to their L2 cache 
organization to have a view of differences in the 
scenarios.   
 

 

 
 

Figure3.  L2 cache sharing on Intel Xeon X5482 
 
 

 
 

Figure4.  L2 cache sharing on Intel Core2 6300 
 
On both quad-core Xeon X5482 and dual-core 

Core2 6300 processor there is separate level-1 (L1) 
instruction and data cache, each of size 32KB per core. 

Core0 Core1 

L2 cache (4 MB) 

L2 cache (12 MB) 

 
Core1 

 
Core3 

 
Core2 

 
Core0 

L2 cache (12 MB) 
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Both of the processors have unified level-2 (L2) cache 
shared between two cores. The sharing of L2 caches 
between cores of Xeon X5482 and Core2 6300 
processors are shown in fig. 3 and fig. 4 respectively. 
Table 1 shows the L2 cache related data [1] for both 
the processors..  There is difference in the L2 cache 
organization of the two processors in terms of cache 
size and ways of associativity. 

 
Table 1. L2 cache related data of Xeon X5482 and 

Core2 6300 
 

Processor 

No of 
cores 

sharing L2 
cache 

Size (MB) 
shared 

between 
two cores 

Ways of 
associativity 

Xeon X5482 2 12 24 

Core2 6300 2 4 8 

 
4.3. Workload 

 
We used benchmarks from SPEC cpu2006 suite 

[33]. The benchmarks suit consists of 12 integer 
programs and 17 floating point programs. We used 
reference inputs. With reference inputs the total 
workload consists of 35 integer programs and 20 
floating point programs i.e. total 55 programs. 

 
4.4. Solo-run-experiment 
 

We ran each program from SPEC cpu2006 suite on 
a core and disallowed scheduling programs on other 
core sharing L2 cache with the previous core. The class 
variable solo-run L2 cache stress was calculated from 
hardware performance counter data collected for 
complete run of each program.  

 
4.5. Paired-run-experiment 
 

The programs from SPEC cpu2006 benchmark suite 
were run on the cores sharing L2 cache and the 
hardware performance counter data for each program 
were collected. Each of these programs takes different 
amount of time for completion. Hence we allowed one 
of the co-scheduled programs to run till completion. 
The other program was run in an infinite loop to 
execute it again as it finished and was stopped only as 
the first program finished. The attributes were 
generated from data collected from this phase. 

With 55 programs, we have 55x55 (i.e. 3025) pairs 
of programs to run on the system. Completion of one 
run of 55 pairs takes about 7-10 hours on Xeon based 
and 10-15 hours on Core2 processor based platform. 

4.6. Attributes and class variables  
 

The events collected from hardware performance 
counters are:  

 
INSTRUCTIONS_RETIRED  
LAST_LEVEL_CACHE_REFERENCES 
L2_LINES_IN__SELF__ANY 
 

Out of afore mentioned events the second event 
LAST_LEVEL_CACHE_REFERENCES measures 
the number of references to L2 cache. While event 
L2_LINES_IN__SELF__ANY measures the total 
number of L2 cache lines brought in as a result of 
encountering L2 cache misses as well as prefetching 
activities.  

 
    If two programs p1 and p2 are running on two cores 
of Xeon X5482, and sharing the L2 cache. The 
attributes and class variables are generated in following 
manner:  
 
The first attribute (p1_L2_REF_PKI) is L2 cache 
references per kilo instructions retired 
 
p1_L2_REF_PKI =   
(p1_LAST_LEVEL_CACHE_REFERENCES*1000)/
p1_INSTRUCTIONS_RETIRED 
 
The second attribute (p1_L2_IN_PKI) is L2 cache 
lines brought in (due to miss and prefetch) per kilo 
instructions retired. It is indicative of the stress put by 
a program on L2 cache. 
 
p1_L2_IN_PKI =  
 (p1_L2_LINES_IN__SELF__ANY*1000)/ 
p1_INSTRUCTIONS_RETIRED 
 
The third attribute (p1_L2_IN_PK_REF) is L2 cache 
lines brought in (due to miss and prefetch) per kilo L2 
cache lines referenced. It gives an indication of re-
referencing characteristic of the program. Lower value 
of this attribute indicate higher tendency of the 
program to re-reference the previously referenced L2 
cache lines. 
 
p1_L2_IN_PK_REF = 
 (p1_L2_LINES_IN__SELF__ANY*1000)/  
p1_LAST_LEVEL_CACHE_REFERENCES 
 
 The fourth attribute (p1_L2_FO) is the fractional L2 
cache occupancy of a program. It gives a ruff estimate 
of fraction of space occupied by a program in L2 
cache, while sharing it with other program. 
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p1_L2_FO= 
  p1_L2_LINES_IN__SELF__ANY/ 
( p1_L2_LINES_IN__SELF__ANY+ 
   p2_L2_LINES_IN__SELF__ANY) 
 
The class variable to be predicted is “solo-run L2 
cache stress”. It is similar as second attribute i.e. L2 
cache lines brought in (due to miss and prefetch) per 
kilo instructions retired, but for solo-run of the same 
program p1. We represent it by s1_L2_IN_PKI (here 
s1_ denotes solo-run of first program p1 out of pair p1 
and p2).  
 
5. Transferability of trained regression 
models  
 

The transferability of regression models is assessed 
across processors i.e. regression models trained using 
data from Intel Xeon X5482 were used to make 
predictions on Intel Core2 6300 and vice versa. 
Please note that each data i.e. an instance refers to a 
benchmark paired with a unique benchmark form 
55x55 pairs. We used statistical tests and prediction 
accuracy metrics to assess the transferability of trained 
regression models. Statistical tests try to make 
inference on population from a given sample, while 
prediction accuracy metrics are confined to sample 
only.  Here population refers to the data generated 
from interactions of all real world applications with 
architecture. While data collected for the pairs formed 
by SPEC cpu 2006 are 55X55 (i.e. 3025), represents a 
sample from population of the real world data set.   
These methods are discussed in next subsections. 
 
5.1. Statistical tests 

 
We followed the statistical methods [25] [34] to 

compare two alternatives for assessing the 
transferability of trained regression models. These 
methods fall in two categories parametric and non-
parametric. Parametric methods include t-test, where 
the data are assumed to be normally distributed. If 
there is any reason to doubt the assumption of 
normality of data, then we can use a distribution free 
test i.e. Wilcoxon test, which falls under non-
parametric methods. We used R [34] for performing 
statistical computations.  

The significance testing is done using p-values, 
where p-values less than the threshold (0.05) indicate 
towards rejection of null hypothesis [25] [35].  

First we test about the normality of the data (i.e. 
class variable) and then test about the difference 
between predicted and actual values of the class 
variable. 

 
Testing for Normality of data:  
 
The class variable solo-run L2 cache stress was 
collected for all 55 benchmarks in solo-run experiment. 
We test the normality of class variable by three 
methods: quantile-quantile (Q-Q) plot, Kolmogorov-
Smirnov  test and Shapiro-Wilk test [34]. The Q-Q plot 
is shown in fig. 5, where the sampled data is shown as 
circles against theoretical quantiles (i.e from normal 
distribution) shown as straight line.  
If the sampled data comes from normal distribution 
then it should follow the theoretical quantiles on 
quantile-quantile (Q-Q) plot. The calculated p-values 
from tests for normality are shown below: 
 
Kolmogorov-Smirnov  test :  1.050e-13 
Shapiro-Wilk test  :  1.542e-09 
 
The p-values are much below threshold (0.05). The Q-
Q plot (i.e. points shown as circles v/s straight line) 
also indicates towards rejection of the null hypothesis 
(i.e. the data follows normal distribution). Hence we 
observe that there is doubt to assume that the data 
come from normal distribution.  
The number of pairs of benchmarks i.e. instances of 
data used in study is 418. The 418 instances collected 
from XeonX5482 and Core2 6300 are used to generate 
regression   models  for  XeonX5482  and Coere2 6300  

 
 

Figure5.  Q-Q plot for class variable 
 
respectively. The trained model for XeonX5482 was 
used to predict solo-run L2 cache stress for Core2 6300 
and vice versa. To assess transferability we perform the 
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statistical tests to check the difference between actual 
values and the predicted values. 

 
Testing for difference between actual and predicted 
values:  
 
We have two samples to compare against each other 
for presence of any significant difference between 
them. First sample consists of predicted and the other 
sample consists of actual values of solo-run L2 cache 
stress on a given processor. The parametric method (t-
test) assumes the data to have normal distribution. 
 
Table 2. p-values for t-test and Wilcoxon test across 

XeonX5482 and Core2 6300 
 

Algorithm 
used 

Trained 
using data 

from 
processor 

Tested 
using data 

from 
processor 

p-value 
for 

t-test 

p-value 
for 

Wilco-
xon test 

LR Xeon Core2 0.7646 0.1947 

LR Core2 Xeon 0.7893 0.3319 

ANN Xeon Core2 0.541 0.00018 

ANN Core2 Xeon 0.9977 0.3938 

M5’ Xeon Core2 0.7022 0.9486 

M5’ Core2 Xeon 0.8162 0.8084 

IBK Xeon Core2 0.4535 0.9556 

IBK Core2 Xeon 0.2067 0.05917 

K* Xeon Core2 0.03878 0.2088 

K* Core2 Xeon 0.7028 0.0143 

SVM Xeon Core2 0.6147 0.09743 

SVM Core2 Xeon 0.928 0.5135 

 
The number of instances 418 is quite large, whereby 
the parametric method (t-test) becomes robust enough 
to be used for non-normal data [35]. Hence to assess 
the transferability we use both parametric method (t-
test) as well as non-parametric method (Wilcoxon test).  
The acceptance of null hypothesis indicates the 
absence of significant difference between the predicted 
and actual values. In other words we can say that the 
given regression model used to predict solo-run L2 
cache stress is transferable across the two processors 
viz. one on which it was trained and the other on which 
it was used to make predictions. 

The results of p-values for t-test as well as Wilcoxon 
test are shown in Table-2 against the machine learning 
algorithm and processor used for training and testing. 
For most of the cases p-values for both tests is greater 
than threshold (0.05), indicating the acceptance of the 
null hypothesis, which says there is not significant 
difference between actual and predicted values of class 
variable solo-run L2 cache stress. There are few cases 
where one of the test gives p-values lower than 
threshold, we plan to investigate it in our future work. 
 
5.2. Prediction accuracy metrics 

 
The prediction accuracy of the trained models can be 
expressed in terms of the prediction metrics [31] given 
below. Here pi and ai refer to predicted and actual 
values of i th instance and N is total number of 
instances. 
 
Correlation Coefficient (C): It measures the extent of 
relationship between predicted (pi) and actual (ai) 
values. Its value ranges from –1 to 1, where 1 
corresponds to ideal case. 
  

Table 3. Prediction accuracy metrics of different 
algorithms across XeonX5482 and Core2 6300 

 

Algori
thm 
used 

Trained 
using data 

from 
processor 

Tested 
using data 

from 
processor 

C MAE RMSE 

LR Xeon Core2 0.9928 1.1549 1.869 

LR Core2 Xeon 0.9922 0.7285 1.1699 

ANN Xeon Core2 0.9718 1.8035 3.7943 

ANN Core2 Xeon 0.9844 0.8603 1.6337 

M5’ Xeon Core2 0.9766 1.3619 3.4289 

M5’ Core2 Xeon 0.9844 0.8603 1.6337 

IBK Xeon Core2 0.9247 2.5865 5.7782 

IBK Core2 Xeon 0.9485 1.6731 5.0481 

K* Xeon Core2 0.8754 2.4519 7.3883 

K* Core2 Xeon 0.9524 1.0873 2.7824 

SVM Xeon Core2 0.9938 1.0508 1.6873 

SVM Core2 Xeon 0.9930 0.6135 1.1400 

 
It is given by: 
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Mean Absolute Error (MAE): For calculating this, the 
absolute value of error between predicted and actual 
values is used. In ideal case it should have 0 value. It is 
calculated as shown below: 
 

N
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N
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= 1  

 
Root Mean Squared Error (RMSE): It is measured in 
the same unit as that of the measured quantity (for this 
case solo-run L2 cache stress). Its value ranges from 0 
to infinity, where 0 indicates ideal case. It is calculated 
in following manner: 
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N
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N

i ii∑ =
−
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2

 

 
The prediction accuracy metrics for different 
algorithms used in the study across XeonX5482 and 
Core2 6300 processors are shown in Table 3. The 
prediction accuracy metrics shown indicate that most 
of the trained regression models perform reasonably 
well across two different architectures, where one is 
used for training and other is used for testing. The 
instance based classifiers IBK and K* seem to be on 
lower side with respect to performance accuracy 
metrics. In their case a new regression equation is 
fitted each time, for making prediction on a new 
instance. This may be attributed to lower performance 
metrics across different architectures. 
 

6. Conclusions and future work 
 

In this study we assessed the transferability of 
trained regression model across two multi-core 
processors viz. Intel quad-core Xeon X5482 and Intel 
dual-core Core2 6300. It was observed that at 0.05 
level of significance, most of the regression models 
under study are transferable across the L2 cache 
architecture of these two processors. The prediction 
accuracy metrics indicate that most of the trained 
regression models are transferable across the two 
processors used in the study. 

The model transferability is an important property 
for the trained regression models for predicting solo-
run L2 cache stress of programs running on multicore 
processors. A transferable regression model can later 
be used on various multi-core processors to predict the 
solo-run L2 cache stress of running programs. The 
predicted solo-run L2 cache stress of a program 
provides information about the L2 cache related 
behavior of that program on given multi-core 
processor. One of the potential uses of the predicted 
solo-run L2 cache stress is to help in intelligent 
scheduling of programs on multi-core processors. 
Implementing the intelligent scheduler is part of our 
future work. 
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