
Spider Search: An Efficient and Non-Frontier-Based Real-Time Search
Algorithm

Chao Lin Chu
Department of Computer Science

California State University, Los Angeles
5151 State University Drive

Los Angeles, CA 90032-8530
Email: usaminichu@gmail.com

Debora K. Shuger
Department of English

University of California, Los Angeles
149 Humanities Building, Box 951530

Los Angeles, CA 90095-1530
Email: shuger@humnet.ucla.edu

Russell J. Abbott
Department of Computer Science

California State University, Los Angeles
5151 State University Drive

Los Angeles, CA 90032-8530
Email: rabbott@calstatela.edu

Abstract

Real-time search algorithms are limited to constant-
bounded search at each time step. We do not see much dif-
ference between standard search algorithms and good real-
time search algorithms when problem sizes are small. How-
ever, having a good real-time search algorithm becomes
important when problem sizes are large. In this paper we
introduce a simple yet efficient algorithm, Spider Search,
which uses very low constant time and space to solve prob-
lems when agents need deep (but not exhaustive) path anal-
ysis at each step. Moreover, we did some experimental tests
to compare Spider search with other searches. We expect
that Spider search is the first in a new class of tree-based
rather than frontier-based search algorithms.

1 Introduction

In real-time search one is limited to a fixed amount of
time at each step [1, 2, 3, 6], with the result that program-
mers usually reduce or limit the planning depths in order
to meet the time limit requirement. Standard search algo-
rithms cannot guarantee that they meet this requirement,
although they can sometimes find optimal solutions [7].
These standard algorithms (including Breadth-first Search,
Depth-first Search, and A* Search) have some use. How-
ever, they are not practical when the spaces grow very big.

A more advanced algorithm to solve real-time problems
would be LRTA* [5], which limits the planning depth of
each step and tries to find the local best at each step. This
can be very useful for some problems but it is not practical
for the problem we are trying to solve.

The problem we are trying to solve in this paper is the
Boat/Torpedo problem. This problem concerns a boat that
tries to avoid torpedoes and get home safely; the torpedoes,
however, are very fast. How, we ask, can the boat be smart
enough, how think far enough ahead, to avoid them? We
defined the boat and torpedoes as being able only to move
left and right at each step. Therefore, the tree is going to be
of size 21000 − 1 if the boat reaches the home base at the
999th step.

Standard static searches, like Breadth-first Search,
Depth-first Search and A*, cannot solve this question, nor
can LRTA* do so efficiently. The reason they cannot is that
the boat agent has to plan ahead about 30 steps or more in
order to avoid collision with torpedoes. If the planning path
is too short, the boat agent cannot really tell which path is
the best and sometimes it makes a wrong decision.

To solve this difficulty, we introduce a simple yet ef-
ficient algorithm, the Spider Search Algorithm [4], which
can reach the depth of 30 or more, while still using a very
low upper-bounded constant. The idea behind this approach
is, first, to use controlled random probability numbers to
evenly distribute paths in a tree space.( generation ) This
idea is important because if we do not do this, we will miss
some parts of a tree and produce incorrect actions. We call

 

 

 
 
 

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)

http://www.mirlabs.org/ijcisim
ISSN: 2150-7988 Vol.2 (2010), pp.234-242



these paths the population. Then we calculate the fitness
value of each state and pick the best leaf from the popula-
tion in this step.( selection ) This allows the boat agent to
know the path to the best leaf node. The neighbor of the
root on this path will be the next state. We can see that the
upper-bounded limit constant will be ((depth + 1) * popula-
tion), which is usually less than 1000 nodes per step. This
will guarantee that this program runs in real-time.

2 Problem Formulation

First, the basic idea of this Boat/Torpedo problem is that
the boat has to be smart enough and capable of thinking suf-
ficiently far ahead to avoid the torpedoes. (This problem is
originally from University of Illinois at Urbana-Champaign.
)

The representation of the boat, torpedoes, and home in a
state is(x,y), in which x is double precision from -1 to 1 and
y is double precision from -1 to 1. The location of the home
base is fixed, but the torpedoes and the boat are moving con-
stantly during the whole program. The torpedoes can move
faster than the boat, but the boat has a tighter turning radius
than the torpedoes. For simplicity′s sake, the boat and tor-
pedoes can only turn left and right. (Had we not imposed
this limitation, we would need a bigger space than the cur-
rent one, making the problem more complicated.) There-
fore, we made the boat and torpedoes able only to turn full
left and full right. The torpedoes turn as best they can to-
wards a point somewhere in front of where the boat is cur-
rently located.

The boat and torpedoes know each other′s location,
speed, and angle, but only the boat knows the torpedoes′

turning strategy. The boat is ′smart′ in that the boat agent
is able to plan possible paths far enough into the future to
predict the torpedoes′ various possible locations and to tell
whether, if it takes that path, it will be hit by them. Then
the boat agent can choose its next move in order to avoid
destruction.

The boat′s length is 0.06 and the torpedo′s length is 0.04
in the space described above. As we can see, they are very
small in this 2 x 2 square space. In addition, the boat and
torpedoes can only move 0.007 and 0.01799 at each step,
and the distance (0.0149317) that the program uses to de-
cide if the boat is hit or gets home is also very small. So
the ability to look 5 or 10 steps ahead is simply not enough
for the boat to determine whether a path will allow it to es-
cape from an attacking torpedo. Indeed, we found that we
needed to make the boat able to look 30 steps ahead.

3 AI Approaches

Before we talk about AI approaches, we need to under-
stand the program structure. The program is time-stepped.

At each time tick, the boat expands the tree and selects the
best node. It then turns left or right, depending on the first
step in the path to the node selected as best. This may sound
easy, but expanding the tree and picking the best node both
presented major questions.

The two key issues are: (a) What kind of search strategy
should the boat use when expanding the tree? and (b) Once
the boat has finished expanding the tree, how should it pick
the best node?

Real-time search problems need search algorithms that
can perform constant-bounded search and yield reasonable
results. Since real-time search is very sensitive to the size of
the tree that the agent is going to explore, real-time search
algorithms must limit path depths severely. This has the
advantage of reducing computing time. This kind of algo-
rithm may not be able to find the optimal solution, but it
does allow the agent to work in real-time with some minor
accuracy differences.

However, some real-time problems cannot be solved by
simply reducing the path depths to be explored: for exam-
ple, the Boat/Torpedoes problem. The shorter path we plan,
the less accurate the result we get. The boat agent needs to
plan ahead about 30 or more steps in order to avoid a col-
lision. If the boat can only go left and right at each step,
this means that the tree size is going to be 230+1 − 1 at each
step. This will take a lot of computation, making some al-
gorithms non-responsive in real-time.

The steps that the boat and torpedo take are so small
that any frontier-based search will require an unacceptable
number of steps to reach a point where the result will be
useful. Therefore, we designed a search approach that is
not frontier-based. We named it Spider Search because the
paths created by Spider Search algorithm looked like a spi-
der. This algorithm can achieve useful levels of path length
and still use constant-bounded space and time.

3.1 Other Search Algorithms

Breadth-First Search uses level by level search from the
root to higher levels. [7] This approach will guarantee that
we get the optimal results since it searches for all possible
paths in the space. However, this brute force algorithm is
not efficient.

In addition, the Boat/Torpedo problem is more complex
than the standard search problem. This is because the boat
has two goals: to reach home and not to get hit by torpedoes.
Not getting hit has higher priority when expanding the tree.
This means that if the boat gets hit, the program will stop
and the boat won′t get another chance to search. Among
those nodes that would result in the boat not being hit, those
closer to home have higher priority.

We know that most searches have a single goal. This
problem could likewise be formulated as having a single

235Spider Search: An Efficient and Non-Frontier-Based Real-Time Search Algorithm



goal (to get home) were the amount of time available to the
boat unlimited. The torpedoes would function like barri-
ers to be avoided, rendering the problem more like a maze
search. But given the real time constraint, the boat can′t
look ahead indefinitely to see where all the barriers are, and
if it makes a wrong decision, it cannot backtrack and take
another path. So the goal of not being hit becomes more
than just a constraint on the search path; it becomes the
highest priority at each search step. That makes the problem
very different from standard search problems.

A* Search is an offline search much like Breadth-first
Search and Depth-first Search, and hence faces similar time
and space size problem. However, A* Search is a bit better
than the other two because it uses a heuristic function to tell
if it is worthwhile to further expand the node. Hence, A*
Search is pretty much like a Best First Search. [7] It sounds
like we can limit the depth, for example depth 30, and run
the A* search. However, it has a problem. The problem
is that most of the leaf nodes are dead near the depth of
30. This means that A* is going to extend the best node
until the node gets killed (at which time, it is near the full
depth of 30). Then it starts to extend the second best node.
Eventually, it is going to fill up this tree. As we can see,
it can have a maximum of 230+1 − 1 nodes in the tree in
each step. Although we can say it is constant-bounded, this
constant is far too big for this problem.

LRTA* is a general and well-known real-time search al-
gorithm that uses a fixed depth to limit the agent planning.
This ensures that a program runs at a constant-bounded rate.
It also uses a heuristic function to calculate the estimated
distance from a target state to a goal state. It is pretty much
like the A* search so it faces the same problem as the A*
search in this problem.

3.2 Spider Search Algorithm

To solve the issues that LRTA* cannot, we introduce
Spider Search Algorithm: a non-frontier based real-time
search algorithm (Please see the search path on Figure 1 and
the Spider Search Algorithm on Figure 2.). This algorithm
works by generation and selection.

That is to say, it generates lots of diverse possibilities
without biasing the generation process by referring to the
goal. This means that during the generation step, we do not
consider whether or not a path will move the boat toward
home. Also, we do not consider if a path will keep the boat
from being hit by a torpedo. However, for efficiency, we do
cut off a path if a point on the path results in a hit, since
there is no need to explore the points that the boat, having
been destroyed, obviously cannot reach. This limitation is
thus an efficiency measure rather than a means to direct the
search.

Once these possibilities have been generated, we then se-

Figure 1. Spider SearchPath

lect the best node from the resulting population based on an
evaluation function. This fitness function takes into account
distance from home, length of path, and whether the boat
was hit. The important point is that selection is separated
from generation.

This algorithm is therefore crucially different from the
best-first search, which ties generation directly to the goal.
Moreover, the separation makes it fit very well within a
Real-Time framework. Since the generation step is sepa-
rated from the selection step, it can be done without ref-
erence to the goal and in a fixed deterministic way. That
doesn′t mean it has to be deterministic, but it does mean
that the generation step is not search-driven. It is the search
aspect of the other search approaches that make them non-
real-time.

Since Spider Search does its generation outside the
search paradigm, it can be real time. Moreover, the selec-
tion step can also be done in real-time because the number
of elements the generation step generated is fixed, so that
the selection needs only select from among them.

Let′s look at the Spider Search Algorithm in Figure 2.
We pass the root node, the population size, and the depth
limit to the createSpider algorithm. It then calculates sev-
eral probabilities according to the population size. Then the
createSpider algorithm passes the root node, these probabil-
ities, and the depth limit to the createPath algorithm.

When the createPath gets those parameters, it performs
the following steps:

(1) Find the current depth of this node in the tree.
(2) If the current depth is smaller than the depth limit

and this node is neither dead nor reaching home, go to step
3. Otherwise, go to step 9.

(3) Use randomly generated numbers to decide left or
right child to expend. If it decides to go right, go to step 4.

236 Chu et al.



———————————————————————–
createSpider( root, popSize, depthLimit )
1 for each i from 0 to popSize - 1
2 turnRightProbability = i / (popSize - 1)
3 createPath( root, turnRightProbability, depthLimit)
4 end of for loop

createPath( root, turnRightProbability, depthLimit )
1 d = current depth of this node
2 if (d < depthLimit and not (dead or reached home) )
3 if( randomly generated real number from 0 to 1 <
turnRightProbability )
4 if( right child has not been created )
5 create rightChild
6 end of if
7 createPath( rightChild, turnRightProbability,
depthLimit)
8 end of if
9 else
10 if( left child has not been created )
11 create leftChild
12 end of if
13 createPath( leftChild, turnRightProbability, depth-
Limit)
14 end of else
15 end of if
———————————————————————–

Figure 2. Spider Search Algorithm

Otherwise, go to step 7.
(4) If the right child has not been created, create the right

child.
(5) Pass the right child node, the turnRightProbability,

and the depth limit to itself. ( createPath algorithm )
(6) Go to step 9.
(7) If the left child has not been created, create the left

child.
(8) Pass the left child node, the turnRightProbability, and

the depth limit to itself. ( createPath algorithm )
(9) End of this algorithm.
The ideas behind this algorithm are the following:

3.2.1 Population

Population is a parameter that the user or program can con-
trol, but it is usually fixed throughout the whole program.
In special cases, we could change the population size dy-
namically according to deal with features specific to a par-
ticular problem. However, it should not be changed while
the program is running. Also, in order to keep the bounded
constant the same, we should change the depth of the paths
to a lower value as a way to raise the population size.

3.2.2 Randomness and Controlled Probabilities

Since the boat can turn only left and right, we can use a bi-
nary tree to represent the paths. The left child represents
the boat moving left from the root state and right child rep-
resents the boat moving right.

The problem is that the space is so big. How can we ex-
plore this tree evenly and efficiently? We use randomness to
pick the paths we desire. However, if we use the full random
to get left and right, the resulting paths are going to reside
mainly in the middle of the tree, since one would expect
that each path will include approximately half left turns and
half right turns. ( We tried Genetic Algorithm and found out
this. ) To solve this, if Spider Search has a depth of 5 and a
population of 6, it will have about the following paths: LL-
LLL, RLLLL, RRLLL, RRRLL, RRRRL, RRRRR, which
are evenly distributed. (See Figure2.) Although the algo-
rithm we created is very simple, it actually did a very good
job in spreading out the distribution of the paths in the tree.
You will see how it performed later on in this paper.

3.2.3 Limited Depth

We can see the depth limit, which we have not yet described,
in Figure 2. It is based on the same idea as LRTA*. Its
function is to reduce the tree size at each step of agent plan-
ning. This will guarantee that it is constant-bounded. In
our Boat/Torpedo program, we used a depth limit of 30 for
every step. Yet, if we searched all the nodes in the tree to
depth 30, we would have to search 230+1 − 1 nodes in each
step, which is not acceptable for a real-time situation. How-
ever, as mentioned earlier, the program distributes the paths
evenly in the tree space, which allows it to extend the depths
to consider a longer range of possibilities without requiring
the program to search so many nodes that it slows down the
process. Through a simple calculation, we can see how fast
the Spider Search is. We used a population size of 10 and
depth limit of 30. The maximum nodes we expect is (30 + 1)
* 10 = 310. However, it actually uses fewer than this many
nodes because paths near the root of the tree share nodes.
Therefore, it actually uses fewer than 310 nodes per step.
For even better performance, we used a fitness function to
further reduce the number of the nodes searched since we
can cut off the search beyond a dead node. We will explain
it in the next sub-section.

3.2.4 Fitness Function

In the Boat/Torpedo problem, we used a fitness function to
decide, at any given step, which path is the best, so that the
boat agent can know how to move to the next state. The
fitness function picks the nodes with lower fitness values
as better ones. This is because we used the distance to the
home base as one of the factors determining fitness. The

237Spider Search: An Efficient and Non-Frontier-Based Real-Time Search Algorithm



———————————————————————–
calculateFitnessValue()
1 if( this state reaches home )
2 fitnessValue = current depth
3 return
4 end of if
5 fitnessValue = 10000000 + current state to home
distance - current depth / 10
6 if( current state boat is killed )
7 fitnessValue = fitnessValue + 10000000
8 end of if
9 return
———————————————————————–

Figure 3. Fitness Function

lower value is thus better. This is like a heuristic function,
but the distances to home are actual distances to home in-
stead of estimated ones. We use the following rules to cal-
culate the fitness value, and the actual algorithm is in Figure
3.

(1) If a path reaches home, the shorter the better. So the
fitness function penalizes length.

(2) If we haven′t reached home, add a penalty of
10,000,000 plus the distance home. However, if we haven′t
reached home, a longer path is better since it provides more
time to search. So give a bonus for longer paths. The fac-
tor of 10 in effect divides the paths into 10 buckets. Within
each one, the shorter the distance to home, the better the
path.

(3) A dead path is worse than any live path. So add an-
other penalty of 10,000,000 to the fitness value. Of course
the boat agent stops expanding nodes if the current node′s
condition is either home or dead. This further reduces the
search time since it cuts off unnecessary tree nodes.

3.2.5 Keeping the Best Candidate for Next Step Plan-
ning

This is the action between each step. We keep the best path
for the next step because when the boat gets to this next
step that path may still be the best. If it turns out not to be
the best, it will simply be replaced by another path that is
better. This can also reduce the time spent searching some
areas of the tree. Although you may think that throwing
away all other paths and searching again might cause the
boat to perform badly, it does not. The boat runs smoothly
and uses a bounded constant time and space.

Let us look at the detail of this algorithm in Figure 2.
We pass the root, popSize and depthLimit to the create-
Spider function. Then it creates a turnRightProbability for
each path according to the popSize. After knowing the

turnRightProbability, it passes the root, turnRightProbabil-
ity and depthLimit to the createPath function.

This createPath function only creates one child ( L or R
) by comparing random 0 to 1 real number to the turnRight-
Probability. Then it will call itself recursively ( passing
the child, turnRightProbability, depthLimit to itself ) un-
til reaching the depthLimit, being dead or reaching home.
Then it will create well distributed paths in this tree. ( We
call it the Spider. )

4 Experimental Testing

4.1 Define the Space

For the boat and torpedoes to move freely in this 2x2
rectangle space, we took out the border barrier producing a
toroidal world. We also defined the following parameters:

(1)boat speed: 0.007
(2)torpedo speed: 0.01799
(3)Boat turning angle: 0.1
(4)Torpedo turning angle: 0.05
(5)TouchEpsilon: 0.0149317.
The boat and torpedo speeds represent distance moved

per step. The boat and torpedo turning angles are radians.
TouchEpsilon is the distance at which contact is assumed
to be made. If the distance between the boat and a torpedo
is less than that value, the boat is killed; if the distance be-
tween the boat and home is less than that value, the boat
reaches home.

At the beginning of each run, we placed home and the
boat at the furthest possible distance apart to make sure
that we didn′t give the boat an undue advantage. Then we
randomly placed the torpedoes–but in different quadrants
from the boat to make sure that the torpedoes would not kill
the boat instantly. This random scattering of the torpedoes
makes the problem harder for the boat because they come
at it from many angles at once.

4.2 Gathering Data

4.2.1 Experimental Testing: Part 1

Please see Figure 4. The lighter color one represents Spider
Search and the darker one represents Breadth First Search.
In this test, we used depth 10 to run Breadth First Search.
The reason was that since it had a real-time constraint, depth
10 performed acceptable speed on our testing computer.
More than that it would generate too many nodes in each
time step and slow down the Breadth First Search.

To compare Spider and Breadth First Searches, we used
the same depth 10 on Spider Search. Also, we used popula-
tion size of 10 to run Spider Search. Then we fixed all the
parameters except the torpedo quantity. We then compared

238 Chu et al.



Figure 4. BreadthFirst and Spider Search
Compare

how BreadthFirst and Spider Searches performed. We ran
the program using 1 to 8 torpedoes and running 200 trials
for each torpedo quantity. Then we counted it as one suc-
cess when the boat reached home. According to the 200
runs, we calculated the success rates.

As the number of torpedoes increased in Figure 4, the
success rate started to drop gradually. This is because the
more torpedoes, the more dead nodes in the boat planning
trees. As long as there is no live node in the boat′s searching
tree, the boat is going to be hit. There is no way for it to
survive, not even if we had used an optimal but slow search
algorithm like Breadth-first Search. This is the nature of
this problem (and of reality).

In addition, if torpedoes come from different angles and
attack the boat together, there is sometimes no way for the
boat to survive. This is because each torpedo can cover
some parts of the boat′s possible paths. When all of the
boat′s possible paths are covered by torpedoes′ paths, the
boat is going to be dead.

From Figure 4 curve, we can see that Spider Search
performed the same as the optimal but slow Breadth First
Search. However, Spider Search used a lot less nodes in
each time step. This means a lot faster. The Breadth First
Search used 210+1−1 nodes (2047) in each time step, while
Spider Search only used maximum (10 + 1) * 10 = 110
nodes.

4.2.2 Experimental Testing: Part 2

From Figure 4, we knew that Spider Search and Breadth
First Search were very close on torpedo 5 so we did a second
test (Figure 5) to see if we can improve the Spider Search
by increasing the depth.

Figure 5. Depth and Success Rate of Spider
Search using 5 Torpedoes and popSize 10

Table 1. Depth and Node Size
Depth PopSize Spider BreadthF irst

10 10 110 210+1 − 1
11 10 120 211+1 − 1
12 10 130 212+1 − 1
| | | |

28 10 290 228+1 − 1
29 10 300 229+1 − 1
30 10 310 230+1 − 1

In this test, we fixed the torpedo quantity to 5 and pop-
ulation size to 10 on Spider Search. The only variable was
the depth. We tested it from 10 to 30 in 1 unit increment
and ran 200 trials for each depth. Then we counted it as one
success when the boat reached home. According to the 200
runs, we calculated the success rates.

From the result in Figure 5, we can see that the success
rates of Spider Search amazingly grew from 3.5 to 93 when
increasing the depth. This means that longer path planning
can produce better result. However, the best of the Spider
Search is efficiency. In Table 1, it shows the maximum node
sizes of Spider Search in each time step and the expected
node sizes of Breadth First Search. (Of course, we didnot
have the computing power to run 230+1 − 1 nodes per step
on Breadth First Search.) At depth of 30, Spider Search
only used maximum 310 nodes, which was a lot less than
Breadth First Search at depth of 10 (2047 nodes). Despite of
using less nodes than BFS per step, Spider Search’s success
rates grew from 3.5 to 93. This means that it fits very well
within the real-time constraint.

239Spider Search: An Efficient and Non-Frontier-Based Real-Time Search Algorithm



Figure 6. BestFirst and BreadthFirst Search
Comparison

4.2.3 Experimental Testing: Part 3

In order to see if the Best First Search has the same maxi-
mum node size as the Breadth First Search, we did a third
test.

To compare Best First and Breadth First Searches, we
used the same depth 10 on Best First Search. Then we fixed
all the parameters except the torpedo quantity. We then
compared how Breadth First and Best First Searches per-
formed. We ran the program using 1 to 8 torpedoes and run-
ning 200 trials for each torpedo quantity. Then we counted
it as one success when the boat reached home. According
to the 200 runs, we calculated the success rates.

Please see Figure 6. The darker color one represents Best
First Search and the lighter one represents Breadth First
Search. In this figure, we used the Breadth First Search
results from experimental test one and the Best First Search
results from this experimental test three. From Figure 6
curve, we can see that Best First Search performed almost
the same as the slow Breadth First Search.

Then we focused on the result from the Best First Search.
In this test, we also collected the node size of Best First
Search in each step of each run. We then calculated the
average node size of each torpedo quantity. In the Figure 7,
we can see that the average node size grew with the growing
torpedo quantity. This means that Best First Search needs
to process more nodes averagely while the boat faces more
dangers. The answer is easy because the more dead nodes in
the search tree, the higher probability the Best First Search
needs to find another best node.

People may notice that the average node sizes of Best

Figure 7. BestFirst Search Average Node Size

First Search were smaller than the maximum node size of
Spider Search in the same depth 10. Does this mean that the
Best First Search performs better than the Spider Search?
The answer is no. We will see why in the next.

In the Figure 8, it shows that the Best First Search node
size of each step in one run. ( One run means from start
point to either home or dead. ) It used very few nodes
from 1 to 34 steps because it only processed the best nodes
without being aware that it was in danger. Once it found out
that it was in danger, the node size jumped to near full tree
size, like step 35 in Figure 8. In this case, it was 2047. (
210+1 − 1 ) Then the node size started to drop and finally
died at step 44. We can see that the bottleneck of the Best
First Search is the maximum node size. In this experimental
test 3, we only used depth 10 on the Best First Search so it
only showed a little bit slow down when the boat was in
danger. We can imagine that it will stop response when we
use depth 30 and the boat is in danger. The Best First Search
will search for 230+1 − 1 nodes in just one single step.

To be more clear, we recorded the maximum node size
of the Best First Search in each torpedo quantity. In Table 2,
it showed the maximum node size comparision of the Best
First and Breadth First Searches. The maximum node sizes
of the Best First Search were the same as the node sizes of
the Breadth First Search no matter which torpedo quantity.
This proves that the Best First Search faces the same node
size problem that the Breadth First Search has.

From our visual observation in the experimental test 3,
the Best First Search did slow down when the boat faced

240 Chu et al.



Figure 8. BestFirst Search Node Size in One
Run

Table 2. Maximum Node Sizes of BreadthFirst
and BestFirst Searches

Torpedo Depth BestF irst BreadthF irst

1 10 210+1 − 1 210+1 − 1
2 10 210+1 − 1 210+1 − 1
3 10 210+1 − 1 210+1 − 1
4 10 210+1 − 1 210+1 − 1
5 10 210+1 − 1 210+1 − 1
6 10 210+1 − 1 210+1 − 1
7 10 210+1 − 1 210+1 − 1
8 10 210+1 − 1 210+1 − 1

dangers. Not to mention that it is going to freeze and try to
find a way out from those 230+1 − 1 nodes if we limit the
depth to 30. This means that it can′t be real time because
the maximum node size is way too big to fit in the real time
constraint.

From experimental test 1 to 3, we understand that the
Breadth First Search and the Best First Search are not useful
in this problem while Spider Search uses very low constant
space and time to solve it. Therefore, the Spider Search fits
very well within the real-time constraint.

5 Future Work and Conclusion

Real-time Search Algorithms are important research ar-
eas. They are constant-bounded and good for fast response.
There are many of them, for example, LRTA*, which are
good for general usage. Nevertheless, they are less use-
ful when agent path planning needs considerable depth and
width. In our experimental test 1, we can see that the
Breadth First Search is slow because it searched for all the
nodes in a tree. Also in experimental test 3, the Best First
Search can′t fit in the real time constraint because its max-
imum node size bottleneck. However, as we can see from
the experimental test 2, Spider Search can solve this type
of problem efficiently while preserving a very low constant.
Yet we do not know what other kinds of problems bene-
fit from it. Also, maybe we could plug Spider Search into
other search algorithms to make them more effective in the
future.

References

[1] V. Bulitko and G. Lee. Learning in real-time search: A uni-
fying framework. Journal of Artificial Intelligence Research,
25:119–157, 2006.

[2] V. Bulitko, N. Sturtevant, and M. Kazakevlch. Speeding up
learning in real-time search via automatic state abstraction.
AAAI, 214:1349–1354, 2005.

[3] V. Bulitko, N. Sturtevant, J. Lu, and T. Yau. Graph abstraction
in real-time heuristic search. Journal of Artificial Intelligence
Research, 30:51–100, 2007.

[4] C. L. Chu, R. J. Abbott, and D. K. Shuger. Spider search: An
efficient and non-frontier-based real-time search algorithm.
2008 Eighth International Conference on Intelligent Systems
Design and Applications, 2:487–492, 2008.

[5] R. E. Korf. Real-time heuristic search. Artificial Intelligence,
42(2-3):189–211, 1990.

[6] D. C. Rayner, K. Davison, V. Bulitko, K. Anderson, and
J. Lu. Real-time heuristic search with a priority queue. IJ-
CAI, 382:2372–2377, 2007.

[7] S. Russell and P. Norvig. Artificial Intelligence, A Modern
Approach. Pearson Education, Inc., Upper Saddle River, New
Jersey, 2003.

241Spider Search: An Efficient and Non-Frontier-Based Real-Time Search Algorithm



Biographical notes: Chao Lin Chu is a Teaching Assis-
tant in Computer Science at the Tunghai University, Taiwan.
He received his M.S. degree in Computer Science from Cal-
ifornia State University, Los Angeles, U.S.A. and his B.S.
degree in Animal Science from National Chung Hsing Uni-
versity, Taiwan. His research interests include Artificial In-
telligence, Real-time Searches, and Genetic Algorithm.

Debora Shuger is a Professor of English at UCLA. She
received her BA and MA in English from Vanderbilt Uni-
versity and her PhD in English from Stanford University.
Her research interests are early modern/Renaissance/late
16th and 17th century England. She writes about Tudor-
Stuart literature; religious, political, and legal thought; neo-
Latin; and censorship of that period.

Russ Abbott is a Professor of Computer Science at Cali-
fornia State University, Los Angeles. He received his BA in
Mathematics from Columbia University, MS in Computer
Science from Harvard University, and PhD in Computer
Science from the University of Southern California. His
research interests are complex systems and the application
of concept in computer science to problems in philosophy.

242 Chu et al.


