
International Journal of Computer Information Systems and Industrial Management Applications
ISSN 2150-7988 Volume 3 (2011) pp. 127-136
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Implementation of Graph Semantic Based
Multidimensional Data Model: An Object Relational

Approach

Anirban Sarkar1, Sankhayan Choudhury2, Nabendu Chaki2 and Swapan Bhattacharya3

1Department of Computer Applications,
National Institute of Technology, Durgapur,India

sarkar.anirban@gmail.com

2Department of Computer Science & Engineering,
University of Calcutta, Kolkata, India

{sankhayan@gmail.com, nabendu@ieee.org}

3 Department of Computer Science & Engineering,
Jadavpur University, Kolkata, India

bswapan2000@yahoo.co.in

Abstract: Data Warehouse (DW) design demands a
methodical support for the designer of DW to specify the
execution system efficiently from its conceptual level design. In
[19], we have proposed a generic model for Data warehouse at
conceptual level named Graph Object Oriented
Multidimensional Data Model (GOOMD). This paper proposes
a systematic approach for object relational implementation of
the GOOMD model. The approach is governed by some set of
conversion rules to specify the GOOMD model construct in SQL
2003 compatible Object Relational (OR) Schemas. Moreover,
the set of OLAP operators defined in GOOMD model have been
mapped using OR SQL which will operate on the OR schemas.
The concept of GOOMD model also has been implemented in
Generic Modeling Environment (GME) and an interpreter has
been developed to automate the proposed approach.

Keywords: Data Warehouse, Multidimensional Databases,
OLAP, Conceptual Modeling, Object Orientation, Graph Data
Model.

I. Introduction
Complex, online and multidimensional analysis of data is
done by fetching just-in-time information from subjective,
integrated, consolidated, non–volatile, historical collection of
data. Data Warehouse (DW) and On Line Analytical
Processing (OLAP) in conjunction with multidimensional
database are typically used for such analysis. DW facilitates
data navigation, analysis, and business oriented visualization
of data using multidimensional cube and OLAP query
processing. DW design framework spans in three levels
namely, Conceptual, Logical and Physical. Conceptual
models with graphical notations are closer to the perception of
users about an application domain whereas the logical models
concentrate more to the way as a designer perceives an
application domain. Data Warehouse design is a highly
complex engineering task. It requires a proper

methodological support to specify a DW system at conceptual
level and moreover the ability to map the system from
conceptual to the equivalent logical level. But in context of
multidimensional data modeling, there is a semantic gap
between advanced conceptual data models and
multidimensional implementations of data cubes at logical
level [16]. More research scope is there to identify the
methodology to preserve all information captured by
advanced conceptual multidimensional models in its
implementation. Thus a systematic and efficient approach for
mapping of conceptual model to its execution system is a
necessary requirement for providing an integrated solution of
a DW implementation.

Several proposed formal multidimensional data models at
conceptual level [2, 3, 4, 5, 6, 7, 8] have the necessary
mapping scheme to the relational model at logical design
phase. But the relational model, however, have serious
deficiencies in many aspects [9, 10, 11]. In some other
approaches [12, 13, 14, 15] the object oriented paradigm has
been considered for conceptual level design of DW. But
majority of these approaches do not facilitate OLAP
operational model. Also very few of these approaches have
been implemented at execution level. An approach by
extending the OCL has been described in [16] for
implementation of conceptual model described in [12]. The
OCL has been mapped in relational calculus. In [17], a
methodology has been described to enable OLAP users to
exploit simultaneously the features of OLAP and object
systems. A prototypical OLAP language called SumQL++
also has been defined to demonstrate the capabilities of the
proposed method. Further, the object oriented specification
and related CASE tool for multidimensional databases also
has been addressed in [18] based on GOLD model [14].
However, the GOLD model itself lacks from semantic

Sarkar et al.128

Product

P_ID

P_DESC

P_NAME

(a) (b)
Determinant ESG

DSG

Ordinary ESG

Constituent DSG

Model

 M_NAME

M_ID

Product

Edges Directed Edges
Figure 1: (a) Lowest Level DSG, (b) Higher Level DSG

Figure 2: (a) Schema for Sales Application (b) SALES
FSG construct after inheritance

Time

T MONTH

 T_ID

QTR

Model

M NAME

M_ID

Product
Location

L CITY

 L_ID

Region

Customer

 C_ID

C ADDR

C NAME

SALES (FSG)

AMOUNT
(Measure)

(a)

 SALES (FSG)

C ID M ID L ID T ID

AMOUNT
(Measure)

(b)

enriched graphical notations and OLAP operational model.
The Graph Object Oriented Multidimensional Data Model

(GOOMD) [19] provides a novel graph based semantic with
simple but powerful algebra for multidimensional data model
to conceptualize the multidimensional data visualization and
operational model for OLAP based on object oriented
paradigm. The model is a multidimensional extension of
Graph Data Model proposed in [11] to support the
conceptualization of DW system. The GOOMD model has
been revealed a set of concepts to the conceptual level design
phase of DW along with rich set of graphical notations. It
makes GOOMD more understandable to the users,
independent of implementation issues. Moreover the model
provides a set of constructs along with a set of operations to
facilitate the need of designers.

This paper proposes a systematic approach to specify the
modeling construct in SQL 2003 (compatible to Object
Relational (OR) constructs) for GOOMD model to facilitate
the designer of DW. Using the proposed approach, conceptual
multidimensional schemas can be specified in terms of object
types and its hierarchies in object relational database system.
Moreover, OLAP operations at the execution level through
the set of OLAP operators of GOOMD model can be mapped
in terms of OR SQL. Further, the concepts of GOOMD model
have been implemented using Generic Modeling
Environment (GME) [20] which is a meta-configurable
modeling environment. The GME implementation can be
used as prototype CASE tools for modeling multidimensional
databases using GOOMD model. An interpreter has been
developed also to implement the mapping scheme from
GOOMD model schema into its equivalent Object Relational
schema definition. Hence the proposed solution is able to
offer an integrated executable automatic solution for
modeling of Data warehouse. The priliminary version of this
work has been published in [22].

II. GOOMD Model with Example
In this section, we will summarize the basic concepts of
GOOMD model [19]. The GOOMD model is the core of the
comprehensive object oriented model of a DW containing all
the details that are necessary to specify a data cube, a
description of the dimensions, the classification hierarchies, a
description fact and measures.

A. The GOOMD Model
The GOOMD model allows the entire multidimensional
database to be viewed as a Graph (V, E) in layered
organization. At the lowest layer, each vertex represents an
occurrence of an attribute or measure, e.g. product name, day,
customer city etc. A set of vertices semantically related is
grouped together to construct an Elementary Semantic Group
(ESG). So an ESG is a set of all possible instances for a
particular attribute or measure. On next, several related ESGs
are group together to form a Contextual Semantic Group
(CSG) – the constructs to represent any context of business
analysis. A set of vertices of any CSG those determine the
other vertices of the CSG, is called Determinant Vertices of
said CSG. The most inner layer of CSG is the construct of
highest level of granularity of fact in Multidimensional

database formation. This layered structure may be further
organized by combination of two or more CSGs as well as
ESGs to represent next upper level layers and to achieve
further lower level granularity of contextual data. From the
topmost layer the entire database appears to be a graph with
CSGs as vertices and edges between CSGs as the association
amongst them. Dimensional Semantic Group (DSG) is a type
of CSG to represent a dimension member, which is an
encapsulation of one or more ESGs along with extension and /
or composition of one or more constituent DSGs. Fact
Semantic Group (FSG) is a type of CSG to represent a fact,
which is an inheritance of all related DSGs and a set of ESG
defined on measures. Two types of edges has been used in
GOOMD model, (i) directed edges from DSGs to FSG or
constituent DSG to determinant vertex of parent DSG to
represent the one – to – many associations and (ii) undirected
edges between constituent ESGs and determinant ESGs to
represent the association within the members of any CSG.

Implementation of Graph Semantic Based Multidimensional Data Model: An Object Relational Approach 129

Since, In order to materialize the cube, one must ascribe
values to various measures along all dimensions and can be
created from FSG. The cube will also obey a functional
constraint f:D1 ⅹ D2 ⅹ …ⅹ Dp MI. Where any Di is a
member of all related top level DSGs and MI is instances of
set of measures M. For schema containing multiple FSGs with
shared DSGs, the DSG set {D1, D2, … Dp} are the common set
of DSGs for all FSGs of the schema.

Let consider an example, based on Sales Application with
Sales Amount as measure and with four dimensions –
Customer, Model, Time and Location with the set of attributes
{C_ID, C_NAME, C_ADDR}, {M_ID, M_NAME, P_ID,
P_NAME, P_DESC}, {T_ID, T_MONTH, Q_ID, Q_NAME,
YEAR} and {L_ID, L_CITY, R_ID, R_NAME, R_DESC}
respectively. Model, Time and Location dimensions have
upper level hierarchies as Product {P_ID, P_NAME,
P_DESC}, QTR {Q_ID, Q_NAME, YEAR}and Region {R_ID,
R_NAME, R_DESC} respectively. Then in the notation of
GOOMD model there will be four DSGs DSales = {DCustomer,
DModel, DLocation, DTime} with hierarchy. Each DSG will be
comprised of either a set of ESGs EX ⊆ ESales or a combined
set of ESGs and DSGs. As described above the lower layer
DSG will be comprised of ESGs only. The Product DSG
DProduct is comprised of only ESGs like EP_ID, EP_NAME and
EP_DESC and will be represented as the inner layer of the graph.
Whereas, DSG for Model, DModel is an extension of DProduct as
well as encapsulation of EM_ID and EM_NAME. The DProduct and
DModel DSG graphically can be represented as Figure 1. The
FSG for the database can be described as FSales =
{DET(DCustomer), DET(DModel), DET(DLocation), DET(DTime),
EAMOUNT}. Where EAMOUNT is the ESGs defined on the measure
AMOUNT. The schema from the topmost layer has shown in
Figure 2.

B. OLAP Algebra
GOOMD model also provides a concept of OLAP algebra that
will operate on different semantic groups and consists of a set
of operators. The set of operators can efficiently manipulate
the set of instances of Cube, DSGs or even ESGs.
(i) dSelect (π): The operator will extract vertices from some
ESG or CSG, depending on some Predicate P. The algebraic
notation of the operator is πP(S) = SO, where S is the original
ESG or CSG and the SO is the output ESG or CSG.
(ii) Retrieve (σ): The Retrieve operator extracts vertices from
the cube C using some constraint CON over one or more
dimensions or ESGs defined on measures. The algebraic
notation of the operator is σCON(C) = CO, where constraint
CON will be in the form,CON = (πP1(D1)<op>πP2(D2)<op>
…<op>πPj(Dj)) AND (πPj+1(Em1)<op>πPj+2(Em2)<op>
...<op>πPj+k(Emk)). The Retrieve (σ) operator is helpful to
realize Slice and Dice operation in connection to OLAP.
(iii) Aggregation (α and +α): The Aggregation operators
perform aggregation on one or more DSG vertices and will
operate on base cube C. The output of the operators will be
another cube CO. The algebraic notations of the operators are
αF, m, DS(C) = CO and +αF, m, DS(C) = CO, where F is the
relational aggregation function and will perform for measure
m. DS is the set of DSGs on which F will operate. The α
operator will perform the aggregation function F for measure

m on the specified set of DSGs DS. Whereas +α operator will
perform the aggregation function F for measure m on each
DSG of outer layers including the specified set of DSGs and
also persist the output of the corresponding α operation.
Since these realize another important OLAP operation Roll -
Up. Also the output of α operation related to the +α operation
realize the Drill-Down operation.
(iv) Union, Intersection and Difference Operator (∪, ∩
and −): The operators will find Union, Intersection and
Difference of two cubes. The algebraic notation for the
operators is C1 ⊕ C2 = CO, where CO is the output cube and the
symbol ⊕ should be replaced by ∪ for Union operation, ∩ for
Intersection operation and − should be replaced for Difference
operation. The operations can be performed iff both the cube
C1 and C2 are related with identical set of DSGs and
Measures.
(v) Cartesian Product(ⅹ): It is a binary operator to relate
any two cubes. The algebraic notation of the operator is C1 ⅹ
C2 = CO.
(vi) Join (|ⅹ |): The Join operator is a special case of
Cartesian Product operator. The algebraic notation of the
operator is C1 |ⅹ| C2 = CO, where CO is the output cube. The
Join operation between C1 and C2 is possible iff D1 ∩ D2 ≠ ∅,
where D1 and D2 is the set of DSGs associated with C1 and C2
respectively. the Join operator can be expressed as, C1 |ⅹ| C2
= σCON(C1 ⅹ C2), where CON will equate the similar DSGs of
C1 and C2.
Since the operators like Union, Intersection, Difference and
Cartesian Product can operate on any ESG (e.g. ESG defined
on measures) also. In that case the operators will extract the
set of vertices from the ESGs on which it is operating and will
form another related ESG, without changing the meaning of
the operator as defined above.

C. The Hierarchical View of GOOMD Model
The hierarchical views of the above described Sales
Application in GOOMD notation has shown in Figure 3.(a).
The Sales application in hierarchical view consists of three
layers. Lowest layer is ESG Layer, which is collection of all
ESGs Defined on attributes or measures. Constituent DSGs
are placed in intermediate layer i.e. DSG Layer. GOOMD
schema may have multiple DSG Layers.

Since, constituent DSGs may be extended or may be
encapsulated like other ESGs to define upper layer DSGs.
DSGs with different granularity level for any Dimension
Level may be placed in different layer and so there may exists
multiple DSG layers. The Top Most Layer consists of DSGs
with lowest level granularity and FSGs. For the Sales
Application, there are four DSGs and one FSG.

Different Dimension Levels in the Figure 4.(a) shows the
hierarchy of different dimension members, each consists of
DGSs and their corresponding constituent DSGs. For the
Sales Application, there are four Dimension Levels. The ESGs
not associated with any Dimension Levels are the ESGs
defined on different measures. In Figure 3.(a) only one such
ESG exist, that is defined on measure Amount. As discussed
earlier, the Cube with lowest level granularity or highest
detail of data can be materialized from the top most layer of

Encapsulation

FSG: SALES
Measure ESG: Amount

Product QTR Region

Model Time Location Customer

Dimension
Level 1

Dimension
Level 2

Dimension
Level 3

Dimension
Level 4

ESG
Layer

Top
Most
Layer

DSG
Layer

Determinant ESG

DSG/FSG

Ordinary ESG

Constituent DSG

Inheritance

(a)
Figure 3: (a) Hierarchical View of GOOMD Model, (b) Example Sales Schema in Hierarchical View with GOOMD

Notation (with encapsulated ESGs)

(b)

the GOOMD model. The detail schema of Sales Application
has been shown in Figure 3.(b).

III. Object relational implementation of
GOOMD Model
The concept of any multidimensional data model consists of
three basic construct namely, (1) Dimensions, where each can
consist of a multi-level classification hierarchy, (2) Facts and
(3) Measures. In object oriented concept different object types
need to specify for Dimension members and Fact constructs
type. Object identification or OID must address the key
attributes specification. In the context of GOOMD model, the
construct like DSG and FSG will be realized by the object
type definitions. The determinant ESG will realize the OID
for the specific semantic construct. Further, it is important to
note that, the dimension hierarchy level can be represented by
corresponding inheritance tree of object types defined on the
hierarchy of DSGs.

In this section, a set of rules to specify equivalent Object
Relational schemas for GOOMD Model has been proposed.
Based on those rules, different object types have been
specified corresponding to the GOOMD model construct and
its graphical notations, with the purpose of system level
implementation of DW from its conceptual design model.

We have used the SQL 2003 standard for mapping
GOOMD model schema into the Object Relational model.

Since SQL 2003 supports structured user-defined types or
object data types, which are analogous to class declarations in
object languages. Object data types group
semantically-related attributes, which can be of any SQL type
and of public visibility. Further object data types can include
other encapsulated object data types as complex attributes.

The type hierarchy also can be defined using object data types
but with the restriction to single inheritance only i.e. a subtype
can directly derive only from a single super type. Further,
using definition of some object data types, either objects can
be stored in columns of relational tables or object data can be
stored in object tables, where each row is an object. As
example of a commercial object-relational DBMS we have
used Oracle 10g Release 2 which is compliance to SQL2003
standard [21].

A. Implementation of GOOMD Model Constructs
For the implementation of GOOMD model constructs into
equivalent Object Relational Schema we are setting the
following implementation rules.

Rule 1: All ESGs will be mapped directly into simple
attributes.

Rule 2: Lowest Layer’s DSGs will be mapped directly into
the object type of OR features. For the storage of instances of
such object type, the table structure will be defined on the
object type with the OID as specified by Determinant ESGs.

An example has been shown in Figure 4. Since, tProduct in
the example is an Object Table where every row object is
correspond to the tyProduct object type and pid is the object
identifier (OID) which uniquely identifies each object in the
object table.

Rule 3: Higher Layer’s DSGs with single inheritance will
be mapped into the object type with inheritance. For the
storage of instances of such object types the object table
structures will be defined for both supertype and subtype
object types with the OIDs as specified by Determinant ESGs.

An example has been shown in Figure 5. Since, tyModel is
a specialized object type of tyProduct. To maintain the
referential integrity within the instances of generalized and

Sarkar et al.130

Implementation of Graph Semantic Based Multidimensional Data Model: An Object Relational Approach

specialized object type, referential integrity constraint has
been imposed in the object table of specialized object type. In
the context, this is important to note that, in the concept
GOOMD model the referential integrities are maintained
inherently.

Rule 4: Higher Layer’s DSGs with encapsulation of

constituent DSG will be mapped into the object type with
nesting. For the storage of instances, the object table
structures will be defined only on the parent object type with
the OIDs as specified by Determinant ESGs.

An example has been shown in Figure 6. In the example,
tyCADDR is an object type and addr is an encapsulated object
type in the parent object type tyCustomer. As the rule
described the object table tCustomer has been created only for
the object type tyCustomer and addr has been treated as
column object of tCustomer table.

Rule 5: Higher Layer’s DSGs or FSGs with multiple

inheritances will be mapped into the object table with scoped
references of the parent objects. Since OR feature does not
support multiple inheritance. An example has been shown in
Figure 7.

Rule 6: Cube will be treated as object view of Fact Object
Type. Multiple views can be created with different level of
details from the same fact object type. Also a Cube may be
created from multiple fact object tables with common set of
dimension hierarchies.

Since the view for the base cube can be formed from the

SALES FSG definition of Rule 4 example using following
view definition,

CREATE VIEW vCubeSales OF tyFSales WITH
OBJECT IDENTIFIER (mr.mid, lr.lid, cr.cid, tr.tid)
AS SELECT e.mr, e.lr, e.cr, e.tr, e.Amount FROM
tFSales e;
/

B. Cube Representation from Multiple Facts
In GOOMD model concept a Cube can be materialized from
multiple Fact Object Tables with shared dimension hierarchy
where multiple measures attributes can be taken from
different Fact Object Tables. Further using two Retrieve
operations on the same Cube one can change the cell value in
multidimensional space without changing the associated top
level DSGs. This will realize the Drill-Across operation of
OLAP, which is implicit in the Cube concept of GOOMD
Model. Also there is no restriction to define a derived FSG
with new set of measure ESGs by inheriting the existing base
FSG. By defining a Cube on new FSG, one can perform the
Drill-Across operation between new set and existing set of
measure ESGs.

For example let the schema of Figure 1 containing another
FSG SalesQty with Quantity as attributes along with the
existing FSG Sales. Also let both FSGs are sharing the same
dimension hierarchy. Then two fact object tables can be
created as follows,

CREATE TABLE tFSales (mr REF tyModel SCOPE
IS tModel, lr REF tyLocation SCOPE IS tLocation, cr
REF tyCustomer SCOPE IS tCustomer, tr REF
tyTime SCOPE IS tTime, Amount number(7,2));
/

CREATE TABLE tFSalesQty (mr REF tyModel
SCOPE IS tModel, lr REF tyLocation SCOPE IS
tLocation, cr REF tyCustomer SCOPE IS tCustomer,

GOOMD Construct Equivalent Object Type & Object
Table Definition

CREATE TYPE tyProduct AS
OBJECT (pid NUMBER, pname
varchar2(10), pdes varchar2(10))
NOT FINAL
/
CREATE TABLE tProduct OF
tyProduct (pid PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY
KEY;
/

Figure 4: Implementation of Rule 2

GOOMD Constructs Equivalent Object Type & Object
Table Definition

CREATE TYPE tyModel UNDER
tyProduct (mid NUMBER, mdes
varchar2(10)) NOT FINAL;
/
CREATE TABLE tModel OF
tyModel (mid PRIMARY KEY,
mid REFERENCES(tProduct))
OBJECT IDENTIFIER IS
PRIMARY KEY;
/

Figure 5: Implementation of Rule 3

GOOMD Constructs Equivalent Object Type & Object
Table Definition

CREATE TYPE tyCADDR AS
OBJECT (City varchar2(10), ……)
/
CREATE TYPE tyCustomer (cid
NUMBER, cname varchar2(10), addr
tyCADDR) NOT FINAL;
/
CREATE TABLE tCustomer OF
tyCustomer (cid PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY
KEY;
/

Figure 6: Implementation of Rule 4

GOOMD Constructs Equivalent Object Type &
Object Table Definition

CREATE TYPE tyFSales as
object
(mr REF tyModel, lr REF
tyLocation, cr REF
tyCustomer, tr REF tyTime,
AMOUNT number(7,2));
/
CREATE TABLE tFSales (mr
REF tyModel SCOPE IS
tModel, lr REF tyLocation
SCOPE IS tLocation, cr REF
tyCustomer SCOPE IS
tCustomer, tr REF tyTime
SCOPE IS tTime, AMOUNT
number(7,2));
/

Figure 7: Implementation of Rule 5

131

tr REF tyTime SCOPE IS tTime, Quantity
number(5));
/
The cube from the multiple fact object types can be created

as follows,
CREATE TYPE tyFS AS OBJECT (mr REF tyModel,
lr REF tyLocation, cr REF tyCustomer, tr REF tyTime,
Amount number(7,2), Quantity number(5));
/
CREATE VIEW vCubeSalesAmtQty OF tyFS WITH
OBJECT IDENTIFIER (mr.mid,lr.lid,cr.cid,tr.tid) AS
SELECT a.mr, a.lr, a.cr, a.tr, a.Amount, b.Quantity
FROM tFSales a, tFSalesQty b where a.mr = b.mr, a.lr
= b.lr, a.cr = b.cr, a.tr = b.tr;
/
Now, two queries associated to Retrieve operator, one with

measure attribute Amount and another with measure attribute
Quantity can be formed along the common dimension
hierarchy to realize the Drill-Across operation.

C. Implementation of OLAP Operators
In this section we will focus on implementation of OLAP
operators as defined in GOOMD model, into object relational
SQL which will operate on the Object View created for Cube
or on Object Tables created for FSG constructs. The
dimension hierarchy levels for a cube can be represented by
corresponding inheritance trees of Object Tabled defined on
corresponding DSGs. For the purpose of query on the cube,
the general form of Object Relational SQL will be as follows,

SELECT DimObjTab1.OID, ..., DimObjTabn.OID,
AggrFun(Cube.Measure1), ..., (Cube.Measure2)
FROM Cube c, DimObjTab1 d1, ..., DimObjTabn dn
WHERE c.RefDim1.OID=d1.OID AND ... AND c.
RefDimn.OID=dn
AND {Other Predicates on Dimension Object Tables}
GROUP BY DimObjTab1.OID, ..., DimObjTabn.OID
ORDER BY DimObjTab1.OID, ..., DimObjTabn.OID;
/
 The general form of the query on OLAP imposes certain

interesting properties,
Property 1: The SELECT clause contains the aggregate

functions described on measure attributes of Cube and the
object identifiers of object tables defined on corresponding
DSGs. Each dimension object table corresponds to the top
most layer DSGs of each Dimension hierarchy level [Figure
3.(a)]. The OIDs are corresponding to the identifiers of
dimension object tables of specific layers at which we want to
aggregate the measures.

Property 2: Further as discussed earlier, a Cube may be
materialized from multiple fact object tables with common
dimension hierarchy, so different measure attributes of the
cube may belong to different fact object tables.

Property 3: The FROM clause contains the Object View on
object tables defined on FSG and topmost layer DSGs.

Property 4: The WHERE clause use to link the Cube and
the top most layer dimension object tables using referenced
OID and it also contain other predicated defined on
dimension object tables.

Property 5: The GROUP BY clause contains the object
identifiers of dimension object table of some specific layer at
which we want to aggregate the measures.

Property 6: The ORDER BY clause use to sort the output of
the queries based on the object identifiers.

Using the above said general form of OLAP query on cube
and its properties, the GOOMD model operators (discussed in
section 2.2) can be implemented as follows,

a) Retrieve Operator: σ(πRDES = “North” (Location) ∧ πYDES = 2007

(Time))(SALES) = CResult

Query:
SELECT d1.mid, d2.lid, d3.cid, d4.tid, f.Amount
FROM tModel d1, tLocation d2, tCustomer d3, tTime
d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid AND d4.ydes =
‘2007’ AND d2.rdes=’North’
GROUP BY d2.lid, d1.mid, d3.cid, d4.tid
ORDER BY d2.lid, d1.mid, d3.cid, d4.tid;
/
Since Retrieve Operator realize the SLICE and DICE

operations of OLAP. In the above query the vCubeSales will
be sliced by the predicate ydes =’2007’ and rdes =’North’.
The dice operation can be performed only by using a subset of
Dimension Object Tables of specific layers in SELECT,
WHERE, GROUP BY and ORDER BY clause respectively.

b) Aggregation Operator – I: αSUM, AMOUNT, {tYear} (SALES)
= CResult

Query:
SELECT d1.mid, d2.lid, d3.cid, d4.yid,
SUM(f.Amount) FROM tModel d1, tLocation d2,
tCustomer d3, tTime d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid
GROUP BY d2.lid, d1.mid, d3.cid, d4.yid
ORDER BY d2.lid, d1.mid, d3.cid, d4.yid;
/
The above query results the Roll-Up operation upto the

Year DSG [see Figure 4.(b)] from the base cube vCubeSales.
c) Aggregation Operator – II: +αSUM, AMOUNT, {tYear}

(SALES) = CResult
Query:
SELECT d1.mid, d2.lid, d3.cid, SUM(f.Amount)
FROM tModel d1, tLocation d2, tCustomer d3, tTime
d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid
GROUP BY d2.lid, d1.mid, d3.cid
ORDER BY d2.lid, d1.mid, d3.cid;
Intermediate Result 1:IC1
SELECT d1.mid, d2.lid, d3.cid, d4.yid,
SUM(f.Amount) FROM tModel d1, tLocation d2,
tCustomer d3, tTime d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid
GROUP BY d2.lid, d1.mid, d3.cid, d4.yid
ORDER BY d2.lid, d1.mid, d3.cid, d4.yid;
/
Intermediate Result 2:IC2

Sarkar et al.132

Implementation of Graph Semantic Based Multidimensional Data Model: An Object Relational Approach

SELECT d1.mid, d2.lid, d3.cid, d4.qid,
SUM(f.Amount) FROM tModel d1, tLocation d2,
tCustomer d3, tTime d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid
GROUP BY d2.lid, d1.mid, d3.cid, d4.qid
ORDER BY d2.lid, d1.mid, d3.cid, d4.qid;
/
On execution of above +α Aggregation Operator, the query

will result C0 the total Amount of sales on other given
dimension. Also it will generate the Intermediate Cube IC1
and IC2. This operator will facilitate the Drill-Down
Operation also. Since IC2 is Drill-Down output of IC1 and IC1
is Drill-Down Output of C0.

d) UNION Operator: σ(πYDES = 2007 (Time))(SALES)Uσ(πYDES =

2008 (Time))(SALES) = CResult

Query:
SELECT d1.mid, d2.lid, d3.cid, d4.tid FROM tModel
d1, tLocation d2, tCustomer d3, tTime d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid AND d4.ydes =
‘2007’
GROUP BY d2.lid, d1.mid, d3.cid, d4.tid
ORDER BY d2.lid, d1.mid, d3.cid, d4.tid;
UNION
SELECT d1.mid, d2.lid, d3.cid, d4.tid FROM tModel
d1, tLocation d2, tCustomer d3, tTime d4, vCubeSales f
WHERE f.mr.mid = d1.mid AND f.lr.lid = d2.lid AND
f.cr.cid = d3.cid AND f.tr.tid = d4.tid AND d4.ydes =
‘2008’
GROUP BY d2.lid, d1.mid, d3.cid, d4.tid
ORDER BY d2.lid, d1.mid, d3.cid, d4.tid;
/
e) Join Operator: Let the query is “Find those models

having total sales during the first QTR greater than half of
their sales for the entire year for 2007”.

Query:
 The join operator for the query as described in section

2.2 may be expressed in the following way,
σCON(C1 |ⅹ| C2)= CResult

Where,
CON = πC2.Amount≥1/2*C1.Amount(C1.Amount X
C2.Amount),

σCON1(SALES)= C1, σCON2(SALES)= C2,
CON1 = πYDES=2007(TIME) and CON2 =
πYDES=2007∧QDES=”1h7”(TIME)
For the purpose we are creating two Cubes based on the

Fact tables as follows,
CREATE VIEW C1 AS SELECT d2.lid, d3.cid, d4.yid,
sum(f.Amount) "Amount" FROM tModel d1,
tLocation d2, tCustomer d3, tTime d4, tFSales f
WHERE f.lr.lid = d2.lid AND f.cr.cid = d3.cid AND
f.tr.tid = d4.tid AND f.tr.ydes='2007' GROUP BY
d2.lid, d3.cid, d4.yid ORDER BY d2.lid, d3.cid, d4.yid;
/
CREATE VIEW C2 AS SELECT d2.lid, d3.cid, d4.yid,
sum(f.Amount) "Amount" FROM tModel d1,
tLocation d2, tCustomer d3, tTime d4, tFSales f
WHERE f.lr.lid = d2.lid AND f.cr.cid = d3.cid AND

f.tr.tid = d4.tid AND f.tr.ydes='2007' AND f.tr.qdes
='1h7' GROUP BY d2.lid, d3.cid, d4.yid ORDER BY
d2.lid, d3.cid, d4.yid;
/
Now the query for the join of two Cubes C1 and C2 is as

follows,
SELECT C2.lid, C2.cid, C2.yid, C2."Amount" from
C1, C2 WHERE C1.lid=C2.lid AND C1.cid = C2.cid
AND C1.yid=C2.yid AND C2."Amount" >=
0.5*C1."Amount";
/

IV. Implementation of GOOMD Model Using
GME
The Generic Modeling Environment (GME) provides
meta-modeling capabilities and where a domain model can be
configured and adapted from meta-level specifications
(representing the Conceptual modeling) that describe the
domain concept. It is common for a model in the GME to
contain several numbers of different modeling elements with
hierarchies that can be in many levels deep. The GME
supports the concept of a viewpoint as a first-class modeling
construct, which describes a partitioning that selects a subset
of conceptual modeling components as being visible.

Moreover, GME support the programmatic access of the
metadata of GME models. Most usual techniques for such
programmatic access is to write GME interpreter for some
metamodel. The interpreter will be able to interpret any
domain model based on that predefined metamodel. GME
interpreters are not standalone programs, they are components
(usually Dynamic Link Libraries) that are loaded and
executed by GME upon a user's request. Most GME
components are built for the Builder Object Network (BON),
an inbuilt framework in GME and provide a network of C++
objects. Each of these represents an object in the GME model
database. C++ methods provide convenient read/write access
to the objects' properties, attributes, and relations described in
GME metamodel.

In the context of GOOMD model, the lower layers can be
conceptualized using levels in GME. The interpreter for the
model has been developed using BON in Visual C++ IDE.
The interpreter will generate the equivalent Object –
Relational (OR) data definitions for any given GME model
configured using meta-level specifications of GOOMD
model.

Recalling the example of DW system based on Sales
Application (Figure 2 and Figure 3) with Sales Amount as
measure and with four dimensions – Customer, Model,
Location and Time. Also, one ESG has been defined on the
measure AMOUNT. Say for the Sales application the set of
ESGs are ESales. The meta-level specifications of GOOMD
model using GME has been shown in Figure 8.

The GOOMD model schema specification of Sales
Application using GME has been shown in Figure 9. The
BON based interpreter for GOOMD model can run from the
GME interface to interpret any GOOMD model schema like
Sales Application schema to generate the equivalent Object
Relational data definition language. The interpreter output of
Sales Application schema has been shown in Figure 10.

133

V. Conclusion
In this paper a systematic approach has been proposed to
specify the conceptual level multidimensional data model
called, GOOMD model, into an equivalent object types. It is
compatible to SQL 2003 standard. The proposed rule based
approach can express the concepts, graphical notations and
the OLAP operators of the GOOMD model at the system level
implementation of DW. The expressive power of the
proposed approach also has been demonstrated using typical
examples.

The main objective of the proposed methodology is to
remove the semantic gap between advanced conceptual level
data models and multidimensional implementations of data
cubes. The advantage of this approach is multifold. Firstly, it
provides a systematic approach to express the formal
conceptual multidimensional data model at execution level
and facilitate the designer of DW to specify the operational
system for DW more effectively. Secondly, the proposed rule
based approach is simple, powerful, expressive, and has been
drawn from basic concept of object orientation. Thirdly, the
implementation of proposed approach exhibit a

Figure 8: Meta-Level Specifications of GOOMD model using GME

Figure 9. GOOMD Model Schema of Sales Application using GME

Sarkar et al.134

Implementation of Graph Semantic Based Multidimensional Data Model: An Object Relational Approach

comprehensive guideline for automatic generation of
execution model like SQL2003 compatible Object relational
schemas from the conceptual model and its graphical
notations. And finally, the proposed methodology, in general,
can be used with any conceptual multidimensional data model
with proper mapping rules to specify the model at execution
level.

The proposed approach also has been automated through
the GME based interpreter for GOOMD model. The
meta-level specification of GOOMD model along with the
interpreter can be used as a CASE tool for the model by the
DW designer.

References
[1] Stefano Rizzi, Alberto Abelló, Jens Lechtenbörger, Juan

Trujillo, “Research in data warehouse modeling and
design: dead or alive?”, Proceedings of the 9th ACM
international workshop on Data warehousing and
OLAP, PP 3 – 10, November 2006.

[2] E. Franconi and U. Sattler,"A Data Warehouse
Conceptual Data Model for Multidimensional
Aggregation: a preliminary report", Italian Association
for Artificial Intelligence AI*IA Notizie, Vol. 1, PP
9-21, 1999.

[3] Anindya Datta and Helen Thomas, "The cube data
model: a conceptual model and algebra for on-line
analytical processing in data warehouses", Decision
Support Systems, Vol. 27(3), PP 289-301, December
1999.

[4] Nectaria Tryfona, Frank Busborg, Jens G. Borch
Christiansen, "starER: A Conceptual Model For Data
Warehouse Design", Proceedings of the 2nd ACM
international workshop on Data warehousing and
OLAP, PP 3 – 8, November 1999.

[5] Matteo Golfarelli and Dario Maio and Stefano
Rizzi,"The Dimensional Fact Model: A Conceptual
Model for Data Warehouses", International Journal of
Cooperative Information Systems, Vol 7, No 2-3, PP
215-247, 1998.

[6] Karl Hahn, Carsten Sapia, Markus Blaschka,
"Automatically Generating OLAP Schemata From

CREATE TYPE tyYear AS OBJECT (YID NUMBER (2), YDES VARCHAR2 (6)) NOT FINAL;

CREATE TABLE tbYear OF tyYear (YID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE Type tyQTR UNDER tyYear (QID NUMBER (2), QDES VARCHAR2 (5)) NOT FINAL;

CREATE TABLE tbQTR OF tyQTR (QID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE Type tyMonth UNDER tyQTR (TID NUMBER (2), TMON VARCHAR2 (10)) NOT FINAL;

CREATE TABLE tbMonth OF tyMonth (TID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TYPE tyProduct AS OBJECT (PID NUMBER (2), PNAME VARCHAR2 (15)) NOT FINAL;

CREATE TABLE tbProduct OF tyProduct (PID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE Type tyModel UNDER tyProduct (MID NUMBER (2), MDES VARCHAR2 (10)) NOT FINAL;

CREATE TABLE tbModel OF tyModel (MID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TYPE tyCustomer AS OBJECT (CID NUMBER (2), CNAME VARCHAR2 (15), CADDR
VARCHAR2 (20)) NOT FINAL;

CREATE TABLE tbCustomer OF tyCustomer (CID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY
KEY;

CREATE TYPE tyREGION AS OBJECT (RID NUMBER (3), RNAME VARCHAR2 (15), RDESC
VARCHAR2 (30)) NOT FINAL;

CREATE TABLE tbREGION OF tyREGION (RID PRIMARY KEY) OBJECT IDENTIFIER IS PRIMARY
KEY;

CREATE Type tyLOCATION UNDER tyREGION (LID NUMBER (3), LCITY VARCHAR2 (15)) NOT
FINAL;

CREATE TABLE tbLOCATION OF tyLOCATION (LID PRIMARY KEY) OBJECT IDENTIFIER IS
PRIMARY KEY;

CREATE TABLE FSGSales (refMonth REF tyMonth SCOPE IS tbMonth, refModel REF tyModel SCOPE
IS tbModel, refCustomer REF tyCustomer SCOPE IS tbCustomer, refLOCATION REF tyLOCATION
SCOPE IS tbLOCATION, Amount NUMBER (10));

Figure 10: GOOMD Interpreter Output for Sales Applications Schema

135

Conceptual Graphical Models", Proceedings of the 3rd
ACM international workshop on Data warehousing and
OLAP DOLAP, PP 9 – 16, November 2000.

[7] Nguyen Thanh Binh, A. Min Tjoa, "Conceptual
Multidimensional Data Model Based On
Object-Oriented Metacube", Proceedings of the 2001
ACM symposium on Applied computing, PP 295 – 300,
March 2001.

[8] Aris Tsois and Nikos Karayannidis and Timos K. Sellis,
"MAC: Conceptual data modeling for OLAP", Booktitle
"Design and Management of Data Warehouses", PP 5,
2001.

[9] Senko M. E., “Information Systems: Records, relations,
set, entities and things”, Information Systems, Vol. 1.1,
PP 3 – 13, 1975.

[10] Hideko S.Kunii, “Graph Data Model and its Data
Language”, Springer – Verlag, 1990.

[11] S. Choudhury, N. Chaki, S. Bhattacharya, “GDM: A
New Graph Based Data Model Using Functional
Abstraction”, Journal of Computer Science and
Technology, Vol. 21(3), PP 430 – 438, 2006.

[12] Sergio Luján-Mora, Juan Trujillo and Il-Yeol Song, "A
UML Profile For Multidimensional Modeling in Data
Warehouses", Data & Knowledge Engineering, Vol.
9(3), PP 725 – 769, December 2006.

[13] Nicolas Prat, Jacky Akoka and Isabelle Comyn-Wattiau,
"A UML-based Data Warehouse Design Method",
Decision Support Systems, Vol 42(3), PP 1449 – 1473,
December 2006.

[14] J. Trujillo, “The GOLD Model: An Object-Oriented
ConceptualModel for the Design of OLAP
Applications”, Doctoral Dissertation, Languages and
Information Systems Dept., Alicante University, Spain,
June 2001.

[15] Zepeda, L.; Celma, M., “A model driven approach for
data warehouse conceptual design”, 7th International
Baltic Conference on Databases and Information
Systems, PP 114 – 121, 2006.

[16] Jesús Pardillo, Jose-Norberto Mazón, Juan Trujillo,
"Extending OCL for OLAP querying on conceptual
multidimensional models of data warehouses",
Information Sciences, Vol.180(5), PP 584-601, 2010

[17] T. B. Pedersen, J. Gu, A. Shoshani, C. S. Jensen,
"Object-extended OLAP querying", Data & Knowledge
Engineering, Vol.68(5), PP 453-480, 2009.

[18] Juan Trujillo, Manuel Palomar, Jaime Gómez, “The
GOLD definition language (GDL): An Object Oriented
Formal Specification Language For Multidimensional
Databases”, Proceedings of the ACM symposium on
Applied Computing, Vol. 1, PP 346 – 350, March 2000.

[19] Anirban Sarkar, Sankhayan Choudhury, Nabendu
Chaki, Swapan Bhattacharya, “Conceptual Level
Design of Object Oriented Data Warehouse: Graph
Semantic Based Model”, INFOCOMP Journal of
Computer Science, Vol 8(4), PP 60 – 70, 2009.

[20] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter
Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and
Gábor Karsai, “Composing Domain-Specific Design
Environments”, IEEE Computer, PP 44-51, 2001.

[21] Oracle Corp. (2005), http://download.oracle.com/docs/
cd/B19306_01/server.102/b14200/ap_standard_sql003.
htm# i7719, 2005.

[22] Anirban Sarkar, Sankhayan Choudhury, Nabendu
Chaki, Swapan Bhattacharya, “Object Relational
Implementation of Graph Based Conceptual Level
Multidimensional Data Model”, 9th International
Conference on Computer Information Systems and
Industrial Management Applications (CISIM 2010), PP
154 – 159, October 2010.A. Bonnaccorsi. “On the
Relationship between Firm Size and Export Intensity”,
Journal of International Business Studies, XXIII (4), pp.
605-635, 1992. (journal style)

Author Biographies
Anirban Sarkar is presently a faculty member in the
Department of Computer Applications, National Institute
of Technology, Durgapur, India. He received his PhD
degree from National Institute of Technology, Durgapur,
India in 2010. His areas of research interests are Database
Systems and Software Engineering. His total number of
publication in various international platforms is about 20.

Sankhayan Choudhury is presently a faculty member in
the Department of Computer Science & Engg., University
of Calcutta, Kolkata, India. He received his Ph.D. degree
from Jadavpur University, India in 2006. His areas of
research interests are Distributed Computing and Database
Systems. He has published about 30 papers in International
Conferences and journal. He is also actively involved in
organizing international conferences on distributed
computing.

Nabendu Chaki is Head and Associate Professor in the
Department of Computer Science & Engineering,
University of Calcutta, Kolkata, India. He received his
Ph.D. degree from Jadavpur University, India in 2000. His
areas of research interests include Distributed Computing
and Software Engineering. Dr. Chaki has supervised in the
Ph.D. program in Software Engineering in Naval
Postgraduate School, Monterey, CA, USA during
2001–2002, as a Research Assistant Professor. He is a
visiting faculty member for many Universities including
the University of Ca’Foscari, Venice, Italy. Besides being
in the editorial board of a few International Journals, Dr.
Chaki has also served in the committees of several
international conferences. His total number of publications
in referred international journals and conferences is more
than 70.

Swapan Bhattacharya is presently working as Professor
in Department of Computer Science & Engineering,
Jadavpur University, Kolkata, India. He has served as
Director of National Institute of Technology, Durgapur,
India during 2005 – 2010. He did his Ph.D. in Computer
Science in 1991 from University of Calcutta, India. His
areas of research interests are distributed computing and
software engineering. He had received Young Scientist
Award from UNESCO in 1989. As a Sr. Research
Associate of National Research Council, USA, he had also
served as the coordinator of Ph.D. program in Software
Engg. in Naval Postgraduate School, Monterey, CA during
1999–2001. He has published over 100 research papers in
various international platforms. He is actively involved in
collaborative research with several Institutes in UK and
USA and also in organizing international conferences on
software engineering and distributed computing.

Sarkar et al.136

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Albertus-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMedium-Italic
 /Algerian
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chiller-Regular
 /Clarendon-Bold
 /Clarendon-Book
 /Clarendon-Condensed-Bold
 /ClarendonExtended-Bold
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Coronet
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierHP
 /CourierHP-Bold
 /CourierHP-BoldItalic
 /CourierHP-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

