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Abstract: This paper presents a method for automatic 
phoneme recognition for Japanese language using tandem 
MLNs. Here, an accurate phoneme recognizer or phonetic 
type-writer, which extracts out-of-vocabulary (OOV) word for 
resolving OOV problem that occurred when a new vocabulary 
does not exist in word lexicon, plays an important role in current 
hidden Markov model (HMM)-based automatic speech 
recognition (ASR) system. The construction of the proposed 
method comprises three stages: (i) the multilayer neural 
network (MLN) that converts acoustic features, mel frequency 
cepstral coefficients (MFCCs), into distinctive phonetic features 
(DPFs) is incorporated at first stage, (ii) the second MLN that 
combines DPFs and acoustic features as input and outputs a 45 
dimensional DPF vector with less context effect is added  and 
(iii) the 45 dimensional feature vector generated by the second 
MLN are inserted into a hidden Markov model (HMM) based 
classifier to obtain more accurate phoneme strings from the 
input speech. From the experiments on Japanese Newspaper 
Article Sentences (JNAS) in clean acoustic environment, it is 
observed that the proposed method provides a higher phoneme 
correct rate and improves phoneme accuracy tremendously over 
the method based on a single MLN. Moreover, it requires fewer 
mixture components in HMMs. Consequently, less computation 
time is required for the HMMs.  
 

 

I. Introduction 
A new vocabulary word or out-of-vocabulary (OOV) word 
often causes an “error” or a “rejection” in current hidden 
Markov model (HMM)-based automatic speech recognition 
(ASR) systems. To resolve this OOV-word problem, an 
accurate phonetic typewriter or phoneme recognizer 
functionality is expected [1]–[3]. 

Various methods had been proposed to accomplish this 
phoneme recognition [4], [5] and some of them showed 

acceptable performances. However, most of them based on 
HMMs have several limitations. For example, a) they need a 
large number of speech parameters and a large scale speech 
corpus to negotiate coarticulation effects using context- 
sensitive triphone models, and b) they need higher 
computational cost to get acceptable performances in HMMs. 

To resolve the problems of current HMM-based phoneme 
recognizers, a lower computational cost algorithm with higher 
recognition accuracy is needed. An articulatory-based or a 
distinctive phonetic feature (DPF)-based system can model 
coarticulatory phenomena more easily [6], [7]. In our 
previous work, a DPF-based feature extraction method was 
introduced [8], where a multi-layer neural network (MLN) 
was used to extract DPFs. The DPF-based system i) widens 
the margin of acoustic likelihood, ii) avoids the necessity of a 
large number of speech parameters and iii) incorporates 
context-dependent acoustic vectors to negotiate dynamics. 
However, because a single MLN is unable to model longer 
context, it cannot resolve coarticulation effects precisely. 

In this paper, we propose a DPF-based phoneme 
recognition method using tandem MLNs for an ASR system, 
which consists of three stages, to solve the problems of 
coarticulation. The first stage extracts a 15 dimensional DPFs 
vector from acoustic features of an input speech using an 
MLN.  The second stage MLN, which combines DPFs and 
acoustic features as input, generates a 45 dimensional DPFs 
vector with less context effect. The third stage incorporates an 
HMM based classifier to obtain more accurate phoneme 
strings from the input speech by taking 45 dimensional DPF 
vectors generated from the second stage MLN. The originality 
of this paper is to derive hybrid features (output articulatory 
features of the first MLN and acoustic features extracted from 
the input speech signal) for constructing input parameters of 
the second MLN. It is expected that the proposed system 

International Journal of Computer Information Systems and Industrial Management Applications  
ISSN 2150-7988 Volume 3 (2011) pp.088-095
© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

Dynamic Publishers, Inc., USA 
 

Keywords: multilayer neural network, hidden Markov model, 
automatic speech recognition, mel frequency cepstral coefficients, 
distinctive phonetic features, out-of-vocabulary.  



 

generates more precise phoneme strings at low computational 
cost in HMMs and consequently, gives a functionality of a 
high performance phonetic typewriter. 

In this study, from the phoneme recognition performance 
point of view, we investigate and evaluate two types of 
DPF-based feature extraction methods. These methods are (i) 
DPF using MLN [8] and (ii) DPF using Tandem MLNs. 
Another experiment is done for the mel frequency cepstral 
coefficients (MFCCs), which is directly inserted into the 
HMM-based classifier for obtaining comparable 
performance. 

The paper is organized as follows: Section II discusses the 
articulatory features. Section III explains the system 
configuration of the existing phoneme recognition methods 
with the proposed. Experimental database and setup are 
provided in Section IV, while experimental results are 
analyzed in Section V. Finally, Section VI draws some 
conclusion with some future remarks 
 
II. Articulatory Features 
A phone can easily be identified by using its unique 
articulatory features or distinctive phonetic features (DPFs) 
set [9]–[11]. Because the traditional-DPF is designed for ASR 
system with limited domain, the feature vector space 
composed of the traditional-DPF shows low performance for 
classifying speech signals. A novel DPF set for classifying 
Advanced Telecommunications Research Institute 
International (ATR) with 15 elements, as shown in Table I, 
which is designed by modifying a Japanese traditional DPF 
set [12] is used. Windheuser and Bimbot previously proposed 
a DPF set in which a balance of distances among phonemes is 
adjusted for classifying English phonemes [13], [14]. The 
design concept of Japanese balanced-DPF set follows this 
idea. Each phoneme has five positive elements on average. In 
Table 1, present and absent elements of the DPF, which are 
indicated by “+” and “-” signs, are called positive and 
negative features, respectively. In this DPF set, the balance of 
distances among phonemes is adjusted by adding new 
elements, that is, an element “nil” is added as an intermediate 
expression of “high/low” and “anterior/back” and two 
elements of “vocalic” and “unvoiced” are also applied. The 

other change for balancing is the replacement of “fricative” by 
“affricative”. Long vowels (/a:, i:, u:, e:, o:/) have the same 
positive features as short vowels (/a, i, u, e, o/). On the other 
hand, silence (/silB, silE/), glottal stop (/q/), and short pause 
(/sp/) have no positive features in either traditional-DPF or 
B-DPF. The main difference between the balanced-DPF and 
the traditional- DPF in Figure 1 is that the consonantal group 
is separated into two groups of a voiced consonant group and 
an unvoiced consonant group, that is, the phonemes within the 
voiced consonant group and the unvoiced consonant group 
are distributed close to each other. As a result, the 
balanced-DPF set has three groups consisting of the voiced 
consonants, the unvoiced consonants, and vowels. Finally, 
Japanese balanced DPF  values are vocalic, high, low, 
intermediate between high and low <nil>, anterior, back, 
intermediate between anterior and back <nil>, coronal, 
plosive, affricate, continuant, voiced, unvoiced, nasal and 
semi-vowel. 
 
III. Why DPF based method is necessary? 
This section describes the necessity of phonetic features in 
ASR. Figure 2(a) and 2(b) show the phoneme distances of 
five Japanese vowels in an utterance, /ioi/ that are calculated 
with a MFCC-based ASR system and a DPF-based system 
using an MLN, respectively. In both the systems, each 
distance is measured using the Mahalanobis distance between 
a given input vector and the corresponding vowel set of mean 
and covariance in a single-state model. The input sequence in 
the figures, /i/../i//o/../o//i/../i/, exhibits phoneme for each 
frame and has total 20 frames in which first three frames, 
middle 13 frames, and last four frames are phonemes /i/, /o/, 
and /i/, respectively. The MFCC-based system (Figure 2(a)) 
shows seven misclassification of phonemes (/u/ output for /o/ 
and /i/ input) for frames 4, 5, 13, 14, 15, 16, and 17, while two 
misclassification (/o/ and /u/ output for /i/ input) for frames 17 
and 18 are observed by the DPF-based system (Figure 2(b)). 
Therefore, the DPF-based system outputs few 
misclassifications. However, because some errors caused by 
coarticulation still remain, as shown in Figure 2(b), the 
DPF-based system using a single MLN requires further 
modifications.

 
DPFs a i u e o N w y j my ky dy by gy ny hy ry py p t k ts ch b d g z m n s sh h f r

vocalic ＋ ＋ ＋ ＋ ＋ － － － － － － － － － － － － － － － － － － － － － － － － － － － － －

high － ＋ ＋ － － － ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ － － ＋ － ＋ － － ＋ － － － － ＋ － ＋ －

low ＋ － － － － － － － － － － － － － － － － － － － － － － － － － － － － － － ＋ － －

nil － － － ＋ ＋ ＋ － － － － － － － － － － － － ＋ ＋ － ＋ － ＋ ＋ － ＋ ＋ ＋ ＋ － － － ＋

anterior － － － － － － － － ＋ ＋ － ＋ ＋ － ＋ － ＋ ＋ ＋ ＋ － ＋ ＋ ＋ ＋ － ＋ ＋ ＋ ＋ ＋ － ＋ ＋

back ＋ － ＋ － ＋ － ＋ － － － － － － － － － － － － － ＋ － － － － ＋ － － － － － － － －

nil － ＋ － ＋ － ＋ － ＋ － － ＋ － － ＋ － ＋ － － － － － － － － － － － － － － － ＋ － －

coronal － － － － － － － － ＋ － － ＋ － － ＋ － ＋ － － ＋ － ＋ ＋ － ＋ － ＋ － ＋ ＋ ＋ － － ＋

plosive － － － － － － － － － － ＋ ＋ ＋ ＋ － － － ＋ ＋ ＋ ＋ － － ＋ ＋ ＋ － － － － － － － －

affricative － － － － － － － － ＋ － － － － － － － － － － － － ＋ ＋ － － － ＋ － － － － － － －

continuant ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ － － － － － － － － － － － － － － － － － ＋ － － ＋ ＋ ＋ ＋ －

voiced ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ － ＋ ＋ ＋ ＋ － ＋ － － － － － － ＋ ＋ ＋ ＋ ＋ ＋ － － － － ＋

unvoiced － － － － － － － － － － ＋ － － － － ＋ － ＋ ＋ ＋ ＋ ＋ ＋ － － － － － － ＋ ＋ ＋ ＋ －

nasal － － － － － ＋ － － － ＋ － － － － ＋ － － － － － － － － － － － － ＋ ＋ － － － － －

semi-vowel － － － － － － ＋ ＋ － ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ ＋ － － － － － － － － － － － － － － － ＋
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Table 1. Japanese Balanced DPF-Set for classifying ATR Phonemes. 
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Figure 1. Three dimensional DPF space for (a) Traditional-DPF and (b) Balanced-DPF 
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Figure 2. Phoneme distances for utterance, /ioi/ using (a) MFCC-based system and (b) DPF-based system 



 

IV. Phoneme Recognition Systems 

A. MFCC-based System using MLN 
Figure 3 shows the DPF-based phoneme recognition method 
using MLN.  At the acoustic feature extraction stage, input 
speech is converted into MFCCs of 38 dimensions (12 
MFCC, 12∆MFCC, 12∆∆MFCC, ∆P, ∆∆P, where P is energy 
of the raw input signal).   MFCCs are input to an MLN with 
three layers, including two hidden layers, after combining 
preceding (t-3), (t-2), (t-1) frames and succeeding (t+1) (t+2) 
(t+3) frames with the current t-th frame. The MLN has 15 
DPFs output for current t-th frame. The two hidden layers 
consist of 500 and 30 units, respectively. The MLN is trained 
by using the standard back-propagation algorithm. The 
DPF-based method using a single MLN yields comparable 
recognition performance. However, Because of lacking of 
feedback connection, the single MLN suffers from an 
inability to model dynamic information precisely. 
 

B. Proposed System 
In the proposed method shown in Figure 4, Tandem MLNs 
with large context window are used instead of a single MLN.  
Acoustic features, MFCCs from input speech are extracted as 
the same way described in Section III.A. MFCCs are input to 
the first stage MLN with three layers, including two hidden 
layers, after combining preceding (t-3), (t-2), (t-1) frames and 
succeeding (t+1) (t+2) (t+3) frames with the current t-th 
frame. The MLN has 15 DPFs output for current t-th frame. 
The architecture of first MLN is same as MLN mentioned in 
Section IV.A. Then, these output DPFs and input seven 
continuous frames MFCC, which is 281 (=38×7+15) 
dimensions, are inserted into second MLN that produces 45 
dimensional DPF vector (15 DPF for “t-3” th frame, 15 DPF 
for “t” th frame, and 15 DPF for “t+3” th  frame). Here, for 
first and second stages MLNs, <input layer, first hidden layer, 
second hidden layer, output layer> is assigned by the values 
<266, 500, 30, 15> and <281, 500, 90, 45>, respectively and 
each of both MLNs is trained by the standard 
back-propagation algorithm, where momentum coefficient is 
used not for getting trapped in local optima. 
 

V. Experiments 

A. Speech Database 
The The following two clean data sets are used in our 
experiments. 

D1. Training Data Set. A subset of the Acoustic Society 
of Japan (ASJ) Continuous Speech Database comprising 4503 
sentences uttered by 30 different male speakers (16 kHz, 16 
bit) is used [15]. 

D2. Test Data Set. This test data set comprises 2379 JNAS 
[16] sentences uttered by 16 different male speakers (16 kHz, 
16 bit). 
 

B. Experimental Setup 
Frame length and frame rate are set to be 25 ms and 10 ms, 
respectively. MFCCs consist of a vector of 38 dimensions (12 
MFCC, 12∆, 12∆∆, ∆P and ∆∆P, where P is log energy of raw 
signal). 
 In our experiments of the single MLN and tandem MLNs, 
the non-linear function, (1/(1+exp(-x))) is a sigmoid from 0 to 
1 for the hidden and output layers. 
 Phoneme correct rates (PCRs) and phoneme accuracy 
(PAs) for D2 data set are evaluated using an HMM-based 
classifier. The D1 data set is used to design 38 Japanese 
monophones HMMs with five states, three loops, and 
left-to-right models. In the HMMs, the output probabilities 
are represented in the form of Gaussian mixtures, and 
diagonal matrices are used. The mixture components are set to 
1, 2, 4, 8, and 16. To evaluate PCRs and PAs using D2 data 
set, the following two experiments are designed, where input 
features for the HMM-based classifier are DPFs of 15 and 45 
dimensions respectively for the existing and proposed 
methods. 

(a) MFCC (dim:38) 
(t) DPF (MFCC-MLN,dim:15)  
(11) DPF (MFCC-TandemMLNs, dim:45) [Proposed]. 

Table 2 shows phonemes and their frequencies in the test 
data set. From the table it is shown that some phonemes (for 
example: dy, by and py) are less frequent with respect to some 
other phonemes (for example: a, i, u, e, o). It can be mentioned 
from the table that beginning and end silences (silB, silE)  and 
short pause (sp) are more frequent in the test data set. 
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Figure 3. Phoneme recognition method using a single MLN 

 

 

Figure 4. Proposed Phoneme recognition method using Tandem MLNs 
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Table 2. Phonemes and their frequencies in test data set. 

 

 

Methods
Phoneme Correct Rate (%)

1 Mix 2 Mix 4 Mix 8 Mix 16 Mix

MFCC (dim: 38) 62.44 67.12 69.78 71.92 73.24

(t) DPF(MFCC-MLN,dim:15) 76.19 76.57 76.91 77.05 77.35

(11) DPF(MFCC-TandemMLNs,dim:45) 73.03 75.09 77.23 77.61 78.44
 

Table 3. Comparison of PCRs for the methods (a), (t) and (11).

VI. Experimental Results and Analysis 
Figures 5 and 6 shows the PCRs and PAs comparison between 
a single MLN and tandem-MLNs based methods, 
respectively, for MFCC input. It is observed from the Fig. 5 
that the tandem-MLNs provide higher PCR than a single 

MLN for all mixture components except 1 and 2. In the case 
of PA of Figure 6, tandem-MLNs used in the proposed 
method shows its superiority for all mixture components 
except 1. For an example, at mixture component 16, a 
tandem-MLNs provide 78.44% PCR and 56.80% PA, while a 
single MLN exhibit 77.35% PCR and 47.89% PA. The 
method (t) needs higher mixture components in the HMMs to 
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obtain higher PCR and PA. On the other hand, the proposed 
requires fewer mixture components for obtaining a higher 
phoneme recognition performance. It may be mentioned from 
the Fig. 6 that the proposed method using tandem MLNs 
provides tremendous improvement of PAs over the method 
(t), while the PCRs improvements in the proposed method 
(11) are less significant (see Figure 5). 
 Table 3 exhibits the comparison of phoneme correct rates 
for the methods (a), (t) and (11) for investigated mixture 
components. It is observed from the experiments that the 
MFCC-based method that does not incorporate artificial 
neural network provides poor recognition performance. For 
example, the proposed method (11) shows 73.03%, 75.09%, 
77.23%, 77.61% and 78.44% PCR for the mixture 
components one, two, four, eight and 16, while the 
corresponding values for the MFCC-based method are 
62.44%, 67.12%, 69.78%, 71.92% and 73.24% for the 
respective mixture components. 

It is claimed that the proposed method reduces mixture 
components in the HMMs and hence computation time. The 
required time for the HMM-based classifier is O(ms2T), 
where m, S and T represent the mixture components used in 
the HMM, the number of HMM states and the number of 
observation sequences. For an example from the Figure 6, 
approximately 47.50% phoneme recognition accuracy is 
obtained by the methods (t) and (11) at mixture components 
16 and two, respectively. For (t), the required time in the 
HMMs is 16x52x200 (=80K), while the corresponding time 
for the proposed method (11) is 2x52x200 (=10K) assuming 
number of observation sequence is 200 frames. Therefore, the 
proposed method requires fewer mixture components as well 
as less computational cost in the HMMs. 
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Figure 5. Comparison of PCR between MLN and 
Tandem-MLNs based methods for input MFCC 
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Figure 6. Comparison of PA between MLN and 
Tandem-MLNs based methods for input MFCC 

VII. Conclusion 
This paper has presented a DPF-based automatic phoneme 
recognition method using Tandem MLNs. The following 
conclusions are drawn from the study. 

i) The proposed system outperforms the method 
using a single MLN.  

ii) It is obvious that tremendously higher phoneme 
recognition accuracy is obtained by the proposed 
method. 

iii) The proposed method requires fewer mixture 
components in the HMM-based classifier. 
Consequently, less computation time is required 
for the proposed method. 

iv) The neural network based method with single 
MLN and tandem MLNs output higher phoneme 
correct rate over the method based on MFCC. 

In near future, the authors would like to do some 
experiments for evaluating Bangla (can also be termed as 
Bengali) phonemes spoken by Bangladeshi People. 
Moreover, we have intension to evaluate word recognition 
performance using the proposed method. 
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