
 An Empirical Performance Analysis of Differential Evolution Variants on 
Unconstrained Global Optimization Problems 

 
 

1G. Jeyakumar, 2C. Shunmuga Velayutham 

Amrita School of Engineering 
Amrita Vishwa Vidyapeetham, Coimbatore 

Tamil Nadu, India 
1g_jeyakumar@cb.amrita.edu

 2cs_velayutham@cb.amrita.edu 
 

 
Abstract 

 
In this paper we present an empirical, comparative 

performance, analysis of fourteen Differential Evolution 
(DE) variants on different classes of unconstrained global 
optimization benchmark problems. This analysis has been 
undertaken, with an objective, to compare and to identify 
competitive DE variants which perform reasonably well on 
problems with different features. Towards this, fourteen 
variants of DE are benchmarked on 14 high dimensional 
unconstrained test functions grouped by their modality and 
decomposability viz. unimodal separable, unimodal 
nonseparable, multimodal separable and multimodal 
nonseparable. The analysis identifies the overall competitive 
variants as well as the feature based performances of all the 
variants. 
 
Keywords: Differential Evolution (DE), benchmarking DE 
variants, empirical performance analysis, unconstrained numerical 
optimization, success performance 

1. Introduction 
 

Differential Evolution (DE), proposed by Storn and Price 
in 1995 [1], is a simple yet powerful Evolutionary Algorithm 
(EA) for global optimization in the continuous search domain 
[2]. The conceptual and algorithmic simplicity, high 
convergence characteristics and robustness of DE has made it 
an efficient and popular technique for real-valued parameter 
optimization [3, 4]. By virtue of these characteristics, DE has 
shown superior performance in both widely used benchmark 
functions and real-world problems [5]. 

Like other EAs, DE is a population-based stochastic 
global optimizer employing mutation, recombination and 
selection operators and is capable of solving reliably 
nonlinear and multimodal problems. However, it has some 
unique characteristics that make it different from other 
members of the EA family. The major differences are in the 
way the offspring (trial vectors) are generated and in the 
selection mechanism employed to transit to the next 

generation. In fact, DE uses a differential mutation operation, 
based on the distribution of parent solutions in the current 
population, coupled with recombination with a 
predetermined target vector to generate a trial vector 
followed by a one-to-one greedy selection between the trial 
vector and the target vector.  

The differential mutation operation essentially perturbs a 
parent solution with the weighted difference of one/two 
pair(s) of parent solutions. Depending on the way the parent 
solutions are selected, both for perturbation and to be 
perturbed, a number of variants of DE have been proposed in 
the literature. These variants vary in the type of 
recombination operator used, the way in which the mutation 
is implemented and hence consequently in their efficacy to 
solve a particular problem. Therefore, with the multitude of 
variants available, choosing the best variant for a given 
problem is often not easy. So far, no single DE variant has 
turned out to be best for all problems which is quiet 
understandable with regard to the No Free Lunch Theorem 
[6]. Nevertheless, the DE variants need further investigation 
under which circumstance they perform well. Since, to 
successfully solve a specific optimization problem at hand, 
this information can be very important as it may save both 
time and computational cost. 

In this paper, an empirical analysis of the performance of 
fourteen DE variants on fourteen benchmark problems has 
been carried out. This analysis has been undertaken to 
identify the competitive DE variants which perform 
reasonably well on a range of problems with different 
features. We understand that testing the DE variants on a 
limited set of fourteen benchmark problems may not 
guarantee a complete picture on the relationship between 
characteristics of the problem and the variant's behavior. 
Nevertheless, the analysis indeed gives insights about the 
exploratory efficacy of different variants and hence their 
utility for solving a range of optimization problems with 
varying features. 

The remainder of the paper is organized as follows. 
Section 2 describes the DE algorithm and the fourteen 
variants used for analysis which is followed by a review of 
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related work in Section 3. Section 4 details the design of 
experiments. Section 5 presents the results obtained over a 
suite of 14 numerical optimization problems and finally 
Section 6 concludes the work. 

54321

432 GrGrGrGrGbestGi iiii XXXXFXV −+−+=

 
2. DE Algorithm 

 
DE algorithm aims at exploring the search space by 

sampling at multiple, randomly chosen NP D-dimensional 
parameter vectors (population of initial points), so-called 
individuals,    which      encode      the    candidate   solution  

. The 
initial population should sufficiently cover the search space 
as much as possible, by uniformly randomizing individuals, 
for better exploration. After population initialization an 
iterative process is started and at each iteration (generation) a 
new population is produced until a stopping criterion is 
satisfied. 

At each generation, DE employs the differential mutation 
operation to produce a mutant vector,                                 

with   respect   to each 
individual, the so called target vector, in the current 
population. The mutant vector is created using the weighted 
difference of parent solutions in the current population. A 
number of differential mutation strategies have been 
proposed in the literature that primarily differs in the way the 
mutant vector is created. Along with the strategies came a 
notation scheme to classify the various DE-variants. The 
notation is defined by DE/a/b/c where ‘a’ denotes the base 
vector or the vector to be perturbed (which can be a random 
vector, best vector or sum of target vector and weighted 
vector difference between random and best vectors / random 
vectors / best vectors); ‘b’ denotes the number of vector 
differences used for perturbation (which can be one or two 
pairs); and ‘c’ denotes the crossover scheme used (which can 
be binomial or exponential) between the mutant 
vector  and the target vector  to create a 
trial vector . 

 
The seven commonly used mutation strategies are 

enumerated as follows: 
1. DE/rand/1 
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4. DE/best/2 
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5. DE/current-to-rand/1 
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6. DE/current-to-best/1 
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7. DE/rand-to-best/1 
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where denotes the best parent vector in the 
current population, F and K commonly known as the scaling 
factor or amplification factor is a positive real number that 
controls the rate of evolution of the population. The indices 

are randomly generated 
anew for each mutant vector and are mutually exclusive i.e.,  

. 
 
After the differential mutation strategy, DE then uses a 

crossover operation in which  the mutant vector 
mixes with target vector  and generates a trial 
vector  or offspring. The two frequently used 
crossover schemes are binomial (uniform) crossover and 
exponential crossover. The binomial crossover is defined as 
follows. 

G
j

iu ,
 if ( randj[0,1) ≤ Cr )  ( j=j∨ rand )  

 u                 (8) =i ,G
j

G
j

ix ,
 Otherwise 

 
where (crossover probability) is a user-
specified constant and randj[0,1) is the jth evaluation of 
uniform random number generator. is 
a random parameter index, chosen once for each i to make 
sure that at least one parameter is always selected from the 
mutant vector V . 
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The exponential crossover is defined as follows 
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where the acute brackets denote modulo functions 
with modulus D, the starting index n is a randomly selected 
integer in the range [1,D], and the integer L, which denotes 
the number of parameters that are going to be exchanged 
between the mutant and trial vectors, is drawn from the same 
range with the probability Cr. 

After the mutation and crossover operations, a one-to-one 
knockout competition between the target vector 
and its corresponding trial vector  based on 
the objective function values decides the survivor, among the 
two, for the next generation. The greedy selection scheme is 
defined as follows (assuming a minimization problem 
without the loss of generality) 
 

 U   if  f(U ) ≤ f( )
Gi , ,Gi GiX ,

  

=
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   Otherwise. 
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The above 3 steps of differential mutation, crossover, 
followed by selection marks the end of one DE generation. 
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These steps are repeated generation after generation until a 
stopping criterion is satisfied. Figure 1 depicts the 
algorithmic description of a typical DE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Figure 1. DE Algorithm 
 
With seven commonly used mutation strategies and two 

crossover schemes, there are fourteen possible, so called 
variants of DE viz. DE/rand/1/bin, DE/rand/1/exp, 
DE/best/1/bin, DE/best/1/exp, DE/rand/2/bin, 
DE/rand/2/exp, DE/best/2/bin, DE/best/2/exp, DE/current-to-
rand/1/bin, DE/current-to-rand/1/exp, DE/current-to-
best/1/bin, DE/current-to-best/1/exp, DE/rand-to-best/1/bin 
and DE/rand-to-best/1/exp. This paper empirically compares 
the performance of all these fourteen variants of DE. The DE 

variants, henceforth in this paper, will be referred without the 
prefix DE for the sake of brevity. 

 
3. Related Works 
 

The conceptual simplicity and potential of DE has 
attracted many researchers, who are working on its 
improvement, resulting in many variants of the algorithm [7, 
8, 9 and 10]. Since the performance of classical DE largely 
rests on the choice of trial vector generation, a thorough 
understanding of performance difference between the DE 
variants is crucial. However, little research effort has been 
devoted to understand and compare the efficacy of existing 
DE variants to solve problems with different features. This 
section provides a brief overview of contemporary research 
efforts in this direction. 

Initialize PG={X1,G,...,XNP,G} with 
;   G=0 NPixx D

GiGiGi ,...,1},,...,{ ,
1
,, ==

iiiii ,...,1,,,,, 54321 ∈

=

X

Compute {f(Xi,G),...,f(XNP,G)} 
WHILE stopping criterion is not satisfied DO 
    /* Mutation */ 
     FOR i =1 to NP 
         Randomly select r        NPirrrr
         mutually different and different from i, 
         Generate a mutant vectorV  },...,{ ,

1
,,

D
GiGiGi vv

         for each target vector via one  
GiX ,

         of the equations (1) - (7) 
      END FOR 
     /*Crossover */ 
     FOR i = 1 to NP  

Generate a trial vector 
for each target vector 

by employing binomial crossover 

scheme via equation (8) or using 
exponential crossover scheme via 
equation (9). 

},...,{ ,
1
,,

D
GiGiGi uuU =

GiX ,

    END FOR 
    /*Selection */ 
    FOR i = 1 to NP 

IF THEN )()( ,, GiGi XfUf <

GiGi UX ,1, ←+
 

Else 
GiGi XX ,1, ←+

  

END IF 
     END FOR 
     Increment Generation Count G = G+1 
END WHILE 

Menzura-Montes et. al. [11] empirically compared the 
performance of eight DE variants on unconstrained 
optimization problems. Variants with arithmetic 
recombination, since they are rotationally invariant, were 
also considered in their work. The study concluded 
rand/1/bin, best/1/bin, current-to-rand/1/bin and rand/2/dir 
as the most competitive variants. However, the potential 
variants like best/2/*, rand-to-best/1/* and rand/2/* were not 
considered in their study. 

Babu and Munawar [12] compared the performance of ten 
variants of DE (excluding the current-to-rand/1/* and 
current-to-best/1/* variants of our variants suite) to solve the 
optimal design problem of shell-and-tube heat exchangers. 
Their study involved testing an extensive 9680 combinations 
of key parameters of DE variants and concluded best/*/* 
strategies to be better than rand/*/* strategies with best/1/* 
strategies to be the best out of the ten DE variants 
considered. 

A recent study by Qing [13] compared the performance of 
rand/1/bin and best/1/bin strategies against their counterpart 
variants of a Dynamic Differential Evolution (DDE) 
proposed in [14]. DDE differs from DE by updating its 
population dynamically while the classical DE updates its 
population generation by generation. Qing concluded 
DDE/best/1/bin as the competitive variant among the four 
variants subjected for analysis. 

Qin, Huang and Suganthan [15], recently, proposed a self 
adaptive DE (SaDE) in which both trial vector generation 
strategies and their associated control parameter values are 
gradually self-adapted by learning from their past 
experiences in generating promising solution. Four variants 
viz. rand/1/bin, rand-to-best/2/bin, rand/2/bin and current-
to-rand/1/bin were considered in the strategy candidate pool. 
Though this work does not empirically analyze the 
performance difference between DE variants, it indeed 
stresses the importance of understanding the efficacy of 
different trial vector generation strategies during different 
stages of evolution. 

There are other works abound that primarily compares a 
particular  DE variant with its improved or enhanced  version  
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  Table 1. Description of the test functions used in our experiments 

 
like in [16] to cite an example, or a DE variant with its 
enhanced versions and Particle Swarm Optimization (PSO) 
algorithm [5,17 ] and with simple EAs [5]. 
 
4. Design of Experiments 
      In this paper, we investigate and compare the 
performance   of   the   fourteen   DE   variants,    identified    

 
and listed in Section 2, on a set of benchmark problems 
with high dimensionality and different features. We have 
chosen 14 test functions f1 - f14 [11, 18] of dimensionality 
30, grouped by the features – unimodal separable, 
unimodal nonseparable, multimodal separable and 
multimodal nonseparable. All the chosen test functions are 
dimensionwise scalable and have an optimum value of zero 
except f7.  

f1 – Sphere model 
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f5 – Quartic Function with Noise f6 – Schwefel’s Problem 1.2 
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f7 – Generalized Schwefel’s Problem 2.26 
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f13 – Generalized Penalized functions 
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f14 – Generalized Penalized functions 
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                Table 2. CR values used in our experiments for DE variants  

 
For the ease of comparison, the description of f7 was 

adjusted to have its optimum value of zero by adding the 
optimal value 12569.486618164879 [7].    

The test functions are listed Table 1, among which f1-f5 
are unimodal separable, f6 is unimodal nonseparable, f7-f9 
are multimodal separable functions and functions f10 -f14 are 
multimodal nonseparable.  

The three crucial control parameters of the DE 
algorithm, irrespective of the fourteen variants, are 
population size (NP), scaling factor (F) and crossover rate 
(CR). We fixed the population size NP as 60 and maximum 
number of generations as 3000 (consequently, the 
maximum number of function evaluations calculate to 1, 
80,000). The moderate population size and number of 
generations were chosen to demonstrate the efficacy of DE 
variants in solving the chosen problems. The variants will 
stop before the maximum number of generations is reached 
only if the tolerance error (which has been fixed as an error 
value of 1 x 10-12) with respect to the global optimum is 
obtained. Following [11, 19] we defined a range for the 
scaling factor, F [0.3, 0.9] and this value is 
generated anew at each generation for all variants. We use 
the same value of K as F. 

The crossover rate, CR, was tuned for each variant-test 
function combination. Eleven different values for the CR 
viz., {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} were 
tested for each variant-test function combination. For 
combination of each variant-test_function-CR value, 50 
independent runs were conducted. Based on the obtained 
results, a bootstrap test was conducted in order to 
determine the confidence interval for the mean objective 
function value. The CR value corresponding to the best 
confidence interval (i.e., 95%) was chosen to be used in our 
experiments. The fourteen DE variants along with the CR 
values for each test function are presented in Table 2. 

 

 
As EAs are stochastic in nature 100 independent runs 

were performed, per variant per test function, by 
initializing the population for every run with uniform 
random initialization within the search range. 

 
5. Results and Discussion 
 

The mean and standard deviation of objective function 
value along with the success rate of each variant–test 
function combination is presented in Table 3, 4 and 5. 

The variants current-to-rand/1/exp and current-to-
best/1/exp have not solved any of the unimodal functions. 
Similar performance have been shown in the case of 
multimodal functions as well with poor performance on f7 
(less than or equal to 5% of success rate). 

However, their binomial counterparts viz. current-to-
rand/1/bin and current-to-best/1/bin, managed to solve 
most of the functions except  f8 and f10. It is worth noting 
that these are the two out of the three functions which 
solved f11 (with 56% of success rate).  But their 
performance on f7 is similar to that of their exponential 
counterparts.  In the case of unimodal test functions, both 
variants solved f1 and f4 with 100% success rate but failed 
on f2, f3, f5 and f6.   

The variants best/1/bin and best/1/exp are the only 
variants which solved f7 with a high success rate (above 
85%), but failed to solve most of the multimodal functions. 
The binomial variant performed poorly on f8 and f12 while 
exponential variant did not solve them at all. In case of 
unimodal functions, the exponential variant best/1/exp 
solved none but f6 with 56% success rate. However, the 
binomial variant solved five out of six variants – f1 and f5 
with relatively lower success rate and f2, f3 and f6 with 
relatively higher success rate. 

The variants best/2/bin and best/2/exp (which differ 
from previous pair by the number of perturbing difference 

Sno Variant                   f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

1 rand/1/bin 0.9 0.2 0.9 0.5 0.9 0.2 0.8 0.5 0.1 0.9 0.1 0.1 0.1 0.1 

2 rand/1/exp 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0 0.9 0.9 0.9 0.9 0.9 0.9 

3 best/1/bin 0.1 0.1 0.5 0.2 0.8 0.1 0.7 0.1 0.1 0.1 0.1 0.3 0.8 0.1 

4 best/1/exp 0.9 0.8 0.9 0.9 0.8 0.8 0.9 0.7 0.9 0.8 0.8 0.9 0.8 0.8 

5 rand/2/bin 0.3 0.1 0.9 0.2 0.9 0.2 0.9 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

6 rand/2/exp 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.9 0.9 0.9 

7 best/2/bin 0.1 0.3 0.7 0.2 0.6 0.1 0.5 0.7 0.1 0.4 0.1 0.1 0.1 0.1 

8 best/2/exp 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.9 0.9 0.9 

9 current-to-rand/1/bin 0.5 0.1 0.9 0.2 0.1 0.1 0.2 0.4 0.1 0.1 0.1 0.2 0.3 0.1 

10 current-to-rand/1/exp 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.9 0.9 0.9 

11 current-to-best/1/bin 0.2 0.1 0.9 0.2 0.1 0.3 0.2 0.8 0.1 0.1 0.2 0.2 0.1 0.1 

12 current-to-best/1/exp 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.9 0.9 0.9 0.9 0.9 0.9 

13 rand-to-best/1/bin 0.1 0.1 0.9 0.4 0.8 0.4 0.8 0.8 0.1 0.9 0.1 0.1 0.2 0.1 

14 rand-to-best/1/exp 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.4 0.9 0.9 0.9 0.9 0.9 0.9 

∈
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Table 3. Mean and standard deviation (Std) of objective function values and success rate (SR) 
 for the unimodal functions (f1- f6) 

 
f1 f2 f3

Variant Mean Std SR Mean Std SR Mean Std SR 
rand/1/bin 0.0000 0.0000 100 0.0000 0.0000 100 0.0000 0.0000 100 

rand/1/exp 0.0000 0.0000 100 0.0000 0.0000 100 3.7639 2.1111 0 

best/1/bin 457.2468 623.9873 3 0.1432 0.5529 40 1.9630 4.9992 79 

best/1/exp 583.7935 658.5428 0 4.0507 3.0401 0 37.3642 18.2614 0 

rand/2/bin 0.0000 0.0000 100 0.0000 0.0000 100 0.0559 0.0112 0 

rand/2/exp 0.0039 0.0049 61 0.0224 0.0060 0 32.9047 5.5725 0 

best/2/bin 0.0000 0.0000 100 0.0000 0.0000 100 0.0000 0.0000 100 

best/2/exp 0.0000 0.0000 100 0.0000 0.0000 100 0.0474 0.0404 1 

current-to-rand/1/bin 0.0000 0.0000 100 0.0183 0.0065 0 3.6843 0.3799 0 

current-to-rand/1/exp 24.2932 6.3867 0 44.2244 7.3005 0 57.5220 5.1590 0 

current-to-best/1/bin 0.0000 0.0000 100 0.0182 0.0065 0 3.7101 0.4050 0 

current-to-best/1/exp 24.3697 8.2160 0 45.0446 5.8030 0 56.6723 5.1574 0 

rand-to-best/1/bin 0.0000 0.0000 100 0.0000 0.0000 100 0.0000 0.0000 100 

rand-to-best/1/exp 0.0000 0.0000 100 0.0000 0.0000 100 3.3773 1.5910 0 

f4 f5 f6

Variant Mean Std SR Mean Std SR Mean Std SR 

rand/1/bin 0.0200 0.1400 98 0.0040 0.0049 60 0.0729 0.4216 73 

rand/1/exp 0.0000 0.0000 100 0.0157 0.0057 0 0.3121 0.5565 4 

best/1/bin 437.2500 663.7670 0 0.0876 0.2676 22 13.2715 99.0423 86 

best/1/exp 591.8500 379.3213 0 0.0583 0.0737 0 57.3892 337.3408 58 

rand/2/bin 0.0000 0.0000 100 0.0107 0.0032 2 1.6441 2.1216 0 

rand/2/exp 0.0000 0.0000 100 0.0473 0.0165 0 269.8565 151.0646 0 

best/2/bin 0.0700 0.3258 95 0.0029 0.0059 75 0.0000 0.0000 100 

best/2/exp 0.3900 0.6801 69 0.0132 0.0055 2 0.0000 0.0000 100 

current-to-rand/1/bin 0.0300 0.2216 100 0.0373 0.0079 0 3210.3641 619.0113 0 

current-to-rand/1/exp 43.0700 8.6658 0 0.2683 0.0713 0 3110.8981 1104.1524 0 

current-to-best/1/bin 0.0000 0.0000 100 0.0387 0.0096 0 3444.0029 792.0355 0 

current-to-best/1/exp 41.9500 9.2631 0 0.2606 0.0618 0 2972.6180 1023.4628 0 

rand-to-best/1/bin 0.0000 0.0000 100 0.0040 0.0049 60 0.0691 0.3954 79 

rand-to-best/1/exp 0.0000 0.0000 100 0.0149 0.0057 0 0.2048 0.3516 10 
 

vectors) solved most of the multimodal functions except f11 
and f8 (in case of exponential variant). It is worth noting that 
these are the only pair that solved f10 while the rest of the 
variants failed. Interestingly, unlike best/1/* variants best/2/* 
variants performed poorly on f7. The variants solved all the 
unimodal functions, but the exponential counterpart 
performed poorly on f3 and f5. 

While the variant rand/1/bin performed well on unimodal 
functions with high success rate its exponential counterpart 
performed poorly on f6 and failed on f3 and f5. With respect to 
multimodal functions the variants performed well on f9, f12, 
f13 and f14. While rand/1/bin solved f8 with 100% success rate  

 
its exponential counterpart failed, however both variants 
failed totally on f10 and f11.  They also have a poor 
performance on f7. 

The poor performance trend on f7 continued in the case of 
rand/2/bin and rand/2/exp as well. While the former solved 
most of the multimodal functions with 100% success rate 
except f10 and f7, the latter performed poorly on f10, failed on 
f8 and f12 and reasonably well on f9, f11 and f14. In the case of 
unimodal functions rand/2/bin performed very well on f1, f2 
and f4, poorly on f5 and failed on f3 and f6.  However, the 
exponential counterpart failed on f2, f3, f5 and f6. It is worth 
noting that rand/2/exp is one of the three variants to solve the  
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Table 4.  Mean and standard deviation (Std) of objective function values and success rate (SR) 
 for the multimodal functions (f7- f12) 

 
f7 f8 f9

Variant Mean Std SR Mean Std SR Mean Std SR 
rand/1/bin 0.13490 0.12770 4 0.00000 0.00000 100 0.00000 0.00000 100 
rand/1/exp 0.10280 0.13020 7 47.92500 6.65194 0 0.00000 0.00000 100 
best/1/bin 0.00200 0.00632 88 4.33100 3.99821 3 12.93320 15.58621 0 
best/1/exp 0.00500 0.01952 85 50.74030 13.02422 0 32.18380 12.24000 0 
rand/2/bin 0.22370 0.20552 1 0.00000 0.00000 100 0.00000 0.00000 100 
rand/2/exp 0.26680 0.28251 2 101.37520 12.40981 0 0.00930 0.00807 26 
best/2/bin 0.17090 0.20154 1 0.69400 1.13478 47 0.11550 0.33019 89 
best/2/exp 0.08340 0.17745 17 80.63350 16.49633 0 2.52660 1.45867 7 
current-to-rand/1/bin 0.13870 0.13939 2 37.74720 3.99287 0 0.00000 0.00000 100 
current-to-rand/1/exp 0.11610 0.11123 3 235.14420 16.16070 0 18.35160 1.97843 0 
current-to-best/1/bin 0.18940 0.19713 3 37.03980 4.68652 0 0.00000 0.00000 100 
current-to-best/1/exp 0.09800 0.11232 5 232.79620 17.22593 0 18.20830 1.71069 0 
rand-to-best/1/bin 0.21780 0.20129 0 0.00000 0.00000 100 0.00000 0.00000 100 
rand-to-best/1/exp 0.11570 0.12706 6 48.08910 8.56059 0 0.00000 0.00000 100 

f10 f11 f12

Variant Mean Std SR Mean Std SR Mean Std SR 
rand/1/bin 21.98680 18.08291 0 0.09000 0.00000 0 0.00000 0.00000 100 

rand/1/exp 25.47740 34.90935 0 0.09000 0.00000 0 0.04880 0.09338 68 

best/1/bin 585899.88 997086.13 0 3.58330 2.51108 0 3.72490 4.73650 1 

best/1/exp 64543.84 170039.70 0 6.09370 1.19750 0 5.90640 2.69510 0 

rand/2/bin 19.00760 14.37413 0 0.09000 0.00000 0 0.00000 0.00000 100 

rand/2/exp 2741.31730 9859.61 0 0.01040 0.02313 64 0.21020 0.21313 3 

best/2/bin 2.31670 9.85087 38 0.09000 0.00000 0 0.00000 0.00000 100 

best/2/exp 1.12260 1.87195 29 0.82740 0.64798 0 0.03050 0.06114 44 

current-to-rand/1/bin 52.81450 22.26188 0 0.01380 0.02707 56 0.00140 0.00697 96 

current-to-rand/1/exp 199243.32 463660.17 0 13.82590 1.12971 0 1.21170 0.05337 0 

current-to-best/1/bin 56.91020 32.39015 0 0.01160 0.02419 56 0.00130 0.00734 96 

current-to-best/1/exp 119685.68 159936.13 0 13.69280 1.12759 0 1.20760 0.05988 0 

rand-to-best/1/bin 17.37140 12.76377 0 0.09000 0.00000 0 0.00000 0.00000 100 

rand-to-best/1/exp 24.54490 23.31357 0 0.09000 0.00000 0 0.04920 0.09114 69 
 

function f11 with relatively higher success rate than other 
variants. 

Finally the variants rand-to-best/1/bin and rand-to-
best/1/exp failed to solve f10, f11 and f7 in the case of binomial 
variant and f8 in the case of exponential variant. The former 
solved rest of the multimodal functions with 100% success 
rate. However, the exponential variant performed poorly on 
f7 and reasonably well on f12. The binomial variant rand-to-
best/1/bin performed well on unimodal functions solving 
most of them with 100% success rate. The variant rand-to-
best/1/exp, however, failed on f3 and f5 and performed poorly 
on f6. 

Figure 2 compares the overall performances of all 
fourteen variants on all functions (a-c), unimodal functions  

 

 
  (d-f) and multimodal functions (g-i) by plotting empirical 
distribution of normalized success performance [15, 20]. The 
success performance (SP) has been calculated as follows. 
 

( ) ( )
runs successful #

runs  total#runs successfulfor  evalutionsfunction mean 
 SP

∗
=   (11) 

      A run is considered successful if the global optimum is 
reached with the given precision, before the maximum 
number of functions evaluations is reached. The success 
performances of all fourteen variants on each benchmark 
function are calculated and are normalized by dividing them 
by the best SP on the respective function. 
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 Table 5.  Mean and standard deviation (Std) of objective function values and success rate (SR) 
 for the multimodal functions (f13- f14) 

 
f13 f14

Variant Mean Std SR Mean Std SR 
rand/1/bin 0.00000 0.00000 100 0.00000 0.00000 100 
rand/1/exp 0.00000 0.00000 100 0.00000 0.00000 100 
best/1/bin 15.78 90.67 0 973097.03 2098764.28 0 
best/1/exp 131448.66 636890.94 0 154434.94 380096.44 0 
rand/2/bin 0.00000 0.00000 100 0.00000 0.00000 100 
rand/2/exp 0.00000 0.00000 100 0.00820 0.01086 50 
best/2/bin 0.00100 0.01000 99 0.00000 0.00000 100 
best/2/exp 0.13760 0.32728 69 0.00350 0.00575 69 
current-to-rand/1/bin 0.00050 0.00261 96 0.00000 0.00000 100 
current-to-rand/1/exp 10.89420 2.96399 0 24.11140 15.43392 0 
current-to-best/1/bin 0.00090 0.00288 91 0.00000 0.00000 100 
current-to-best/1/exp 10.37260 2.66337 0 23.03830 7.44047 0 
rand-to-best/1/bin 0.00000 0.00000 100 0.00000 0.00000 100 
rand-to-best/1/exp 0.00000 0.00000 100 0.00000 0.00000 100 

 
      As can be seen from equation (11) small values of SP and 
therefore large values in the empirical distribution graphs are 
preferable. The first variant that reaches (earlier) the top of 
the graph will be regarded as the best variant. 
     For the sake of display, the variants have been plotted in 
three groups. As can be seen from the first row (a-c) of 
Figure 2, rand/1/bin, best/2/bin and rand-to-best/1/bin 
(closely followed by best/2/exp) have displayed overall 
superior performance. It is worth noting that none of the 
variants reached top of the graph because all of them failed 
to solve atleast one or two multimodal test functions. Three 
of the four variants identified above rely on the strategy of 
using the best solution found so far for perturbation. It is 
known that such strategy perform well while solving 
unimodal problems. However, despite the fact that the 
strategies relying on best solution are more likely to get stuck 
at a local optimum and thereby lead to a premature 
convergence while solving multimodal problems, the variants 
did perform well on multimodal test functions as well. 
      The superior performance of the above four variants is 
evident in the case of unimodal functions, as can be seen in 
the second row (d-f) of Figure 2. However, in case of 
multimodal functions, Figure 2 third row (g-i), while 
rand/1/bin, best/2/exp, rand-to-best/1/bin and best/1/bin 
reached their maximum performance quicker (as is 
preferred), variants like rand/2/bin, rand/2/exp, current-to-
best/1/bin,  current-to-rand/1/bin and rand-to-best/1/exp 
have also displayed competitive performance. The 
performances of variants rand/2/exp, current-to-best/1/bin 
and current-to-rand/1/bin on unimodal and multimodal test 
functions are contrary. While on the former the three variants 
displayed poor performance with respect to the other 
variants, on the latter they have displayed a very competitive 
performance. It is worth noting that the Figure 2 do not 
display   the  variants  best/1/exp,  current-to-rand/1/exp  and  

 
current-to-best/1/exp due to their poor overall performance 
(and due to the scale involved in the graphs as well). 
Interestingly, as can be seen from the graphs, the binomial 
variants have consistently shown a relatively better 
performance against their exponential counterparts. 
 
6. Conclusion 
 
     This paper presented an empirical comparative 
performance analysis of fourteen classical DE variants on 
fourteen unconstrained global optimization benchmark 
problems grouped by their modality and decomposability. 
The variants rand/1/bin, best/2/bin, rand-to-best/1/bin and 
best/2/exp have displayed overall superior performance. This 
superior performance was due to their dominant success on 
unimodal functions. However, in the case of multimodal 
functions, variants like rand/2/bin, rand/2/exp, current-to-
best/1/bin, current-to-rand/1/bin and rand-to-best/1/exp have 
also displayed competitive performance. The variants 
best/1/exp, current-to-rand/1/exp and current-to-best/1/exp 
have displayed overall worst performance. It is worth noting 
that the binomial variants have consistently shown a 
relatively better performance against their exponential 
counterparts on both unimodal and multimodal test functions. 
These observations could be further analyzed focusing on 
why the variants behave so, and this could be addressed in 
the light of their exploration and exploitation capabilities. 
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