
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 3 (2011), pp. 924–931
c© MIR Labs, http://www.mirlabs.net/ijcisim/index.html

Service Based System Monitoring Framework
Ajaya Kumar Tripathy1 and Manas Ranjan Patra2

1Department of Computer Science Engineering,
Silicon Institute of Technology, Bhubaneswar, India

2Department of Computer Science,
Berhampur University, Berhampur, India

Abstract: Web Service Based Systems (SBS) are essentially dis-
tributed in nature and in most cases facilitated through third
party service providers. This necessitates monitoring of the pro-
visioning of SBS at run-time. Further, monitoring of SBS in a
non-intrusive and composition-platform independent manner is
a real challenge. This paper proposes a framework for moni-
toring the compliance of a set of pre-specified requirements of
a SBS. The requirements may include behavioral properties of
SBS and/or assumptions that service providers may specify in
terms of events that can be extracted from SBS at run-time.
A Monitor Specification Language (MSL) has been developed
to specify the properties of the system to be monitored at run-
time. The language has the ability to specify boolean, statistical,
and time-related properties. The specifications are automati-
cally translated into executable C programs which act as run-
time monitors to monitor the specified properties by capturing
run-time events from the business layer, service layer and in-
frastructure layer of the SBS. However, in the proposed frame-
work the SBS runs quite independent of the monitoring func-
tionality in a non-intrusive manner.
Keywords: Web Services, Service Based System, Run-Time Mon-
itoring

I. Introduction

A web service is an application that exports a description of
its functionality and makes it available using standard net-
work technologies. These functionalities can be accessed
through standard XML messages over internet [21]. Soft-
ware systems that are composed of autonomous web services
through a composition process are referred to as ”Web Ser-
vice Based Systems” (SBS).
Research in Web Services spans over many interesting issues
covering all the phases of the service life-cycle, e.g., service
description, service discovery, selection and invocation, ser-
vice composition, service advertisement, service negotiation,
service security and reliability. In this paper, we focus on an-
other interesting research topic, namely, SBS monitoring.
The ability to set up a SBS monitoring framework has been
increasingly recognized as one of the essential preconditions
for the deployment of a SBS. This is because the service
composition assumptions and requirements of SBS that are
verified at design time, prior to deployment and execution,
can still be violated at run-time. This is especially true in

case of web service based systems, which are most often de-
veloped by composing services that are made available by
third parties. Such services are developed and managed au-
tonomously and can change without notification leading to
run-time problems. As and when such deviations are de-
tected those must be captured and analyzed so as to take ap-
propriate action. For instance, a bank may suddenly refuse to
transfer money to a partner hotel’s account. Such an unusual
behavior of a bank requires immediate attention to know the
actual reason behind it. Similarly, certain statistical infor-
mation collected during run-time can reveal interesting phe-
nomena. For instance, a sudden increase in the number of
customers not accepting the offer of a travel agent may indi-
cate that the agent’s offer is considerably high compared to
other business competitors. The occurrence of such events
has to be reported as soon as possible so that the business
analyst can take prompt action.
Some of the recent works have addressed different aspects of
monitoring a SBS, e.g., [3, 7, 11, 15, 17, 19, 20]. In this paper
we propose a novel solution to the problem of monitoring
SBS.
In this paper, we describe a SBS monitoring framework
which is independent of any business logic and service com-
position platform of SBS. The monitoring framework works
in parallel with the SBS and allows for easy adaption of the
business process. The SBS sends interesting events from the
business layer, service layer (incoming/outgoing messages
to/from the services used in the SBS) as well as from the
infrastructure layer and feeds those into an event bus at run-
time. A monitor observes the events from the event bus and
accordingly monitors the functional and non-functional ser-
vice composition assumptions and requirements of the SBS.
Further, we provide a temporal logic based, RTML (Run-
Time Monitor specification Language) type expressive lan-
guage for specifying service composition assumptions, and
functional as well as non-functional requirements of an SBS.
The language allows for specifying boolean, static and time
related properties. Beyond composition assumptions, we can
also specify properties related to cross layer events, e.g.,
count the number of clients asking flight for Venice when
there is a carnival (here Venice is a part of service level mes-
sage where as carnival is a business layer event).
We have also designed a monitor generator which automat-
ically generates a C program for the monitor which is de-

Dynamic Publishers, Inc., USA

ployed at run-time, thus reducing the design and implemen-
tation efforts 1.
The rest of the paper is structured as follows. In Section II,
we describe the state of the art in the Web Service Tech-
nology and existing research approaches to the monitoring
of SBS. Section III describes our monitor specification lan-
guage. Section IV, describes an example scenario. Section V
gives complete description of the framework. In Section VI
we conclude our work and describe our future direction of
research.

II. State of the Art

A. Web Service Technologies

Web Services are platform-independent, self-contained, self-
describing, modular components that can be published, lo-
cated and invoked over the Web. In order to achieve inter-
operability in such an heterogeneous framework, standards
are of vital importance [14]. A whole stack of different stan-
dards has already been proposed with the aim of supporting
the description, discovery, and interoperability of distributed,
heterogeneous applications as services.
The functional description of a Web Service is provided
by the Web Services Description Language (WSDL) [8].
WSDL describes a set of operations it offers, in-coming and
out-going messages, and data types used by the Web Ser-
vice (defined in terms of XML Schemas). Concrete protocol
bindings and physical address port specifications complete a
service description, providing a mechanism to locate a Web
Service. WSDL defines what a Web Service does, not how
it does; it characterizes the service only in terms of its in-
terface, without providing any behavioral description. Such
dynamic aspects are crucial for a complete understanding of
a web service so that it can be recognized and used by au-
tonomous applications.

B. SBS Monitoring

The necessity of specifying and monitoring different prop-
erties of composition assumptions as well as functional and
non-functional requirements of SBS is widely recognized by
industry and academia.
Lemana et al. [12] have proposed a SBS monitoring approach
with the introduction of the language SLAng. This language
is an extension of the existing business process languages.
In this language properties are defined as a list of Quality
of Service (QoS) parameters. At the implementation stage
QoS parameters are assigned to the target business process,
this leads to an intrusive approach. The target servers are
required to support these QoS parameters. This approach be-
comes less extensible and flexible. The approach described
in [17] creates monitoring agents to monitor the business pro-
cess. These agents monitor the business process by gathering
the network usage information. Another process evaluates
the properties for any change in the process. This approach
requires the business process to update constantly in order to
adopt to new property requirements.

1An earlier version of this framework has been described in Ref. [19].
This paper is an extended version of Ref. [19] that: describe a revised ver-
sion of the framework.

Barsi et al. [4] have proposed an approach for monitoring
dynamic service composition with respect to guarantee terms
expressed via assertions on services. This approach assumes
composition process specified in BPEL. A guarantee term is
verified by a call to an external service and the execution of
the composition process waits until the monitor returns the
result of the check. The composition process may continue or
abort with an exception notification on whether the guarantee
term is violated. The monitoring that it performs may effect
the performance of the monitored system. This approach is
intrusive to the normal operation of an SBS.
Another monitoring approach is presented by Baresi et
al. [6]. This approach monitors both functional correctness
of BPEL orchestration and quality of service agreements set
between the service provider and the service consumer. They
provide a language called WSCoL (Web Service Constraint
Language) [5] which allows designers to specify constraints
on BPEL orchestration. Appropriate external services called
Monitoring managers are responsible for analyzing WSCoL
constraints. The business logic is unaffected by monitor
specification. Therefore, we can say the approach is non-
intrusive at the specification time. But to allow the process
to interact with the external monitors, additional BPEL code
is added to the process at deployment time, this leads to an
intrusive approach.
Lazovik et al. [13] presents a framework in which service re-
quests are presented in a high-level language called XSRL
(Xml Service Request Language). The framework monitors
the execution of the request services. Designers can define
three kinds of properties: (1) goals that must be true before
transiting to the next state (2) goals that must be true for the
entire process execution, and (3)goals that must be true for
the process execution and evolution sequence. The frame-
work loops between execution and planning. The latter ac-
tivity is achieved by taking into account context and proper-
ties specified for the state-transition system. This makes it
possible to discover whether a property has been violated by
the previous execution.
Barbon et al. [3] present a monitoring approach extending the
open-source Active BPEL engine. This approach defines an
executable monitoring language RTML(Run-Time Monitor
specification language) to specify properties of SBS to mon-
itor, which is based on events and combines them exploit-
ing past-time temporal logics and statistical functionalities.
Monitors run parallel to BPEL (Business Process Execution
Language for Web Services) [1] process as independent soft-
ware modules that verify the guarantee terms by intercepting
the input or output messages that are received or sent by the
process. The framework supports automatic generation and
deployment of monitors using guarantee terms specified in
RTML. This is a nice approach but works only at service
level for the BPEL processes.
Mahbub et al. [15] present an approach extending the WS-
Agreement [2]. This approach supports monitoring of qual-
ity and functional properties. It introduces a new language
to specify service guarantee terms in terms of:(1)events sig-
nifying invocation of operations of a service by the compo-
sition process of an SBS system and return from these exe-
cutions, (2)events signifying calls of operation of the com-
position process of an SBS system by external services and

925 Tripathy and Patra

return from those executions, (3)the effect that events of ei-
ther of the above kind have on the state of the SBS system or
the service that it deploys. This language has been defined by
a separate XML schema and is called EC-Assertion, which
is based on Event Calculus (EC) [18] which is a first order
temporal logic language. It is a nice approach but limited to
only service level BPEL processes.
Tripathy et al. [19] present a non intrusive and SBS
composition platform independent monitoring approach .
This approach defines an executable monitoring language
MSL(Monitor specification language) to specify properties
of SBS to monitor, which is based on events and com-
bines them exploiting past-time temporal logics and statis-
tical functionalities. Monitors run parallel to SBS process
as independent software modules that verify the guarantee
terms by intercepting the input or output messages that are
received or sent by the process and interested events from dif-
ferent layer of SBS. The framework supports automatic gen-
eration and deployment of monitors using guarantee terms
specified in MSL. This is a nice approach but only can mon-
itor instance level properties.

III. Monitor Specification Language

For monitoring SBS functional and non-functional properties
and business assumptions (further we will refer these mon-
itoring requirements as SBS properties), it is needed to for-
mally specify these properties. The SBS properties that need
to be monitored are expressed in a temporal logic based, ex-
ecutable language called MSL which is defined as follows:
In MSL, SBS properties are specified in terms of events.
Here, an event is something that occurs at a specific instant in
time in SBS domain. Events are categorized in to three cat-
egories: Service Layer Events, Business Layer Events and
Infrastructure Layer Events. For example,

• Sent/received messages by the composed service
to/from the atomic services used in the composition.
These service to service message communication events
are classified as service layer events.

• Something interesting occur in the SBS business do-
main which may significantly affect the business of the
SBS are categorized as business layer event. For exam-
ple, if a carnival is takes place in a city then the business
of ”Travel Agent Service” of that city may increase.
So, the happening of carnival is a interesting event for
”Travel Agent Service”. And since these event occur in
the business layer, these events are categorized as busi-
ness layer events for ”Travel Agent Service”.

• If a service provider uses 4 virtual machines to run the
services. If the of one of the virtual machine is exceed-
ing the normal load limit then in near future there is a
chance of that virtual machine failure. So this may be a
interesting event for a service provider. Since this event
is related to service infrastructure, we categorize the
events from infrastructure layer as infrastructure layer
event.

The grammar for specifying events in MSL is as follows:
event ::= eventName | eventName.(condition)

eventName ::= [a− z][a− zA− Z0− 9]∗
condition ::= type var cond value |

condition V condition | condition ∧ condition
type ::= int | double | string
var ::= [a− zA− Z0− 9]+
cond ::= 6= | = | > | <
value ::= [−+][0− 9] + | [−+][0− 9] + .[0− 9] ∗ |

[a− zA− Z]∗

Semantics From previous discussion we can assume that,
finally for the framework the event is a message with a mes-
sage name with zero or more internal variable with variable
name, variable type and variable value. This part of the gram-
mar facilitates the specification of events with the condition
on the internal variables of the event, eventName specifies
the message name, type, var and val specifies internal vari-
able type (which may be int/double/string), internal variable
name (which is a string) and internal variable value (which
may be an integer number/a real number/a string) respec-
tively. Condition is defined as type var cond value: where
type is the data type of the variable(int/double/string),
var is the name of the variable, cond is a logical con-
dition (= / 6= / > / <) on variable and value is a
value(number/string) to compare with the variable value.
The following grammar defines the boolean, temporal and
statistical formulas. We distinguish boolean formulae b,
which monitor properties that can be either true or false, and
numeric formulas n, which monitor properties that define a
numerical value (which include temporal and statistical for-
mulae).
b ::= event | b ∨ b | b ∧ b | b ⇒ b | ¬ b | n = n | n >
n | Y b | O b |H b | b S b
n ::= C(b) | T (b) | b?n : n | n + n | n − n | n ∗
n | n / n | NUM
NUM ::= [0− 9] ∗ | [0− 9] + .[0− 9]∗
A boolean formula can be an event, or an event with some
comparison between internal variables of the event, or a past
LTL [10] formula (operators Y, O, H and S), or a compar-
ison between numeric formulas, or a logic combination of
other boolean formulas. A numeric formula can be either
a counting formula (operator C), or a time measurement for-
mula (operator T), or an arithmetic operation on numeric for-
mulas.
The operators ∨, ∧, ¬, =, >, < and ⇒ have the
same meaning as logical ∨, logical ∧, logical ¬, logical =,
logical >, logical < and logical ⇒. Past LTL formulas
have the following meaning: Y b means ”b was true in the
previous step”, O b means ”b was true (at least) once in the
past”, H b means ”b was true always in the past” and b1 S
b2 means ”b1 has been true since b2. Numeric formula C(b)
counts the number of times that boolean formula b has been
true since the creation of the process instance. Formula T(b)
counts the sum of the time-spans the formula b remains true.

IV. An Example

Intra City Motorbike Rental Service (MRS) is a SBS example
scenario (see Figure 1), which is used further in this article to
explain the proposed approach in a better way.Consider the
MRS act as a broker offering its customers to avail the bikes

926Service Based System Monitoring Framework

Figure. 1: Intra City Motorbike Rental Service: Scenario

on rent. The bikes are provided by different bike rental com-
panies. A customer can book a bike online for a particular
location in a city and then can avail the bike from a bike park
nearer to that requested location.Let the MRS is implemented
as service based system that consist of a service composition
process that interacts with following web services:

• Motorbike information services (MIS) which are pro-
vided by different motorbike rental companies. It main-
tains registries of bikes, check the availability for rent
request and if available it issues a available bike identi-
fication number.

• Identification Sensor Services (ISS) which are provided
by different motorbike parks to sense motorbike identi-
fication and customer identification as they are driven in
or out of motorbike park and inform MRS accordingly.

• Motorbike Rent Payment Services (RPS) which are pro-
vided by different banks at different motorbike parks to
collect the rent of motorbikes from MRS clients after
use of motorbikes.

• Client Services (CS) that provide MRS with a frontend
that handles interaction with the end-user.

In this explanatory example scenario, we assume the mes-
sage flow of MRS are as follows. CS activate the MRS
for a motorbike rent by sending a rent request message
mentioning the location at which the motorbike is required
and the personal identification i.e, rentRequest(UID,
location). Then MRS checks the availability of mo-
torbike at the requested location by invoking MIS (by
sending isAvailable(location) message). MIS
respond with the availability status: saying no by sending
notAvailable message / saying yes by sending a
available message with a available motorbike identification
i.e, available(mBikeID). If MRS gets a available
response then acknowledge CS by sending a price and con-
dition offer message i.e, offer(price, condition)
otherwise acknowledge CS as motorbike is not available
by sending notAvailable message. If CS accepts the
offer of MRS, then it sends startPayment(accInfo)
message to MRS. Other wise it rejects the offer by sending
offerReject message. Then MRS sends a new offer to

CS. In case of offer acceptance, MRS invokes RPS to
get the payment by sending makePayment(accInfo,
cost). RPS acknowledges MRS about payment suc-
cess/fail by sending paymentSucc/paymentFail. By
getting paymentSucc, MRS acknowledges MIS that the
bike is booked (by sending bikeBooked(mBikeID)).
Then the MIS updates its database accordingly and
sends a bike identification number with unlock key to
CS (by sending bikeKey(mBikeID, unlockKey)
message). When bike enter/exit to/from a bike park,
ISS inform MRS by sending bikeIn(mBikeID,
UID)/bikeOut(mBikeID, UID), subsequently inform
MIS to update its database by sending bikeIn(mBikeID,
UID)/bikeOut(mBikeID, UID). Figure 2 depicts the
message flow of MRS as explained above.
Despite of the simplicity of the domain, due to the business
need and/or providing better service, the MRS provider may
want to monitor the following properties.
The class-I of properties are those that constrain the correct
behaviors of the composition. For example: Property 1: A
bike should not enter to a bike park unless it is dispatched
from any bike park. (Violation of this boolean property indi-
cates ISS is malfunctioning in some bike park.)
Property 2: Allow the client to pay only if there is a bike
available in a bike park nearer to the requested location by
the client. (Non-violation of this boolean property ensure
that MRS accept rent if and only if there is at least one free
(not booked) bike available at the requested location.)
Property 3: A bike should not go out of a bike park if a key
for that bike is not issued by the MRS prior. (Violation of
this boolean property indicates MRS is malfunctioning.)
Property 4: A person can take a bike out of the bike park if
and only if a bike key is issued to him/her earlier and he/she
has already paid the rent. (Non-violation of this boolean
property ensure that MRS accept rent and issued a bike key
to the person who is taking the bike out of the bike park.)
The MRS provider may also be interested in counting number
of times a given event occurs in the execution of MRS. For
example:
Property 5: Count the number of offers offered to the user
before the user accepts. (This information may be helpful
for the MRS to know the most popular rent offer.)
The MRS provider may also be interested in measuring the
time spent to perform certain activities, for example:
Property 6: Measure the MRS transaction completion time.
(Sudden increase/decrease of MRS transaction time may lead
to some functional problem.)
Property 7: Measure the MRS transaction completion time
excluding payment time. (Sudden significant increase/ de-
crease of MRS transaction completion time may lead to some
functional problem, excluding RPS.)
The MRS provider may also be interested in collecting statis-
tical information, related to all instances of MRS. For exam-
ple:
Property 8: The rent request is never refused by MRS.
Property 9: Count the number of times the bike is unavail-
able.
Property 10: Measure the average MRS transaction comple-
tion time. (This can give a statistical idea about MRS trans-
action completion time.)

927 Tripathy and Patra

Figure. 2: MRS message flow diagram.

The MRS provider may also be interested in monitoring prop-
erties, related to a particular subset instances of MRS, satis-
fying certain constraints on internal variables of events. For
example: Property 11: Number of times bike is not available
at ”Barmunda bike park”. (This will help to take decision to
increase number of bikes in ”Barmunda bike park”.)
Finally, the MRS provider may also be interested in monitor-
ing properties related to events coming from different layers.
For example: Property 12: Number of times bike is not
available at ”Puri bike park” during ”Car Festival”. (This
will help to take decision to increase number bikes in ”Puri
bike park” during ”Car Festival”.)

V. Monitoring Framework

Our SBS monitoring framework has been designed with the
objective to support three different key monitoring features
for SBS. The three key features of this approach are: (i)
the monitoring is performed in parallel with the operation of
an SBS without affecting its performance, (ii) non-intrusive
SBS monitoring (i.e, monitoring without interfering the SBS
process execution or with out changing the original SBS),
and (iii) the monitoring framework is independent of the ser-
vice composition platform.
In this framework a human user (typically, provider of an
SBS) can request to monitor the runtime operations of a sys-
tem to see whether certain specified properties are satisfied
or not and indicate any deviations once they are detected.
Our monitoring framework is depicted in Figure 3. Here, it is
assumed that at run-time a process execution engine executes
the composition process of an SBS and delivers its function-
ality while capturing events from all layers (business layer,
service layer and infrastructure layer)and pushes the events
into an Event Bus.
The framework has 3 main components, namely an Event
Bus, a User Interface and a Monitoring Engine. Figure 3
shows a high level representation of the proposed framework.

A. Event Bus

The ”Event Bus” collects events from the SBS and puts the
events in an event queue. The monitors consume the events
from the queue. The types of events the Event Bus receives
are: messages received from the composition process or sent
to the composition process by one of its partner services, in-
teresting events from business layer/Infrastructure layer.

The format of the events are as follows:
[sourceID]eventName{[varType:varName=val]*}
where, sourseID is the source identification number (If the
event coming from service layer then sourceID is the pro-
cess instance number of the SBS. If the event is coming from
infrastructure layer then sourceID is -1. The sourceID of
business layer is 0.), eventName is the name of the event,
varName is the name of a internal variable of the event.
varType is the type of the variable varName (different
varType are int/double/string), val is the value of the
variable varName. One event can have no or some inter-
nal variables. Each variable is in the form of varType :
varName = val. Two variables are separated by a ”,”.
The types of eventName the event bus accepts are as follows:
partnerService I messageName
partnerService O messageName
where, partnerService is the name of the partner service, I:
indicates that the message is a input message for the partner
service, O: indicates that the message is an output message
for the partner service, messageName is the name of the
message.
Examples of events:
[1]CS O rentRequest{string:UID=XYZ67432,
string:location=Puri}:
This is a service layer event with process instance number 1
with event name CS O rentRequest with two internal vari-
ables ”UID” and ”location”. This event name indicates that
rentRequest is a out going message from the partner service
CS of MRS SBS.
[-1]virtualMachineLoad{int:load=60}: This is
an example of infrastructure layer event with event name
virtualMachineLoad with one internal variable ”load”.
[0]cartFestivalStart:
This is an example of business layer event with event name
cartFestivalStart.
MSL Specification of MRS Properties:
Some of the properties we have introduced in Section IV can
be defined by the following MSL formulae:
Property 1: A bike should not enter to a bike park unless it is
dispatched from any bike park.
MRS I bikeIn⇒ O(MRS I bikeOut)
Property 2: Allow the client to pay only if there is a bike
available in a bike park nearer to the requested location by
the client.
MRS I startPayment⇒ O(MRS I available)
Property 3: A bike should not go out of a bike park if a key
for that bike is not issued by the MRS prior.
MRS I bikeOut⇒ O(MRS O bikeKey)

Figure. 3: SBS monitoring Framework

928Service Based System Monitoring Framework

Property 4: A person can take a bike out of the bike park if
and only if a bike key is issued to him/her earlier and he/she
has already paid the rent.
MRS I bikeOut⇒ (O(MRS O bikeKey)
⇒ O(MRS I paymentSuccess))
Property 5: Count the number of offers offered to the user
before the user accepts.
C(MRS I notAvailable)
Property 6: Measure the MRS transaction completion time.
T (¬(MRS O bikeKey) S (MRS I rentRequest))
Property 7: Measure the MRS transaction completion time
excluding payment time.
T (¬(MRS O bikeKey) S (MRS I rentRequest))
−

T (¬(MRS I paymentSuccess∨ MRS I paymentFail)
S (MRS O makePayment))

B. Monitor Engine

Monitor engine is the most important and most complex part
of the framework. It has 4 main components, namely Moni-
tor Generator which generates the monitors, Monitor Repos-
itory which stores all the monitors, Monitor Handler which
receives events from event bus and sends the received events
to appropriate monitors in the Monitor Repository and Mon-
itor result DB stores the results of the monitors.

1) Monitor Generator

is a MSL compiler, designed using Bison [9] as parser gen-
erator and Flex [16] as lexical analyzer generator. This com-
piler translates the MSL specified formula to a C program
named MonitorID.c and stores it in the Monitor Reposi-
tory, where ID is the serial number of the monitor. Also the
name of the created monitor (i.e, MonitorID) is registered
(i.e, stored) in the Monitor Registory (i.e, a registry which
stores name of created monitors). MonitorID.c contains
a parse tree of the MSL formula and a parse tree update func-
tion implementing Algorithm 1. Each node of the parse tree
along with its child sub trees represent a formula. Each node
of the parse tree stores the formula values (truth/numerical).
Hereafter, ”node value” would mean the value of the formula
it represents. The root node stores the value of the total for-
mula i.e, value of the monitor. When the Monitor Handler
wakes up a monitor by sending an event, the Update-Tree
function updates the formula value at each node of the parse
tree of the corresponding monitor according to the following
formula value update rules.

Formula Update Rules : Update-Tree function uses fol-
lowing rules to update the parse tree node values i.e, the value
of sub formulas of a total formula.

1. fV al(condition) i, e. fV al(type var cond value)

i.e, Formula value of acondition := true

”If one of the internal variable of the occurring event has
type = type, name=var and has the value satisfying
cond(i.e, = | 6= | > | <) comparison to value”.

2. fV al(condition ∧ condition) :=

fV al(condition) ∧ fV al(condition)

Figure. 4: Left: Parse Tree, Right: Updated Parse Tree

3. fV al(event) := true ”If event is occurring”.

4. fV al(event.condition) :=

fV al(event) ∧ fV al(condition)

5. fV al(Y b) := oldfV al(b)

6. fV al(O b) := old fV al(Ob) ∨ fV al(b)

7. fV al(H b) := old fV al(Hb) ∧ fV al(b)

8. fV al(b1 S b2) :=

fV al(b2) ∨ (old fV al(b1 S b2) ∧ fV al(b1))

9. fV al(C b) :=if fV al(b) then (old fV al(C b)+1) else
fV al(C b)

10. fV al(T b) :=if fV al(b) ∧ old fV al(b) then
(old fV al(T b) + elapsed) else old fV al(T bf)

Note

• fVal of (b1 ∨ b2) | (b1 ∧ b2) | (b1 ⇒ b2) | ¬ b1 | (b1 =
b2) | (b1 > b2) are as per the normal logical operator
rule. For example:

fV al(bf1 ∧ bf2) := fV al(bf1) ∧ fV al(bf2)

• fVal of b?n1 : n2 | n1+n2 | n1−n2 | n1∗n2 | n1 / n2
are as per the standard mathematical rules.

Algorithm 1 Update-Tree(event, Monitor)
1: if eventName is matching with a node of the parse tree

of Monitor.c then
2: Update node values of all nodes of the parse tree using

”Formula Updating Rules”.
3: Store root node value as the current monitor result of

this monitor in Monitor result DB.
4: end if

Example: The following example conceptually shows the
function of the Update-Tree algorithm. As an example let
us conceptually demonstrate the monitor for Property 1 as
mentioned in Section IV i.e, the conceptual structure of the
generated ”parse tree” and the function of Update-Tree on
the generated ”parse tree”.

Property : Payment process starts only after client accepts
the offer.
MSL specification: MRS O makePayment⇒
O(MRS I startPayment)
Left hand side of the Figure 4 shows conceptually the struc-
ture of parse tree and the right hand side figure of Figure 4
shows the effect of Update-Tree function on it after receiving
the event
MRS I startPayment{int:accInfo=546718}.

929 Tripathy and Patra

2) Monitor Handler

is responsible for receiving new events from Event Bus, creat-
ing the required new instances of the existing monitors in the
Monitor Repository and waking up appropriate monitors to
consume the incoming event. The following Event-Monitor-
Handler algorithm does all these tasks.

Algorithm 2 Event-Monitor-Handler(event)
1: Find sourceID of the event.
2: if sourceID ≤ 0 then
3: Wake up all instances of all monitors stored in the

Monitor Repository to consume the incoming event.
4: else
5: for each MonitorID stored in the Monitor Registory

do
6: if sourceID ia a new sourceID then
7: Add the sourceID in the sourceID list against

the MonitorID.c
8: Create a new instance of MonitorID.c and save

this instance as MonitorID sourceID.c in the
Monitor Repository.

9: end if
10: end for
11: end if
12: Update-Tree(event, MonitorID sourceID.c)

C. Aggregation Functions

To monitor the properties related to multiple instances of
SBS systems two aggregation functions named ForAll and
AddAll are added in the framework. These functions are de-
signed above the results of monitors (specified using MSL)
stored in MonitorResultDB. In addition to that a run time sql
query on MonitorResultDB is added in the framework to fa-
cilitate the user to make some reasoning on the outputs of the
running monitors if necessary.

• ForAll(b): If b (a boolean MSL formula) is true for all
instances of SBS process then ForAll(b) is true, other-
wise false.

• AddAll(n): It add value of n (a numeric MSL formula)
for all instances of SBS process.

Using these two aggregation functions now we can specify
and monitor properties related to multiple running instances
of SBS process. For example, property 8, 9, 10, 11 & 12 for
MRS can be specified using these two aggregation functions
and MSL as follows.
Property 8: The rent request is never refused by MRS.
ForAll(MRS O notAvailable)
Property 9: Count the number of times the bike is unavail-
able.
AddAll(C(MRS O notAvailable))
Property 10: Measure the average MRS transaction comple-
tion time.
AddAll(T (¬(MRS O bikeKey) S
(MRS I rentRequest)))
/ AddAll(C(MRS I rentRequest))

Property 11: Number of times bike is not available at ”Bar-
munda bike park”.

Figure. 5: User Interface Snapshot

AddAll(C(MRS I rentRequest ∧
O(MRS I rentRequest.(location = ”Barmunda”))))
Property 12: Number of times bike is not available at ”Puri
bike park” during ”Car Festival”.
ForAll((¬CartFestivalEnd S CartFestivalStart)
?C(MRS I rentRequest.(location = Puri)) : 0)

D. User Interface

The ”User Interface” gives access to the monitoring ser-
vice for the users. This interface provides a web page for
defining new monitors using MSL & aggregation functions,
for viewing the monitoring results of the deployed monitors,
viewing MonitorResultDB structure and firing SQL queries
on MonitorResultDB. For instance, in Figure 5 shows snap-
shot of one of the web pages of User Interface.

VI. Conclusion and Future Work

In this paper, we have presented a framework for monitoring
several properties of web service based systems. An event
based approach has been proposed that separates business
logic from the monitoring functionality and supports cross-
layer SBS monitoring. The proposed framework does not
depend on the service composition platform. Further, a mon-
itoring language has been developed to formally specify the
properties of a service based system. The specification is au-
tomatically translated into an executable C program which
is used by the framework while monitoring the specified be-
havior of the system.
We continue our work to extend the proposed framework to
support the monitoring of service level agreements, service
based system failure-handling, repairing and adaptation trig-
gered by information provided by the monitors. Further, we
plan to provide an experimental evaluation of the usability
and practical effectiveness of the proposed framework in dif-
ferent application domains.

Acknowledgment

We thank the team members of the Service Oriented Applica-
tion unit of FBK, Trento, Italy for their valuable suggestions
and validation of concepts incorporated in this work.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,

930Service Based System Monitoring Framework

S. Thatte, et al. Business process execution language
for web services, 2003.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web services agreement specification (WS-
Agreement). In Global Grid Forum, 2004.

[3] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-time monitoring of instances and classes of web
service compositions. 2006.

[4] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors
for composed services. In Proceedings of the 2nd in-
ternational conference on Service oriented computing,
pages 193–202. ACM, 2004.

[5] L. Baresi and S. Guinea. Towards dynamic monitoring
of WS-BPEL processes. Service-Oriented Computing-
ICSOC 2005, pages 269–282, 2005.

[6] L. Baresi and S. Guinea. A dynamic and reactive ap-
proach to the supervision of BPEL processes. In Pro-
ceedings of the 1st conference on India software engi-
neering conference, pages 39–48. ACM, 2008.

[7] T. Chau, V. Muthusamy, H. Jacobsen, E. Litani,
A. Chan, and P. Coulthard. Automating SLA modeling.
In Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of
minds, pages 126–143. ACM, 2008.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (WSDL)
1.1, 2001.

[9] C. Donelly and R. Stallman. Bison: The YACC-
Compatible Parser Generator. Free Software Founda-
tion. Cambridge, MA, 1992.

[10] E. Emerson. Temporal and modal logic. Handbook of
theoretical computer science, 8:995–1072, 1990.

[11] A. Keller and H. Ludwig. The WSLA framework:
Specifying and monitoring service level agreements for
web services. Journal of Network and Systems Man-
agement, 11(1):57–81, 2003.

[12] D. Lamanna, J. Skene, and W. Emmerich. Slang: A lan-
guage for defining service level agreements. In Proc. of
the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems-FTDCS, pages 100–106. Citeseer,
2003.

[13] A. Lazovik, M. Aiello, and M. Papazoglou. Associating
assertions with business processes and monitoring their
execution. In Proceedings of the 2nd international con-
ference on Service oriented computing, pages 94–104.
ACM, 2004.

[14] F. Leymann. Web services: Distributed applications
without limits. Business, Technology and Web, Leipzig,
2003.

[15] K. Mahbub and G. Spanoudakis. Monitoring WS-
Agreement s: An Event Calculus–Based Approach.
Test and Analysis of Web Services, pages 265–306,
2007.

[16] V. Paxson et al. Flex–fast lexical analyzer generator.
Free Software Foundation, 1988.

[17] A. Sahai, V. Machiraju, M. Sayal, A. Van Moorsel, and
F. Casati. Automated SLA monitoring for web ser-
vices. Management Technologies for E-Commerce and
E-Business Applications, pages 28–41, 2002.

[18] M. Shanahan. The event calculus explained. Artificial
intelligence today: Recent trends and developments,
page 409, 1999.

[19] A. K. Tripathy and M. R. Patra. An event based,
non-intrusive monitoring framework for web service
based systems. In Proceedings of the 6th International
Conference on Next Generation Web Service Practices:
NWeSP 2010, pages 201–206. IEEE, 2010.

[20] A. K. Tripathy and M. R. Patra. Modeling and moni-
toring sla for service based systems. In In Proceedings
of the International conference on Intelligent Semantic
Web - Services and Applications:ISWSA 2011, Jordan,
pages 60–65. ACM, 2011.

[21] W3C. Web services description requirements, October
2002. http://www.w3.org/TR/ws-desc-reqs/.

Author Biography
Ajaya Kumar Tripathy holds a
Professional M.Tech. Degree in
e-Government from Trento Uni-
versity, Italy in 2008. In 2007 he
has completed the M.Tech. De-
gree in Computer Science from
Utkal University, India. From
2008 - 2010 he was a PhD
student in SOA Research Unit
at Fondazione Bruno Kessler
(FBK) in Trento, Italy. Mr. Tri-
pathy also worked as a research

assistant (internee) in Indian Statistical Institute, India and
Createnet Research Center, Trento, Italy. Currently he is a
faculty in the Department of Computer Science and Engi-
neering, Silicon Institute of Technology, Bhubaneswar, In-
dia. As a researcher he has published research articles on
Web Services. His research interests include Run-Time mon-
itoring of Web Services and SLA monitoring for Web Ser-
vices and Pattern Recognition.

Dr. Manas Ranjan Patra
holds a Ph.D. Degree in Com-
puter Science from the Central
University of Hyderabad, India.
Currently he is heading the Post
Graduate Department of Com-
puter Science, Berhampur Uni-
versity in India. He has about
23 years of experience in teach-
ing and research in different ar-
eas of Computer Science. He

had visiting assignment to International Institute for Soft-
ware Technology, Macao as a United Nations Fellow and
for sometime worked as assistant professor in the Institute
for Development and Research in Banking Technology, Hy-
derabad. He has about 75 international and national publi-
cations to his credit. His research interests include Service
Oriented Computing, Software Engineering, Applications of
Data mining and E-Governance. He has presented papers,
chaired technical sessions and served in the technical com-
mittees of many International conferences.

931 Tripathy and Patra

