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Abstract:
Pareto based Multi-Objective Evolutionary Algorithms face
several problems when dealing with a large number of ob-
jectives. In this situation, almost all solutions become non-
dominated and there is no pressure towards the Pareto Front.
The use of Particle Swarm Optimization algorithm (PSO) in
multi-objective problems grew in recent years. The PSO has
been found very efficient in solve Multi-Objective Problems
(MOPs) and several Multi-Objective Particle Swarm Optimiza-
tion algorithms (MOPSO) have been proposed. This work has
the goal to study how PSO is affected when dealing with Many-
Objective Problems. Recently, some many-objective techniques
have been proposed to avoid the deterioration of the search
ability of multi-objective algorithms. Here, two many-objective
techniques are applied in PSO: Controlling the Dominance
Area of Solutions and Average Ranking. An empirical analysis
is performed to identify the influence of these techniques on con-
vergence and diversity of the MOPSO search in different many-
objective scenarios. The experimental results are analyzed ap-
plying some quality indicators and some statistical tests.
Keywords: Many-Objective Optimization, Multi-Objective Opt-
mization, Particle Swarm Optmization

I. Introduction

Particle Swarm Optimization (PSO) [18] is a population
based meta-heuristic that has been used to solve several op-
timization problems [24]. PSO algorithms are inspired on
animal swarm intelligence and are based on the coopera-
tion of the individuals. Multi-objective optimization prob-
lems (MOPs) are usually solved by a large number of multi-
objective evolutionary algorithms (MOEAs) [19], includ-
ing PSO. However, several problems arise when dealing
with a large number of objectives. Problems with more
than three objectives are called Many-Objective Problems
(MaOPs) [14]. The main obstacle faced by MOEAs in many-
objective is the deterioration of the search ability, because
almost all solutions are non-dominated there is no pressure
towards the Pareto Front.
To overcome these limitations, in recent years the interest for
Many-Objective Optimization has grown [14] [25]. In this
area, some techniques have been proposed like Controlling
of Dominance Area of Solutions (CDAS) [26] and the use of

rankings [17], like Average Ranking [3]. The goal of these
works is to study techniques that decrease the negative effects
of using several objectives.
The paper [9] presented a first study on the influence of
the CDAS technique in PSO for Many-Objective Problems
(MaOPs). The main idea of the paper was to observe the in-
fluence of controlling the dominance area of solutions on as-
pects like convergence and diversity in a metaheuristic based
on cooperation between individuals. Here, this work presents
an extension of the use of many-objective techniques in Par-
ticle Swarm Optimization. We extend the previous study by
applying a different many-objective technique, called the Av-
erage Ranking (AR) [3]. This technique induces a preference
ordering over a set of solutions, and then a MOPSO algo-
rithm chose the best solutions through this preference order,
instead of, dominance relation.
We perform an empirical analysis to measure the perfor-
mance of MOPSO in Many-Objective problems using these
two preference relations: CDAS and AR. The chosen algo-
rithm is the SMPSO [22], and two extended algorithms are
implemented CDAS-SMPSO [9] and AR-SMPSO. These al-
gorithms are applied to two benchmark many-objective prob-
lems, DTLZ2 and DTLZ4 [11]. A set of quality indicators is
used to investigate how these techniques affect convergence
and diversity of MOPSO search in many objective scenar-
ios : Generational Distance (GD), Inverse Generational Dis-
tance (IGD), Spacing and also it is analyzed the distribution
of the Tchebycheff distance over the ”knee” of the Pareto
front [15].
The rest of this paper is organized as follows: Section II
presents the main concepts of many-objective optimization
and Section III discusses some related works. In Section IV
the previous work that uses CDAS in SMPSO is revised. Af-
ter, Section V describes the use of AR in the SMPSO al-
gorithm. Finally, Section VI presents empirical experiments
and Section VII discusses the conclusions and future works.

II. Multi-Objective Optimization

Real world problems usually include multiple criteria that
should be satisfied at the same time. Furthermore, in such
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problems, the objectives (or criteria) to be optimized are usu-
ally in conflict, i.e. trying to improve one of them will result
in worse values for some other. For example, most decision
maker is faced with a difficult decision problem; they want
to assure a great level of reliability and also a minimum cost.
In this case, the goal is to find a good ”trade-off” of solutions
that represent the better compromise among the objectives.
The general multi-objective maximization problem (MOP)
can be stated as in (1).

Maximizef(x) = (f1(x), f2(x)..., fm(x)) (1)

subject to x ∈ Ω
where: x ∈ Ω is a feasible solution vector, Ω is the feasible
region delimited by the constraints of the problem, and m is
the number of objectives.
Important concepts used in determining a set of solutions for
multiobjective optimization problems are dominance, Pareto
optimality, Pareto set and Pareto front. Pareto Dominance
(PD) was proposed by Vilfredo Pareto [23] and is defined
as follows: given two solutions x ∈ Ω and y ∈ Ω, for a
maximization problem, the solution x dominates y if

∀i ∈ {1, 2, ...,m} : fi(x) ≥ fi(y), and
∃i ∈ {1, 2, ...,m} : fi(x) > fi(y)

x is a non-dominated solution if there is no solution y that
dominates x.
The goal is to discover solutions that are not dominated by
any other in the objective space. A set of non-dominated
solutions is called Pareto optimal and the set of all non-
dominated objective vectors is called Pareto front. The
Pareto optimal set is helpful for real problems, e.g., engi-
neering problems, and provides valuable information about
the underlying problem. In most applications, the search
for the Pareto optimal is NP-hard and then the optimization
problem focuses on finding an approximation set, as close as
possible to the Pareto optimal. Multi-Objective Evolutionary
Algorithms have been successfully applied to many MOPs.
MOEAs are particularly suitable for this task because they
evolve simultaneously a population of potential solutions to
the problem obtaining a set of solutions to approximate the
Pareto front in a single run of the algorithm.

III. Related Work

In a scalar objective optimization problem, all the solution
can be compared based on their objective function values and
the task of a scalar objective evolutionary algorithm is to find
one single solution. However, in MOP, domination does not
define a complete ordering among the solutions. Therefore,
MOEAs modify Evolutionary Algorithms (EAs) [6] [13] in
two ways: they incorporate a selection mechanism based
on Pareto optimality, and they adopt a diversity preservation
mechanism that avoids the convergence to a single solution.
Although, most of the studies on MOPs have been focused
on problems with a few numbers of objectives, practical opti-
mization problems involve a large number of criteria. There-
fore, research efforts have been oriented to investigate the
scalability of these algorithms with respect to the number of
objectives [14]. MOPs having more than 3 objectives are
referred as many-objective optimization problems in the spe-
cialized literature. Several studies have proved that MOEAs

scale poor in many-objective optimization problems. The
main reason for this is that the proportion of non-dominated
solutions in a population increases exponentially with the
number of objectives. As consequence: The search ability is
deteriorated because it is no possible to impose preferences
for selection purposes; The number of solutions required for
approximating the entire Pareto front also increases, and dif-
ficulty of the visualization of solutions.
Currently, the research community has been tackled these is-
sues using mainly three approaches:

• Adaptation of preference relations that induce a finer
order on the objective space [26], [1], [11], [17],
[15], [25], [7],.

• The dimensionality reduction is also an alternative
for dealing with the challenges of many objec-
tives [21], [5], [16],[4]. The overall idea of this ap-
proach is to identify the least non conflicting objectives
(one that can be removed without changing the Pareto
optimal set) to discard them, for instance, dismissing
objectives that are highly correlated with others.

• Decomposition strategies that uses decomposition
methods, which have been studied in the mathematical
programming community, into evolutionary algorithms
for multi-objective optimization. This approach decom-
poses the MOP into a number of scalar optimization
problems, and then, evolutionary algorithms are applied
to optimize these sub problems simultaneously [28], [2].

In sum, these works reflect the focus of the current research
when dealing with many-objective optimization problems
(MaOPs). One of the main conclusions of these works is re-
lated to the weakness of the Pareto dominance relation for
dealing with MaOPs and some alternative were proposed.
Some authors point out that by using an effective ranking
scheme, it is possible for MOEAs to converge in MaOPs.
But, the ranking method must provide a fine grained discrim-
ination between solutions. On the other hand, a high selec-
tion pressure sacrifices diversity and the algorithm converges
to a small region.
So, there exist many difficulties waiting to overcome and mo-
tivate our work. One of them is related to the metaheuristic,
until relatively recently, most of the research had concen-
trated on a small group of algorithms, often the NSGA-II.
In this work, the behavior of the Particle Swarm Optimiza-
tion in MaOPs is investigated. Two previous works deal with
MaOPs using PSO algorithms.
In [27], it is presented an approach that uses a distance metric
based on user-preferences to efficiently find solutions. In the
work, the user defines good regions on the objective space
that must be explored by the algorithm. So, PSO is used
as a baseline, and the particles update their position and ve-
locity according to their closeness to the preference regions.
In this method, the PSO algorithm does not rely on Pareto
dominance comparisons to find solutions. The algorithm was
compared to a user-preference based PSO algorithm that uses
Pareto dominance comparisons to select the leaders. The re-
sults showed that the algorithm obtain better results, espe-
cially for problems with high number of objectives. In [20] a
PSO algorithm handles with many-objectives using a Grad-
ual Pareto dominance relation to overcome the problem of
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finding non-dominated solutions when the number of objec-
tives grows.
As explained before, one of the alternative to deal with
MaOPs is to use an effective ranking scheme, however, these
ranking schemes have never been object of study with PSO.
Then, differently of the previous many-objective PSO works,
our work has the goal to study the behavior of preference re-
lations in Multi-Objective Particle Swarm algorithm, a topic
few explored in the literature. The selected technique was
the Control of Dominance Area of Solutions (CDAS) [26],
and it was first applied to PSO in [9]. Here we extend this
previous work and we apply other many-objective technique
to PSO, the Average Ranking. The two techniques are also
compared in different many-objective situations.

IV. Previous Work

This Section reviews our previous work [9] that had the goal
to apply the control of dominance area technique (CDAS)
into PSO algorithm. First, the CDAS technique is described
and its application into PSO algorithm. Finally, some results
are discussed.
Sato et al. propose a method to control the dominance area
of solutions to induce an appropriate ranking of the solutions.
The proposed method controls the degree of contraction and
expansion of the dominance area of solutions using a user-
defined parameter Si. The dominance relation changes with
this contraction or expansion, and solutions that were origi-
nally non-dominated become dominated by others. The mod-
ification of the dominance area is defined by the Equation (2):

f ′i(x) =
r · sin(ωi − Siπ)

sin(Siπ)
(2)

where x is a solution in the search space, f(x) is the objective
vector and r is the norm of f(x). ωi is the degree between
fi(x) and f(x). If Si = 0.5 then f ′i(x) = fi(x) and there is
no modification in the dominance relation. If Si < 0.5 then
f ′i(x) > fi(x), so will be produced a subset of the Pareto
Front. In the other hand, if Si > 0.5 then f ′i(x) < fi(x)
and the dominance relation is relaxed, so solutions that were
normally dominated become non-dominated.
PSO is a population-based heuristic inspired by the social be-
havior of bird flocking aiming to find food [18]. In PSO, the
system initializes with a set of solutions and search for op-
tima by updating generations. The set of possible solutions
is a set of particles, called swarm, which moves in the search
space, in a cooperative search procedure. These moves are
performed by an operator that has a local and a social compo-
nent. This operator is called velocity of a particle and moves
it through an n-dimensional space based on the best positions
of their neighbors (social component), the leader, and on
their own best position (local component). The best particles
are found based on the fitness function. There are many fit-
ness functions in Multi-objective Particle Swarm Optimiza-
tion (MOPSO). Based on Pareto dominance concepts, each
particle of the swarm could have different leaders, but only
one may be selected to update the velocity. This set of lead-
ers is stored in an external repository (archive) [18], which
contains the best non-dominated solutions found so far.
The chosen MOPSO algorithm was the SMPSO. The
SMPSO algorithm was presented in [22]. In this algorithm,

Figure. 1: Influence of the CDAS in MOPSO leader’s
choice.

the velocity of the particle is limited by a constriction fac-
tor χ. The SMPSO introduces a mechanism that bound the
accumulated velocity of each variable j (in each particle).
Besides, after the velocity update of each particle a mutation
operation is applied. It is applied a polynomial mutation in
15% of the population, randomly selected. In the SMPSO,
the archive of the leaders has a maximum size, defined by a
user parameter. When this archive becomes full, the crowded
distance is used [22] to define which particles will remain in
the repository. The choice of the leader is defined by a binary
tournament.
In MOPSO convergence and diversity are controlled by the
cooperation between the particles, i.e., the choice of the lead-
ers. The leaders guide the swarm to the best areas in the
search space, so depending on the choice of the leaders the
solutions can converge for a small area of the Pareto Front or
perform a diversified search, trying to cover a larger region
of the Pareto front. In MOPSO literature there are several
methods to perform this selection, e.g., the sigma distance, a
simple binary tournament, among others [24].
In the previous work, we studied the influence of the CDAS
technique in a MOPSO algorithm for many-objective scenar-
ios. This technique was incorporated in the search as follows:
as the Sato et al. technique modifies the dominance relation,
the step that updates the non-dominated archive was modi-
fied and now applies the new dominance relation defined by
Equation (2). Figure 1 presents an example of the application
of CDAS in a 2-dimensional search space. The darker areas
represent the best areas in the search space, where all solu-
tion should converge. In the MOPSO algorithm the leaders
will be the particles near to these areas. The selected lead-
ers by the original Pareto dominance relation are represented
by the solid circle. When the dominance area is modified by
the CDAS with a Si < 0.5 (dotted circle), less solutions be-
come non-dominated and the algorithm tends to converge to
a small area of the search space and to decrease the diversity.
For Si > 0.5 (dashed line), new solutions that were dom-
inated become non-dominated and now influence the others
particles in the swarm. In this situation the algorithm tends to
diversify its search, but as the original non-dominated solu-
tions still influence the particles of the swarm, the algorithm
still has the characteristic to converge to the best area of the
search space. This algorithm was called CDAS-SMPSO.

A. Previous experiments

The CDAS-SMPSO was used in the DTLZ2 problem of the
DTLZ family [11]. It was performed an empirical analysis
that applied CDAS-SMPSO in different and large objective
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values: 3, 5, 10, 15 and 20 objectives. The parameter that
controls the degree of Si was defined for eleven different
values. The Si value varied in intervals of 0.05, the same
variation applied in [26]. Si varies in the range [0.25, 0.45],
for the selection of a subset of the Pareto Front, varies in the
range [0.55, 0.75] for the relaxation of the dominance rela-
tion and has the value equal to 0.5 for the original Pareto
dominance relation.
Some quality measures were used to observe how conver-
gence and diversity are affected by the control of the domi-
nance area of the solutions in PSO [29]. The Generational
Distance (GD) was used to observe if the algorithm con-
verges for some region of the true Pareto Front. The Inverse
Generational Distance to observe if the PFapprox, i.e, the
solutions generated by the CDAS-SMPSO algorithm, con-
verges to the true Pareto front and also if this set is well di-
versified. The variance of the distance between neighbors
solution in the front is measured by the Spacing. For the
comparison of the quality indicators the Friedman test at
5% significance level is used. The Friedman test is a non-
parametric statistical test used to detect differences between
algorithms [12]. The test is applied to raw values of each
metric.
Besides, it was performed a comparison discussed in [15] to
observe the convergence and diversity for each configuration.
In literature, it is accepted that decision makers prefer solu-
tions in the middle of the Pareto front, called the ”knee” of
the Pareto front. So, in [15] it is presented a methodology
that compares the distance of each point of the PFapprox to
the knee, the Tchebycheff distance.
Table 1 presents the summary of the Friedman test. For each
objective value, the configuration with best results for each
quality measure is presented.
GD best results were obtained when Si < 0.5. The configu-
rations Si = 0.25, 0.3 0.35 and 0.4 obtained the best results
for almost all objectives, i.e., obtained a statistically signifi-
cant difference with respect to other configurations. Besides,
it was observed that when the number of objectives grows
the convergence of the original dominance relation deterio-
rates, achieving poor GD results. For the IGD, according to
the Friedman test, the results of the configurations Si = 0.3,
0.35, 0.4 and 0.45 had the best results. Again, for IGD when
the number of objectives is small, the SMPSO with the orig-
inal Pareto dominance relation still has competitive IGD re-
sults; however, when this number grows its performance de-
teriorates. It was concluded examining these two indicators
that the CDAS with Si < 0.5 produced very good results for
many objectives.
For the spacing indicator, the best configuration according
to the Friedman test was the extreme Si = 0.25. However,
this occurs because for almost all objective this configura-
tion generated only one solution in the PFapprox. Again, the
configuration with the original Pareto dominance relation ob-
tained the worst results.
For the Tchebycheff analysis, the original dominance pro-
duced distributions that were not concentrated in any re-
gion, generating equivalent distributions for different dis-
tances. These distributions reflect the results of GD and
IGD. The SMPSO with the original Pareto dominance re-
lation do not converge to the true Pareto Front, but, it gener-

ates a distributed PFapprox because its IGD values are low,
consequently, it generates a sub-optimal solution. The best
distributions were the configurations Si = 0.35, 0.4 and
0.45. These configurations concentrated almost all its so-
lutions in a small distance of the knee, even when dealing
with high number of objectives. These concentrated distribu-
tions stress the GD and IGD results and show that the CDAS
with Si < 0.5 improves the convergence of the PSO algo-
rithm. For low values of Si, only few solutions remain non-
dominated and the algorithm converges for a small region,
often close to the knee. For configurations with Si > 0.5, it
was concluded that high values of Si produces a diversified
PFapprox. With a degree near to the original Pareto domi-
nance relation, (0.5 < Si ≤ 0.65), the solutions were con-
centrated in a region with small values of the Tchebycheff
distance. However, the CDAS with Si > 0.5 did not have
the same power of convergence than Si < 0.5.

V. Ranking Based PSO

In the previous work [9], the influence of the CDAS
technique into PSO algorithm was analyzed using the
SMPSO [22]. This paper extends this work by analyzing the
behavior of another many-objective technique into SMPSO.
The chosen method is the Average Ranking (AR) that accord-
ing to [7] produced the best results among different ranking
methods. In this section, first, the main aspects of the PSO
are discussed and details about SMPSO are given. Finally,
the AR and its implementation into SMPSO algorithm are
described. Here, the implementation of AR into SMPSO is
called AR-SMPSO.

A. SMPSO

Particle Swarm Optimization is a population-based heuristic
inspired by bird. PSO performs a cooperative search proce-
dure between the solutions. The set of possible solutions is
a set of particles, called swarm, which moves in the search
space through the velocity operator that is based on the best
positions of their neighbors (social component), the leader,
and on their own best position (local component).
Multi-objective particle swarm optimization uses Pareto
dominance concepts to define the leaders. Each particle of
the swarm could have different leaders, but only one may be
selected to update the velocity. The basic steps of a MOPSO
algorithm are: initialization of the particles, computation of
the velocity, position update, mutation and update of leader’s
archive.
Each particle pi, at a time step t, has a position x(t) ∈
Rn (3), that represents a possible solution. The position of
the particle, at time t + 1, is obtained by adding its velocity,
v(t) ∈ Rn (4), to x(t):

−→x (t+ 1) = −→x (t) +−→v (t+ 1) (3)

The velocity of a particle pi is based on the best position al-
ready fetched by the particle, −→p best(t), and the best position
already fetched by the set of neighbors of pi,

−→
Rh(t), that is a

leader from the repository. The velocity is defined as follows:

−→v (t+ 1) = $ · −→v (t) + (C1 · φ1) · (−→p best(t)−−→x (t))

+(C2 · φ2) · (
−→
Rh(t)−−→x (t)) (4)
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Table 1: Best configurations for CDAS-SMPSO algorithm, DTLZ2 problem.
Problem Objective GD IGD Spacing

DTLZ2

3 0.35, 0.4 and 0.45 0.45, 0.5 and 0.55 0.6 and 0.65
5 0.3, 0.35 and 0.4 0.35, 0.4 and 0.45 0.25, 0.6 and 0.65
10 0.25, 0.3 and 0.35 0.3, 0.35 and 0.4 0.25, 0.6 and 0.65
15 0.25, 0.3 and 0.35 0.3, 0.35 and 0.4 0.25 and 0.3
20 0.25, 0.3 and 0.35 0.25, 0.3, 0.35 and 0.4 0.25, 0.3 and 0.35

The variables φ1 and φ2, in (4), are coefficients that deter-
mine the influence of the particle best position, −−→pbest(t), and
the particle global best position,

−→
Rh(t). The constants C1

and C2 indicates how much each component influences on
velocity. The coefficient $ is the inertia of the particle, and
controls how much the previous velocity affects the current
one.

−→
Rh is a particle from the repository, chosen as a guide

of pi. The repository of leaders is filled with the best particles
after all particles of the swarm were updated.
The SMPSO algorithm was presented in [22]. This algorithm
has the characteristic to limit the velocity of the particles.
In this algorithm the velocity of the particle is limited by a
constriction factor χ, that varies based on the values of C1

and C2. Besides, the SMPSO introduces a mechanism that
bound the accumulated velocity of each variable j (in each
particle) by applying the Equations (5), (6), (7)and (8) (the
upper and lower limits are parameters defined by the user).

χ =
2

2− ϕ−
√
ϕ2 − 4 · ϕ

(5)

ϕ =

{
C1 + C2 if C1 + C2 > 4,
1 if C1 + C2 ≤ 4.

(6)

ϕ =


deltaj if vi,j(t) > deltaj ,
−deltaj if vi,j(t) ≤ −deltaj ,
vi,j otherwise.

(7)

χ =
upper limitj − lower limitj

2
(8)

After the velocity update of each particle a mutation oper-
ation is applied. It is applied a polynomial mutation [10]
in 15% of the population, randomly selected. The leader is
chosen by a binary tournament. In the SMPSO, the leader’s
archive has a maximum size, defined by a user parameter.
The crowded distance [10] defines which particles will re-
main in the repository when the archive becomes full.

B. Average Ranking

The Average Ranking method was proposed in [3]. This
technique is a preference relation that induces a preference
ordering over a set of solutions. The AR independently com-
putes a ranking for each objective value. After the computa-
tion of each ranking, the AR is the sum all these rankings.
The AR can be simple defined for a solution S by Equa-
tion (9):

AR(S) =
∑

1<i<m

ranking(fi(S)) (9)

where m is the number of objectives and ranking(fi(S) is

Table 2: Average Ranking example
(f1,f2,f3) f1 f2 f3 AR

(9, 1, 3) 4 1 2 7
(4, 2, 6) 3 2 4 9
(1, 7, 7) 1 4 5 10
(2, 8, 1) 2 5 1 8
(7, 5, 8) 5 3 6 14
(9, 9, 4) 6 6 3 15

1: Initialization procedure.
2: Evaluation of all objectives for all particles.
3: Initialization of repository and leaders choice.
4: Evolutionary loop
5: Velocity and position updated for all particles.
6: Mutation of 15% particles.
7: Objectives evaluation for all particles.
8: Update of the repository by using AR method.
9: Calculation of crowding distance.

10: Repository’s prune (Best AR and CD).
11: Selection of the non-dominated solutions in the repos-

itory.
12: Return the particles in the repository.

Figure. 2: AR-SMPSO algorithm.

the ranking for the ith objective. Table 2 presents one exam-
ple of the AR. First, each solution is ranked by each objec-
tive, e.g., the third solution has the best ranking (ranking 1)
for the first objective. After the calculation of each ranking
the AR sum all the rankings and defines its value for each
solution.
As defined in [15], here it will be used a different preference
relation instead of the Pareto dominance relation: a solution
x dominates solution y with respect to the average relation,
denoted x ≺AR y, if and only if AR(x) < AR(y).

C. AR-SMPSO

AR-SMPSO algorithm uses the dominance relation ≺AR to
enhance the SMPSO algorithm to deal with many-objective
problems. Figure 2 presents a brief description of AR-
SMPSO. First, an initialization procedure is performed. This
procedure initiates all components of a particle (position, ve-
locity, local leader, etc.). After, all objectives are evaluated.
Then, the external archive (repository) containing the best so-
lutions must be initiated. Here, to perform an initial pressure
towards the best solutions only 10% of the solutions fills the
repository. These solutions have the best AR values. After
this step, the leaders are chosen though a binary tournament.
The next step of AR-SMPSO is the evolutionary loop. In this
loop, first the particles are moved through the search space
by the velocity and position update and then it is applied a
mutation in 15% of the particles. The update of the reposi-
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tory is the main difference from AR-SMPSO to the original
SMPSO. In this step, the the ≺AR relation is applied. One
solution enters in the repository if and only if it dominates
any other solution with respect to the average relation. Then,
the Crowded Distance (CD) is calculated for all solutions in
the repository. As presented in Section V-A, the SMPSO
algorithm limits the number of solutions in the repository.
So, it must occur a prune procedure. This prune procedure
keeps the solutions with best AR. If the AR is equal, then
CD is used. Finally, to perform a pressure towards the Pareto
front, only the nondominated solutions are kept in the exter-
nal archive.
Next Section presents the empirical experiments performed
to evaluate the AR-SMPSO algorithm. It is analyzed how
the AR influences convergence and diversity of the SMPSO’s
search for many objectives problems. Besides, its results are
compared to SMPSO and CDAS-SMPSO algorithms.

VI. Experiments

In this section, it is presented an empirical analysis to in-
vestigate the performance of PSO with many-objective tech-
niques for many objective problems. Here, the two many-
objective techniques discussed before are used: control of
dominance area of solutions, called CDAS-SMPSO, and the
Average Ranking, called AR-SMPSO.
The modified algorithms were applied to 2 many-objective
problems of the DTLZ family [11], DTLZ2 and DTLZ4.
The DTLZ family are a set of benchmark problems often
used in the analysis of MOEAs [22] [27]. These problems
were selected for this study because they share the following
important features: a) the relatively small implementation
effort(Bottom-up approach and constraint surface approach),
b) can be scaled to any number of objectives (M) and deci-
sion variables (n), c) the global Pareto front is known analyt-
ically, d) convergence and diversity difficulties can be easily
controlled. For each problem, the variable k represents the
complexity of the search, where k = n - M + 1 (n number of
variables, M number of objectives). The problems are built
with non-overlapping sets of decision variables and |xM | =
k. The DTLZ2 problem can be used to investigate the ability
of the algorithms to scale up its performance in large number
of objectives. The DTLZ4 problem is used in order to inves-
tigate the ability to maintain a good distribution of solutions.
In this study, we are interested to analyze the behavior of
the modified PSO algorithms with the many-objectives tech-
niques for many objectives. So, in the empirical study, the
algorithms are applied to different problems and high dimen-
sional objective spaces: 3, 5, 10, 15 and 20.
The same way as presented in the previous work [9], here,
this experimental study had the goal to investigate the behav-
ior of the proposed approaches, especially in terms of conver-
gence and diversity, as well as their scalability with respect to
the number of objectives functions. So, the this set of quality
measures is used:
Generational Distance (GD) measures how far the gener-
ated approximated Pareto front PFapprox, i.e, the solutions
generated by the algorithms, are from the true Pareto front
of the problem PFtrue. If GD is equal to 0 all points of
PFapprox belong to the true Pareto front. GD allows observ-
ing if the algorithm converges for some region of the true

Pareto Front.
Inverse Generational Distance (IGD) measures the mini-
mum distance of each point of the PFtrue to the points of
the PFapprox. If IGD is equal to zero, the PFapprox contains
every point of the true Pareto Front. IGD allows to observe
if the PFapprox converges to the true Pareto front and also if
this set is well diversified. It is important to perform a joint
analysis of the GD and IGD indicators because if only GD
is considered it is not possible to identify if the solutions are
distributed over the entire Pareto front. On the other hand, if
only IGD is considered it is possible to define a sub-optimal
solution as a good solution.
Spacing [29] measures the range variance between neigh-
bors solution in the front. If the value of this metric is 0, all
solutions are equally distributed in the objective space.
We also compared the Execution Time of each algorithm
and performed an analysis of the distribution of the Tcheby-
cheff distance:
The distribution of the Tchebycheff distance is a metric
defined on a vector space where the distance between two
vectors is the greatest of their differences along any coordi-
nate dimension, Equation (10). Here, this distance is used
to measures the minimum Tchebycheff distance of each ap-
proximation obtained to the ideal point, z., or the ”knee” of
the Pareto front. The distributions of the Tchebycheff dis-
tance for all solutions are presented in distribution graphs, for
all analyzed objectives. The main motivation to use this met-
ric is because in literature, it is accepted that decision makers
prefer solutions in the middle of the Pareto front, called the
”knee” of the Pareto front [8].

d(z, z∗, λ) = max1≤j≤m{λj |z∗j − zj |} (10)

z∗ is the knee of the Pareto front, z is an objective vector in
PFapprox, m is the number of objectives and λj = 1/Ri,
where Ri is the range of the j − th objective in the true
Pareto Front.

For the CDAS-SMPSO, the parameter that controls de degree
of Si is defined for eleven different values, performing differ-
ent configurations. The Si value varied in intervals of 0.05,
the same variation applied in [26]. Si varies in the range
[0.25, 0.45], for the selection of a subset of the Pareto Front,
varies in the range [0.55, 0.75] for the relaxation of the dom-
inance relation and has the value equal to 0.5 for the original
Pareto dominance relation. The AR-SMPSO, did not need
any specific parameter configuration.
Both algorithms were executed fifty times. All configura-
tions, each Si value and AR, were executed with 100 gener-
ations and 250 particles. ω varies in the interval [0, 0.8], and
both φ1 and φ2 vary in the range [0, 1]. C1 and C2 vary in
the interval [1.5, 2.5]. The size of the repository is defined as
the same size of the population. It is applied a polynomial
mutation with probability pm = 1/n, where n is the number
of variables of the problem. Each variable of the velocity is
limited to the range [−5,+5]. All parameters were defined
with the values presented in [22].
Next Section describes the results of this empirical study.
First, similar experiments to [9] are presented, only using the
CDAS-SMPSO, but now using the DTLZ4 problem. These
experiments compare each configuration of CDAS and ana-
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lyze all quality indicators and then, the best configurations
for each indicator are selected.
After, the results of AR-SMPSO were compared to each best
configuration of CDAS-SMPSO and to the original domi-
nance relation, Si = 0.5, for all quality indicator. Also, the
distribution of the Tchebycheff is discussed.

A. Results

Table 3 presents the best configurations obtained for the
DTLZ4 problem, for each indicator. For GD, the configu-
rations Si < 0.5 exhibited best results. In this problem, only
Si < 0.5 had the best results, especially Si = 0.35, 0.4 and
0.45. For IGD, the CDAS-SMPSO obtained similar results
to DTLZ2 problem. Good results for Si < 0.5, especially
Si = 0.25, 0.45 and 0.55. These results stress that using low
values of Si we can have good convergence and diversity in
most cases, but there are some situations that the opposite can
be true. For Spacing, it can be highlighted that good spacing
results were obtained with low values of Si. This often oc-
curs due to the small number of solutions. The best spacing
results were obtained with the configurations that generated
smaller set of solutions.
Tables 4, 5, 6 and 7 present the results of the comparison be-
tween CDAS-SMPSO and AR-SMPSO. Each table presents
the mean value of the indicators, for all executions. The cells
marked with ∗ represent configurations that did not partici-
pate in the comparison, only best configurations of CDAS-
SMPSO were selected.
For GD, Table 4, the CDAS-SMPSO outperformed the AR-
SMPSO for all number of objectives, for both problems. It
can be observed that when the number of objective grows
the difference between the techniques decreases. Besides,
the AR-SMPSO obtained best results than the original dom-
inance relation for all comparisons. In sum, the CDAS tech-
nique obtained the best convergence, however AR-SMPSO
also obtained good convergence and did not deteriorate when
the number of objective grows.
Table 5 presents the IGD results. Again, the best results were
obtained by the CDAS technique. For the DTLZ2 problem,
the CDAS-SMPSO obtained the best results for all number
of objectives, however the AR-SMPSO obtained very close
results. The AR technique obtained better IGD than using
the original dominance relation and its results did no deteri-
orate for high number of objectives. For DTLZ4, the CDAS-
SMPSO obtained much better IGD than the others. As for the
GD, the difference between AR-SMPSO and CDAS-SMPSO
decreases when the number of objective grows. Again,
AR-SMPSO outperformed the original dominance relation.
Therefore, it can be concluded that CDAS-SMPSO gener-
ated a more distributed PFapprox than AR-SMPSO and both
algorithms performed better than the original dominance re-
lation considering convergence and distribution.
The results were similar for the Spacing indicator, presented
at Table 6. CDAS-SMPSO obtained the best results, for both
problems. This occurs due to the small number of solutions
generated by this algorithm. As discussed in [9], the smaller
the size of PFapprox is, the smaller is the spacing. The AR-
SMPSO generated a constant number of solutions, often as
big as the size of the repository. Again, the AR-SMPSO ob-
tained better results than the original dominance relation.

Table 7 presents the average execution time, in seconds,
for all CDAS-SMPSO configurations and AR-SMPSO. For
DTLZ2, the CDAS-SMPSO obtained the best execution
time, but only for the configuration with Si = 0.25. This
configuration obtained a low execution time due to the small
PFapprox. The AR-SMPSO executed much faster than the
others configurations, including the original dominance re-
lation. For the DTLZ4, the results were different. The
CDAS-SMPSO executed faster than the AR-SMPSO, espe-
cially when Si < 0.5. This occurred because the CDAS-
SMPSO generated a smaller PFapprox, for all objective stud-
ied. It is important to highlight, that this small set of solutions
did not deteriorate the quality of the algorithms.
In summary, the CDAS technique was the best many-
objective technique. It outperformed the AR for all indica-
tors analyzed. The CDAS-SMPSO obtained better conver-
gence and diversity than AR-SMPSO. However, AR-SMPSO
obtained better results than the original dominance relation,
especially when the number of objective grows. Also, AR-
SMPSO does not require an extra parameter and this is an
important advantage. It also executes faster, independently
of the problem. For the CDAS-SMPSO, the user parameter
Si influences the quality of the search. This algorithm ob-
tained best results with different values of Si, however, it can
be stated that Si lower than 0.5 generates the best results. It
was also showed that, the CDAS-SMPSO can execute faster,
however this execution time is directly related to the number
of solutions and there is no guaranteed that this algorithm
will be faster for every problem.

B. Tchebycheff distribution analysis

Figures 3 and 4 present the distribution of the Tcheby-
cheff distance for best configurations of CDAS-SMPSO, AR-
SMPSO and SMPSO( Si = 0.5), for all number of objec-
tives. Here, algorithms that have more solutions around the
knee are better, i.e, the algorithm that concentrates its distri-
bution in a smaller Tchebycheff distance.
For the DTLZ2 problem, the CDAS-SMPSO produced the
best distribution. For 3 and 5 objectives, all configurations
generated its distributions concentrated in low Tchebycheff
values, i.e., near the knee. When the number of objectives
grows, only the configurations Si = 0.25 and 0.3 still con-
centrated its distributions near the knee. The other ones, pro-
duced a more diversified distribution. As presented in [9],
the original dominance relation, Si = 0.5, produced a sim-
ilar distribution for almost all objectives, for both problems.
The solutions of these configurations are distributed through
different distances. Furthermore, these distributions were far
from the knee. This same diversification of the distributions
occurred for the AR-SMPSO.
For DTLZ4, similar results can be observed. Again, the orig-
inal dominance relation and AR-SMPSO generated diversi-
fied distributions. However, AR-SMPSO concentrated its so-
lutions farther from the knee than the original dominance
relation. Again the best results were obtained by CDAS-
SMPSO. For this problem, almost all generated solutions
were concentrated at the same Tchebycheff distance, closer
to the knee.
In sum, the CDAS-SMPSO was the best technique, now con-
sidering the distance from the knee. It generated almost all
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Table 3: Best configurations for CDAS-SMPSO algorithm, for DTLZ4 problem.

Problem Objective GD IGD Spacing

DTLZ4

3 0.25, 0.3 0.35, 0.4 and 0.45 0.25, 0.3 and 0.7 0.25 and 0.75
5 0.35, 0.4 and 0.45 0.25, 0.3 and 0.35 0.25 and 0.75

10 0.35, 0.4 and 0.45 0.25, 0.3 and 0.35 0.25, 0.3 and 0.35
15 0.35, 0.4 and 0.45 0.25, 0.3 and 0.35 0.25, 0.3 and 0.35
20 0.35, 0.4 and 0.45 0.25, 0.3, 0.35 and 0.4 0.25, 0.3 and 0.35

Table 4: GD values for best CDAS-SMPSO configurations, original dominance and AR-SMPSO, for each number of objec-
tives and for both DTLZ problems.

Prob Obj 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 AR

DTLZ2

3 * * 3.17E-03 2.45E-03 3.64E-03 1.59E-02 * * * * * 1.52E-02
5 * 1.23E-02 9.85E-03 1.37E-02 * 6.42E-02 * * * * * 4.47E-02

10 1.94E-02 2.48E-02 3.73E-02 * * 1.32E-01 * * * * * 6.22E-02
15 2.24E-02 2.67E-02 5.04E-02 * * 1.60E-01 * * * * * 8.68E-02
20 1.85E-02 2.82E-02 5.32E-02 * * 1.75E-01 * * * * * 1.11E-01

DTLZ4

3 5.25E-05 6.01E-05 5.81E-05 6.48E-05 8.02E-05 9.60E-03 * * * * * 1,52E-02
5 * 1.23E-02 9.85E-03 1.37E-02 * 6.42E-02 * * * * * 3.97E-02

10 1.94E-02 2.48E-02 3.73E-02 * * 1.32E-01 * * * * * 6.22E-02
15 2.24E-02 2.67E-02 5.04E-02 * * 1.60E-01 * * * * * 8.68E-02
20 1.85E-02 2.82E-02 5.32E-02 * * 1.75E-01 * * * * * 1.09E-01

Table 5: IGD values for best CDAS-SMPSO configurations, original dominance and AR-SMPSO, for each number of objec-
tives and for both DTLZ problems.

Prob Obj 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 AR

DTLZ2

3 * * * * 7.77E-04 9.46E-04 8.78E-04 * * * * 1.84E-03
5 * * 2.85E-03 2.32E-03 2.47E-03 4.93E-03 * * * * * 4.56E-03
10 * 3.61E-03 3.24E-03 3.69E-03 * 1.10E-02 * * * * * 5.54E-03
15 * 3.24E-03 3.43E-03 4.12E-03 * 1.45E-02 * * * * * 5.77E-03
20 4.84E-03 3.61E-03 3.24E-03 3.69E-03 * 1.10E-02 * * * * * 6.20E-03

DTLZ4

3 5.31E-03 7.06E-03 * * * 2.91E-02 * * * 1.15E-02 * 2.74E-03
5 3.10E-04 3.87E-04 4.82E-04 * * 1.37E+00 * * * * * 1.46E-03
10 1.63E-06 2.36E-06 3.11E-06 * * 2.04E+00 * * * * * 1.20E-03
15 4.44E-08 8.21E-08 9.27E-08 * * 2.18E+00 * * * * * 1.68E-03
20 4.04E-09 7.56E-09 9.94E-09 1.44E-08 * 2.23E+00 * * * * * 1.87E-04

Table 6: Spacing values for best CDAS-SMPSO configurations, original dominance and AR-SMPSO, for each number of
objectives and for both DTLZ problems.

Prob Obj 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 AR

DTLZ2

3 * * * * * 8.08E-01 * 4.11E-01 2.11E-01 * * 8.79E-01
5 4.46E-01 * * * * 1.53E+00 * 6.82E-01 1.51E-01 * * 1.27E+00
10 * 4.96E-01 2.39E+00 1.27E+00 * 8.78E-01 * * * * * 1.36E+00
15 5.53E-01 7.57E-01 * * * 2.54E+00 * * * * * 1.82E+00
20 5.52E-01 7.47E-01 9.84E-01 * * 2.56E+00 * * * * * 2.28E+00

DTLZ4

3 5.31E-03 * * * * 5.10E-01 * * * * 8.76E-02 3.55E-01
5 3.10E-04 * * * * 1.37E+00 * * * * 1.35E-01 5.73E-01
10 1.63E-06 2.36E-06 3.11E-06 * * 2.04E+00 * * * * * 8.50E-01
15 4.44E-08 8.21E-08 9.27E-08 * * 2.18E+00 * * * * * 8.31E-01
20 4.04E-09 7.56E-09 9.94E-09 * * 2.23E+00 * * * * * 7.73E-01

Table 7: Execution time (seconds) for all configurations of CDAS-SMPSO and AR-SMPSO, for each number of objectives
and for both DTLZ problems.

Prob Obj 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 AR

DTLZ2

3 0.52 1.44 6.42 34.32 39.05 32.88 43.44 43.60 42.22 35.82 61.73 4.72
5 1.60 33.65 66.56 475.11 160.80 68.85 589.97 184.03 23.92 97.48 614.71 8.50

10 7.37 758.33 144.74 1091.48 962.58 157.86 609.50 451.70 210.78 148.25 653.08 15.72
15 12.61 626.27 446.05 1037.35 344.03 434.92 791.24 478.90 628.44 1010.35 776.83 23.48
20 21.05 1078.43 602.08 979.36 865.95 1020.49 820.51 1182.44 815.63 731.59 954.37 32.77

DTLZ4

3 0.92 2.49 3.01 3.90 4.97 9.58 5.93 5.35 4.25 2.09 8.67 3.32
5 2.16 5.20 6.25 7.85 10.10 17.70 9.81 7.96 5.55 4.21 11.01 8.76

10 3.56 5.91 7.36 8.00 11.53 35.22 11.98 10.09 8.23 9.60 16.99 19.95
15 10.73 16.18 16.89 21.09 25.25 124.62 34.04 28.52 24.65 25.27 60.65 30.22
20 19.17 25.24 27.18 31.25 36.27 166.01 47.83 41.03 36.56 39.44 112.57 40.28

Carvalho and Pozo103



(a) 3 objectives (b) 5 objectives

(c) 10 objectives (d) 15 objectives

(e) 20 objectives

Figure. 3: Distribution of Tchebycheff distance for CDAS-SMPSO (best GD or IGD) and AR-SMPSO in DTLZ2 problem.
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(a) 3 objectives (b) 5 objectives

(c) 10 objectives (d) 15 objectives

(e) 20 objectives

Figure. 4: Distribution of Tchebycheff distance for CDAS-SMPSO (best GD or IGD) and AR-SMPSO in DTLZ4 problem.
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its solution near the knee for both problems and for all num-
ber of objectives. Examining of the quality indicators and the
distribution of Tchebycheff distance, the CDAS-SMPSO ob-
tained very good results: good convergence, diversity and its
solutions were generated near the knee of the Pareto front.
The AR-SMPSO produced a more diversified distribution,
but far from the knee. This result was expected because, as
presented in [15] for the NSGAII algorithm, the AR tends to
produce extreme solutions of the Pareto front, not near the
knee.

VII. Conclusion

This work presented a study of the influence of some many-
objective techniques in particle swarm optimization, for
many objective problems. Two different many-objective ap-
proaches were used: Control of Dominance Area of Solution
and Average Ranking. These techniques were applied to a
multi-objective PSO algorithm (SMPSO) that is based in co-
operation of individuals, a few explored topics in literature.
A set of empirical experiments was performed to measure
how CDAS and AR affect the convergence and diversity of
the PSO algorithm. Besides, the algorithms were confronted
to observe which technique obtained the best results in many-
objective scenarios. The CDAS-SMPSO were evaluated in
two different situations, using Si < 0.5, i.e, selecting a sub-
set of the Pareto Front and using Si > 0.5, i.e, performing
a relaxation of the Pareto dominance relation. Ten differ-
ent SMPSO configurations were used: 5 with Si < 0.5 and
5 with Si > 0.5. The original Pareto dominance relation
(Si = 0.5) was also used.
The experiments were conducted with two different many-
objective problems, DTLZ2 and DTLZ4, and the number of
objectives were varied in five different values: 3, 5, 10, 15
and 20. Three quality indicators were used: generational dis-
tance, inverse generational distance and spacing. Also, the
execution time was analyzed. Besides, the distribution of the
Tchebycheff distance of the generated solutions to the knee
of the true Pareto front was analyzed.
First, the best CDAS-SMPSO configurations were obtained
for both problems, for each quality indicator. After, these
best configurations were confronted to AR-SMPSO algo-
rithm and the original dominance relation. In this analysis,
the best results were obtained by CDAS-SMPSO, for all in-
dicators analyzed. Besides, this algorithm executed faster
than AR-SMPSO. However, this execution time is defined by
the number of solutions, the smaller the number of solutions
the faster is the execution time. AR-SMPSO results were
outperformed by CDAS-SMPSO, but AR-SMPSO obtained
better results than the original dominance relation, especially
when the number of objective grows. Furthermore, the AR-
SMPSO does not require any additional parameter and it ex-
ecutes fast independently of the problem. Through the anal-
ysis of all quality indicators and the Tchebycheff distance,
it can be concluded that CDAS-SMPSO was the best tech-
nique. It generates its solutions near the knee of the Pareto
front, for all problems and objectives. The AR-SMPSO pro-
duced a diversified distribution, often far from the knee. This
occurs, because the AR technique prefers extreme solutions
in the Pareto front.
Future works include expanding the experiments to a higher

number of problems and objectives, to search for other many-
objective techniques and to confront the results of PSO with
other MOEAs.
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[12] J. Demšar. Statistical comparisons of classifiers over multiple
data sets. The Journal of Machine Learning Research, 7:1–
30, 2006.

[13] V. E. Gopal, M. V. N. K. Prasad, and V. Ravi. A fast and
elitist multiobjective genetic algorithm: NSGA-II. Interna-
tional Journal of Computer Information Systems and Indus-
trial Management Applications (IJCISIM), 2:121–136, 2010.

[14] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary
many-objective optimization: A short review. In CEC 2008.
IEEE Congress on Evolutionary Computation, pages 2419–
2426, 2008.

[15] A. L. Jaimes and C. A. C. Coello. Study of preference rela-
tions in many-objective optimization. Proceedings of the 11th
Annual conference on Genetic and evolutionary computation
- GECCO ’09, pages 611–618, 2009.

106Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems



[16] A. L. Jaimes, C. A. C. Coello, and D. Chakraborty. Objec-
tive reduction using a feature selection technique. In GECCO
’08: Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 673–680, New York,
NY, USA, 2008. ACM.

[17] A. L. Jaimes, L. V. S. Quintero, and C. A. C. Coello. Ranking
methods in many-objective evolutionary algorithms. Studies
in Computational Intelligence, 193:413–434, 2009.

[18] J. Kennedy and R. Eberhart. Particle swarm optimization. In
IEEE International Conference on Neural Networks, pages
1942–1948. IEEE Press, 1995.

[19] I. Kokshenev and A. P. Braga. An efficient multi-objective
learning algorithm for rbf neural network. Neurocomputing,
73(16-18):2799–2808, 2010. 10th Brazilian Symposium on
Neural Networks (SBRN2008).
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