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Abstract: In traditional classification problems (single-label), 

patterns are usually associated with a single label from a set of 
two or more classes. When an example can simultaneously 
belong to more than one class (label), this classification problem 
is known as multi-label classification problem. Multi-label 
classification methods have been increasingly used in modern 
applications, such as music categorization, functional genomics 
and semantic annotation of images. In addition, the multi-label 
classification methods can be broadly classified in two groups, 
which are: problem transformation and algorithm adaptation 
methods. This paper presents a comparative analysis of some 
existing multi-label classification methods (from both groups of 
methods) applied to different problem domains. The main aim of 
this analysis is to evaluate the performance of such methods in 
different tasks and using different evaluation metrics.  
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I. Introduction 
In the machine learning context, a large amount of research 
has been done in traditional single-label classification 
method. In these methods, training examples are associated 
with a single label l from a previously known finite set of 
disjoint labels L. Hence, a single label dataset D is composed 
of n examples (x1,l1),(x2,l2),…(x3,l3), where x represents 
the input data and l represents the single label to which x 
belongs to [1]. However, there are real classification problems 
where an example can belong to more than class 
simultaneously. These problems are known as multi-label 
classification problems. [1, 2, 3]. In multilabel classification, 
the examples are associated with a set of labels Y � L.  
Initially, multi-label classification was motivated by  
application in the context of text categorization and medical 
diagnosis. Text documents, for instance, usually belong to 
more than one conceptual class. These applications could be 
considered as natural multi-label problems. However, 
nowadays, multi-label classification has attracted significant 
attention from a lot of researchers, motivated from an 

increasing number of new applications, such as semantic 
annotation of images [4, 5, 6] and video [7, 8], functional 
genomics [9, 10, 11, 12, 13], music categorization into 
emotions [14, 15, 16, 17], directed marketing [18], among 
others.  
In the literature, different methods have been proposed to be 
applied to multi-label classification problems, which can be 
broadly classified as problem transformation and algorithm 
adaptation methods. Although there are a reasonable number 
of multi-label classification methods proposed in the 
literature, there is little effort in comparing the different 
multi-label methods (using both groups of methods) in 
different applications. In [2], for instance, the authors 
presented a comparative analysis of some existing methods 
and they used different evaluation metrics applied to the 
protein domain. Nonetheless, with increasing number of 
possible multi-label applications in different domains, it is 
important to perform a broader comparison, using different 
application domains.  
As a contribution to this important topic, this paper presents a 
comparative analysis of some existing multi-label 
classification methods, using datasets of different domains. In 
order to do this analysis, nine multi-label classification 
methods are used, in which seven of them belong to the 
problem transformation approach (Binary Relevance (BR), 
Label Powerset (LP), Random k-labelsets (RAkEL), 
Classifier Chains (CC), Pruned Sets (PS), Ensemble of 
Classifier Chains (ECC) and Ensemble of Pruned Sets (EPS)) 
and the remaining two belong to the algorithm adaptation 
approach (Multi-Label k Nearest Neighbours  (ML-kNN) and 
Back-Propagation Multi-Label Learning (BPMLL)). In 
addition, these methods will be evaluated using different 
evaluation metrics. As a result of this analysis, we aim to 
investigate these classification methods under different 
circumstances. 

II. Multi-label Classification 
As already mentioned, in traditional single-label 
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classification, a classifier is built and trained using a set of 
examples associated with just one single label l of a set of 
disjoint labels L, where |L|>1. Moreover, in multilabel 
classification, the examples can be associated with a set of 
labels Y ⊆ L. In the literature, different methods have been 
proposed to be applied to multi-label classification problems, 
such as [1, 5]. The next two subsections will describe these 
two groups in more details. 

A. Problem Transformation Methods 
In this approach, the main idea is to transform the original 
multilabel problem into a set of single-label classification 
problems. It is an algorithm independent approach, since its 
functioning does not depend directly on the classification 
method used. Problem transformation approaches have 
employed classical algorithms such as in [19,20,21]. In this 
paper, we will use algorithms that belong to this group 
There are several problem transformation methods in the 
literature that can be used to transform a multilabel dataset 
into a single-label dataset. Thus, any traditional classification 
algorithm can be used to deal with the multi-label problem. In 
this paper, we have chosen to compare some the most widely 
applied in the literature, which are:  

• Binary Relevance (BR) is a popular and the most 
widely-used problem transformation method [1]. BR 
considers the prediction of each label as an 
independent binary classification task. Thus, BR 
builds M binary classifiers, one for each different 
label L (where M = L). For the classification of a new 
instance, BR outputs the union of the labels li that are 
positively predicted by the M classifiers. The main 
drawback of this method is the fact that it assumes 
that the labels assigned to an example are 
independent, ignoring the possible correlations 
among the possible labels. 

• Label Powerset (LP) is a simple and less common 
problem transformation method [1]. LP considers 
each unique set of labels that exists in a multilabel 
training set as one of the labels of a new single-label 
classification task. Given a new instance, the 
single-label classifier of LP outputs the most likely 
label, which is actually a set of labels. The main 
advantage of LP is that it takes the label correlations 
into account. However, it suffers from the increasing 
complexity emerged from the large number of label 
subsets and the majority of these classes are 
associated with very few examples [23]. 

• Random k-labelsets (RAkEL) constructs an ensemble 
of LP classifiers [22]. Each LP classifiers is trained 
using a different small random subset of the set of 
labels. An average decision is calculated for each 
label li in L, and the final decision is positive for a 
given label if the average decision is larger than a 
given threshold t. The RAkEL aims to take into 
account label correlations and at the same time 
avoiding the aforementioned problems of LP [23].  

• Classifier Chains (CC) [24] involves |L| binary 
classifiers as in a binary relevance method. 
Classifiers are linked along a chain where each 
classifier deals with the binary relevance problem 
associated with label lj ∈ L. The feature space of 
each link in the chain is extended with the 0/1 label 
associations of all previous links. 

• Pruned Sets (PS) [25] for multi-label classification is 
centred on the concept of treating sets of labels as 
single labels. This allows the classification process 
to inherently take into account correlations between 
labels. By pruning these sets, PS focuses only on the 
most important correlations, which reduces 
complexity and improves accuracy. 

• Ensembles of Classifier Chains (ECC) [23] trains m 
CC classifiers C1,C2,…,Cm. Each Ck is trained with a 
random chain ordering (of L) and a random subset of 
D. Hence each Ck model is likely to be unique and 
able to give different multilabel predictions. These 
predictions are summed by label so that each label 
receives a number of votes. A threshold is used to 
select the most popular labels which form the final 
predicted multi-label set. 

• Ensembles of Pruned Sets (EPS) [25] combine pruned 
sets in an ensemble scheme.  PS is particularly suited 
to an ensemble due to its fast build times and, 
additionally, the ensemble counters any over-fitting 
effects of the pruning process and allows the creation 
of new label sets at classification time. 

a. Algorithm Adaptations Methods 
In this approach, extensions of single-label classifiers have 
been developed, adapting their internal mechanisms to allow 
their use in multilabel problems. Also, new algorithms can be 
developed specifically for multilabel problems [3]. It is 
expected that an algorithm which was developed specifically 
to solve multi-label problems may have a better performance 
than methods based on the problem transformation. [2]. 
However, as it is an algorithm dependent approach, it is not 
widely used since it has to be used with that specific 
classification methods to which it was proposed.  
In the literature, various algorithm adaptation methods are 
proposed, based in different algorithms, such as: decision 
trees [9], probabilistic methods [23], neural networks [26], 
support vector machines [19], lazy and associative methods 
[5], boosting [27], among others. In [9], the most popular 
decision tree algorithm, named C4.5, was adopted for the 
handling of multilabel data. In [23], a probabilistic generative 
model is proposed, which a multilabel document is produced 
by a mixture of the word distributions of its labels. Extensions 
of the k-Nearest Neighbors (kNN) lazy learning can be found 
in various works, such as [5, 16, 21].  In [27], two extensions 
of AdaBoost algorithm are proposed, AdaBoost.MH and 
AdaBoost.MR. In this paper, we have chosen to compare two 
the most widely applied in the literature, which are: 
 

• ML-kNN (Multi-Label k Nearest Neighbours) [5] 
extends the popular k Nearest Neighbors (kNN) lazy 
learning algorithm using a Bayesian approach. It 
uses the maximum a posteriori principle in order to 
determine the label set of the test instance, based on 
prior and posterior probabilities for the frequency of 
each label within the k nearest neighbors [5]. 

• Back-Propagation Multi-Label Learning (BPMLL) 
[28] is a neural network algorithm for multi-label 
learning. Its derived from the popular 
Back-propagation algorithm. The main modification 
to the algorithm is the introduction of a new error 
function that takes multiple labels into account. The 
new function was defined to capture the 
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characteristics of multi-label learning, that is, the 
labels belonging to an instance should be ranked 
higher than those not belonging to that instance. 

 

III. Evaluation Metrics 
The evaluation of multi-label classifiers requires different 
measures than those used in the case of single-label problems. 
Unlike the single-label problems, which the classification of 
an example is correct or incorrect, in a multilabel problem a 
classification of an example may be partially correct or 
partially incorrect. This can happen when a classifier correctly 
assigns an example to at least one of the labels it belongs to, 
but does not assign to all labels it belongs to. Also, a classifier 
could also assign to an example to one or more labels it does 
not belong to [2].  
Several measures have been proposed in the literature for the 
evaluation of multilabel classifiers. According to [1], these 
measures can be broadly categorized in two groups: 
bipartition-based and ranking-based. Some of the 
bipartition-based measures, called example-based-measures, 
evaluate bipartitions over all examples of the evaluation 
dataset. Other bipartition-based measures, named label-based 
measures, decompose the evaluation process into separate 
evaluations for each label. Furthermore, the ranking-based 
measures evaluate rankings with respect to the ground truth of 
multi-label dataset. The next three subsections will described 
these three types will be described. 
However, for the definitions of these measures, let an 
evaluation dataset of multi-label examples be denoted as (xi, 
Yi), i=1, …, N, where Yi ⊆ L is the set of true labels and L={λj: 
j=1 … M} is  the set of all labels. Given an example xi, the set 
of labels that are predicted by an multi-label method is 
denoted as Zi, while the rank predicted for a label λ is denoted 
as ri(λ). The most relevant label receives the highest rank (1), 
while the least relevant one receives the lowest rank (M) [1].  

b. Example-based Measures 
Hamming Loss: Hamming Loss takes into account prediction 
errors (incorrect label) and missing errors (label not 
predicted). Then, hamming loss evaluates the frequency that 
an example-label pair is misclassified, i.e., an example is 
associated to the wrong label or a label belonging to the 
instance is not predicted. The best performance is reached 
when hamming loss is equal to 0. The smaller the value of 
hamming loss is, the better the performance is. 
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Accuracy: Accuracy symmetrically measures how close Yi is 
to Zi. 
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Precision: Precision can be defined as the percentage of true 
positive examples from all the examples classified as positive 
by the classification model. 
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Recall: Recall is the percentage of examples classified as 
positive by a classification model that are true positive. 
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F-Measure: F-Measure is a combination of Precision and 
Recall. It is the harmonic average of the two metrics and it is 
used as an aggregated performance score. 
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Subset Accuracy: Subset Accuracy is a very restrictive 
accuracy metric, considering a classification as correct if all 
the labels predicted by a classifier are correct. 
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c. Label-based Measures 
The calculation of these measures for all labels can be done 
using two averaging operations, known as macro-averaging 
and micro-averaging. Consider a binary evaluation measure 
F(tp, tn, fp, fn) that is calculated based on the number of true 
positives (tp), true negatives (tn), false positives (fp) and false 
negatives (fn). Micro-averaged precision (Mic-P) represents 
the ratio of examples correctly classified as l (tp) and 
incorrectly (fp) classified as l. Micro-averaged recall (Mic-R) 
represents the ratio of examples correctly classified as l, and 
all examples actually pertaining to the class l (fn). 
Micro-averaged F-measure (Micro-F1) represents a harmonic 
mean of Micro-Precision and Micro-Recall. |L| represents the 
number of labels.  
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Macro-average precision (Mac-P) is computed firstly by 
computing the precision for each label separately, and 
averaging over all labels. The same procedure is used for 
computing the macro-averaged recall (Mac-R). 
Macro-averaged F-measure (Macro-F1) represents a 
harmonic mean of Macro-Precision and Macro-Recall. 

 

 L
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d. Ranking-based Measures 
 

One-error: One-error evaluates the frequency of the 
top-ranked label that was not in the set of true labels. The best 
performance is reached when one-error is equal to 0. The 
smaller the value of one-error is, the better performance is. 
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Coverage: Coverage is defined as the distance to cover all 
possible labels assigned to a sample x. It is loosely related to 
precision at the level of perfect recall. The smaller the value of 
coverage is, the better the performance is. 
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Average Precision: Average precision is the average 
precision taken for all the possible labels and it can evaluate 
algorithms as a whole. It measures the average fraction of 
labels ranked above a particular label l∈Yi which is actually in 
Yi. The best performance is reached when average precision is 
equal to 1. The bigger the value of average precision is, the 
better performance is. 

IV. Experimental Work 
 

A. Datasets 
Three different application domains are used in this 
investigation: Biological, Image and Music. For each 
application domain, one multi-label dataset was chosen, 
which are described as follows: 

• Yeast: The biological dataset yeast [9] is concerned with 
protein function classification. This dataset contains 
micro-array expressions and phylogenetic profiles for 
2417 yeast genes. Each gene is annotated with a subset of 
14 functional categories from the top level of the 
functional catalogue(FunCat); 

• Scene: The image dataset scene [4] is concerned with 
semantic indexing of still scenes. This dataset contains 
2407 images associated with up to 6 concepts, such as 
beach, mountain and field; 

• Emotions: The music emotions dataset [16] is concerned 
with the classification of songs according to the emotions 
they evoke. 

Table I illustrates some basic statistics of these datasets, such 
as the number of examples, the number of numeric (NUM) 
and discrete (DIS) attributes and the number of labels, along 
with multilabel data statistics, such as the number of distinct 
label subsets (DLS), the label cardinality (LC) and the label 
density (LD) [1]. Label cardinality is the average number of 
labels per example, while label density is the same number 
divided by |L|. All datasets are available at 
http://mlkd.csd.auth.gr/multilabel.html. 

TABLE I.  STANDARD AND MULTILABEL STATISTICS   

Attributes Datasets Example 
NUM DIS 

Label DLS LC LD 

yeast 2417 103 0 14 198 4.327 0.302 
scene 2712 294 0 6 15 1.074 0.179 
emotions 593 72 0 6 27 1.868 0.311 

B. Methods and Methodology 
As already mentioned, nine different multi-label classification 
methods will be used in this investigation,   which seven are 
problem transformation methods (Binary Relevance (BR), 
Label Powerset (LP), Random k-labelsets (RAkEL), 
Classifier Chains (CC), Pruned Sets (PS), Ensemble of 
Classifier Chains (ECC) and Ensemble of Pruned Sets (EPS)) 
and the remaining two are algorithms adaptation methods 
(Multi-Label k Nearest Neighbours (ML-kNN) and 
Back-Propagation Multi-Label Learning (BPMLL)). For each 
multi-label method of problem transformation approach, we 
apply five supervised learning algorithms, which are: k 
nearest neighbor (KNN), decision tree (DT), support vector 
machines (SVM), naïve bayes (NB), and multilayer 
perceptron (MLP). These specific classifiers were chosen for 
being very distinct in their classification procedure, 
performing, in this way, a broader and wider analysis of the 
databases. 
The experimental results were evaluated using 11 evaluation 
measures, where 6 were example-based measures (Hamming 
Loss, Precision, Accuracy, Recall, F-Measure and Subset 
Accuracy), 2 were label-based measures (Micro F1 and 
Macro F1) and 3 were ranking-based measures (One-Error, 
Coverage and Average Precision).  
All multilabel classification methods and supervised learning 
algorithms used in this work are implementations of the 
Weka-based [30] package of Java classes for multi-label 
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classification, called Mulan [31]. This package includes 
implementations of some the multi-label classification 
methods  most widely applied in the literature,  such as BR, 
LP and RAKEL. The experiments were conducted using the 
10-fold cross-validation methodology. Thus, all results 
presented in paper refer to the mean over 10 different test sets. 
Initial experiments were conducted to define the parameters 
values used in the supervised learning algorithms. In this 
paper, the results presented represent the best results obtained. 
In order to compare the obtained from the different learning 
methods, a statistical test will be applied, which is called 
hypothesis test (t-test) [21]. In this paper, the confidence level 
is 95% (α = 0.05). 

V. Results and Discussion 
This section presents the results obtained from this empirical 
study. The next three subsections will present the results for 
the problem transformation, algorithm adaptation methods as 
well as a comparison of the best method of each approach. 
 

A. Problem Transformation Methods 
 

Table II shows the performance of the problem 
transformation methods for multi-label classification when 
applied to yeast dataset. In this table, it is presented the results 
obtained by each multilabel classification method using all 
five supervised learning algorithm as base classifier. The 
results are presented using 11 different measures evaluation. 
The best results achieved by the learning methods in each 
measure are in bold. The statistical test compared the best 
results with the results of the other learning methods, in a 
two-by-two basis. The results which are statistically 
significant are underlined. 

TABLE II.  RESULTS OF PROBLEM TRANSFORMATION METHODS USING 
YEAST DATASET 

 
BR 

Measure 
KNN DT SVM NB MLP 

HammingLoss ↓ 0.193 0.250 0.199 0.301 0.239 
Accuracy ↑ 0.522 0.433 0.499 0.420 0.458 
Precision ↑ 0.710 0.599 0.714 0.529 0.617 

Recall ↑ 0.602 0.573 0.575 0.612 0.590 
F-Measure ↑ 0.652 0.585 0.637 0.568 0.603 

SubsetAccuracy ↑ 0.201 0.060 0.146 0.093 0.107 
Micro-F1 ↑ 0.652 0.581 0.633 0.548 0.597 
Macro-F1 ↑ 0.402 0.386 0.324 0.451 0.438 
One-Error  ↓ 0.227 0.393 0.256 0.346 0.290 
Coverage ↓ 6.359 9.337 9.096 7.500 7.293 

AveragPrecision  ↑ 0.188 0.362 0.460 0.256 0.213 
 LP 

HammingLoss ↓ 0.213 0.279 0.206 0.242 0.256 
Accuracy ↑ 0.523 0.412 0.530 0.468 0.465 
Precision ↑ 0.657 0.542 0.667 0.593 0.586 

Recall ↑ 0.627 0.541 0.621 0.590 0.594 
F-Measure ↑ 0.641 0.541 0.643 0.591 0.590 

SubsetAccuracy ↑ 0.245 0.135 0.260 0.183 0.194 
Micro-F1 ↑ 0.638 0.540 0.643 0.596 0.584 
Macro-F1 ↑ 0.437 0.386 0.418 0.440 0.443 
One-Error  ↓ 0.269 0.343 0.267 0.321 0.334 
Coverage ↓ 8.149 9.201 8.065 8.335 8.501 

AveragPrecision  ↑ 0.430 0.542 0.426 0.486 0.491 
 RAKEL 

HammingLoss ↓ 0.208 0.252 0.207 0.279 0.229 
Accuracy ↑ 0.493 0.429 0.487 0.414 0.468 
Precision ↑ 0.683 0.592 0.690 0.542 0.634 

Recall ↑ 0.575 0.561 0.571 0.576 0.582 
F-Measure ↑ 0.624 0.576 0.625 0.559 0.607 

SubsetAccuracy ↑ 0.163 0.083 0.128 0.087 0.123 
Micro-F1 ↑ 0.625 0.573 0.624 0.555 0.605 
Macro-F1 ↑ 0.380 0.356 0.333 0.405 0.394 
One-Error  ↓ 0.259 0.337 0.255 0.383 0.302 
Coverage ↓ 9.155 9.616 9.273 9.320 9.184 

AveragPrecision  ↑ 0.438 0.408 0.442 0.459 0.398 
 CC 

HammingLoss ↓ 0.213 0.213 0.211 0.272 0.239 
Accuracy ↑ 0.521 0.428 0.489 0.445 0.477 
Precision ↑ 0.655 0.340 0.679 0.547 0.611 

Recall ↑ 0.613 0.549 0.570 0.605 0.585 
F-Measure ↑ 0.633 0.420 0.619 0.575 0.597 

SubsetAccuracy ↑ 0.254 0.153 0.196 0.123 0.193 
Micro-F1 ↑ 0.634 0.550 0.620 0.571 0.597 
Macro-F1 ↑ 0.434 0.346 0.403 0.453 0.000 
One-Error  ↓ 0.272 0.356 0.256 0.331 0.386 
Coverage ↓ 7.249 8.842 8.674 7.680 7.992 

AveragPrecision  ↑ 0.717 0.629 0.662 0.673 0.672 
 PS 

HammingLoss ↓ 0.241 0.241 0.205 0.218 0.094 
Accuracy ↑ 0.480 0.411 0.533 0.515 0.723 
Precision ↑ 0.602 0.541 0.670 0.640 0.756 

Recall ↑ 0.596 0.532 0.626 0.624 0.704 
F-Measure ↑ 0.599 0.536 0.647 0.632 0.729 

SubsetAccuracy ↑ 0.212 0.135 0.258 0.234 0.691 
Micro-F1 ↑ 0.599 0.536 0.645 0.633 0.729 
Macro-F1 ↑ 0.445 0.377 0.396 0.436 0.731 
One-Error  ↓ 0.321 0.503 0.986 0.335 0.288 

Coverage ↓ 8.313 9.476 11.83
5 8.446 1.081 

AveragPrecision  ↑ 0.666 0.574 0.278 0.661 0.788 
 ECC 

HammingLoss ↓ 0.619 0.644 0.623 0.640 0.462 
Accuracy ↑ 0.296 0.299 0.298 0.295 0.270 
Precision ↑ 0.310 0.308 0.311 0.306 0.339 

Recall ↑ 0.865 0.909 0.871 0.891 0.570 
F-Measure ↑ 0.456 0.460 0.458 0.456 0.425 

SubsetAccuracy ↑ 0.243 0.001 0.001 0.001 0.001 
Micro-F1 ↑ 0.459 0.462 0.459 0.458 0.429 
Macro-F1 ↑ 0.459 0.418 0.469 0.417 0.342 
One-Error  ↓ 0.679 0.721 0.732 0.685 0.629 

Coverage ↓ 
10.73

1 
10.73

6 
10.84

8 
10.70

5 11,14 

AveragPrecision  ↑ 0.435 0.427 0.425 0.426 0.463 
 EPS 

HammingLoss ↓ 0.242 0.273 0.207 0.218 0.248 
Accuracy ↑ 0.481 0.419 0.537 0.516 0.474 
Precision ↑ 0.600 0.548 0.664 0.641 0.591 

Recall ↑ 0.598 0.544 0.643 0.626 0.606 
F-Measure ↑ 0.599 0.546 0.654 0.633 0.598 

SubsetAccuracy ↑ 0.212 0.146 0.253 0.235 0.163 
Micro-F1 ↑ 0.599 0.545 0.650 0.634 0.593 
Macro-F1 ↑ 0.447 0.382 0.515 0.515 0.436 
One-Error  ↓ 0.320 0.345 0.265 0.278 0.266 
Coverage ↓ 8.303 9.010 7.841 8.221 8.899 

AveragPrecision  ↑ 0.666 0.629 0.707 0.689 0.665 
 

In analyzing the performance of the supervised classification 
methods over the multi-label methods, it is possible to observe 
that there is no predominance of a supervised method 
throughout all multi-label methods, since k-NN   delivered the 
best results in most of the cases for BR and CC, while MLP 
provided the best results for PS and SVM provided the best 
results for LP and EPS. In contrast, there is no best learning 
method for ECC and RAKEL. 
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The statistical test showed a division of the multi-label 
methods. For BR, LP and RAKEL, the performances of the 
learning methods are very similar, since the best results are 
statistically significant in a small number of cases (3 for BR, 1 
for LP and 2 for RAKEL). On the other hand, there is a 
statistical improvement of the best method over the other 
methods for CC, ECC, PS and EPS, since it had statistical 
significant improvements of the best method over at least one 
other method for all used metrics.  
Table III shows the performance of the problem 
transformation methods for multi-label classification using 
the scene dataset. In analysing Table III, once again, it can be 
observed that the predominance is divided into k-NN (BR), 
SVM (LP, PS and EPS) and MLP (RAKEL, CC and ECC). 
Unlike the previous dataset, there is always a predominance 
(the best result for the majority of evaluation metrics) of a 
supervised learning method, which can show that there is 
always the best choice to be made for all multi-label methods.  
The statistical test confirmed the predominance of the 
methods with the best results since these results are 
statistically significant over at least one other learning method 
for all evaluation metrics (all multi-label methods). 

TABLE III.  RESULTS OF PROBLEM TRANSFORMATION METHODS USING 
SCENE DATASET 

BR Measure 
KNN DT SVM NB MLP 

HammingLoss ↓ 0.094 0.134 0.106 0.241 0.100 
Accuracy ↑ 0.643 0.539 0.594 0.452 0.625 
Precision ↑ 0.668 0.556 0.612 0.460 0.645 

Recall ↑ 0.645 0.639 0.643 0.859 0.671 
F-Measure ↑ 0.656 0.595 0.627 0.599 0.657 

SubsetAccuracy ↑ 0.617 0.429 0.529 0.167 0.562 
Micro-F1 ↑ 0.705 0.626 0.682 0.558 0.701 
Macro-F1 ↑ 0.707 0.637 0.688 0.576 0.697 
One-Error  ↓ 0.262 0.404 0.346 0.535 0.265 
Coverage ↓ 0.527 1.232 0.990 1.003 0.577 

AveragePrecision  ↑ 0.098 0.298 0.377 0.201 0.095 
 LP 

HammingLoss ↓ 0.097 0.147 0.090 0.137 0.106 
Accuracy ↑ 0.713 0.580 0.735 0.614 0.695 
Precision ↑ 0.744 0.601 0.761 0.630 0.721 

Recall ↑ 0.714 0.602 0.749 0.680 0.713 
F-Measure ↑ 0.729 0.602 0.755 0.654 0.717 

SubsetAccuracy ↑ 0.682 0.538 0.696 0.531 0.651 
Micro-F1 ↑ 0.720 0.591 0.745 0.638 0.701 
Macro-F1 ↑ 0.728 0.601 0.754 0.646 0.705 
One-Error  ↓ 0.256 0.409 0.246 0.403 0.283 
Coverage ↓ 0.904 1.159 0.733 1.049 0.855 

AveragePrecision  ↑ 0.814 0.727 0.833 0.742 0.806 
 RAKEL 

HammingLoss ↓ 0.095 0.107 0.097 0.179 0.090 
Accuracy ↑ 0.694 0.639 0.671 0.531 0.705 
Precision ↑ 0.724 0.660 0.692 0.539 0.731 

Recall ↑ 0.698 0.710 0.720 0.828 0.742 
F-Measure ↑ 0.710 0.684 0.706 0.653 0.736 

SubsetAccuracy ↑ 0.662 0.550 0.602 0.257 0.642 
Micro-F1 ↑ 0.720 0.701 0.724 0.621 0.743 
Macro-F1 ↑ 0.726 0.713 0.734 0.648 0.749 
One-Error  ↓ 0.257 0.270 0.237 0.374 0.229 
Coverage ↓ 0.883 0.593 0.637 0.777 0.553 

AveragePrecision  ↑ 0.816 0.835 0.847 0.777 0.857 
 CC 

HammingLoss ↓ 0.100 0.100 0.103 0.122 0.090 
Accuracy ↑ 0.701 0.587 0.696 0.582 0.736 
Precision ↑ 0.285 0.608 0.724 0.646 0.756 

Recall ↑ 0.703 0.615 0.705 0.720 0.736 
F-Measure ↑ 0.406 0.611 0.714 0.681 0.746 

SubsetAccuracy ↑ 0.669 0.538 0.659 0.432 0.698 
Micro-F1 ↑ 0.711 0.600 0.705 0.676 0.746 
Macro-F1 ↑ 0.719 0.613 0.714 0.687 0.752 
One-Error  ↓ 0.268 0.391 0.278 0.296 0.232 
Coverage ↓ 0.619 1.350 0.894 0.757 0.526 

AveragePrecision  ↑ 0.100 0.100 0.103 0.812 0.090 
 PS 

HammingLoss ↓ 0.092 0.092 0.084 0.105 0.113 
Accuracy ↑ 0.729 0.592 0.751 0.692 0.673 
Precision ↑ 0.759 0.611 0.778 0.717 0.699 

Recall ↑ 0.731 0.609 0.759 0.699 0.671 
F-Measure ↑ 0.745 0.610 0.769 0.708 0.685 

SubsetAccuracy ↑ 0.698 0.555 0.717 0.660 0.635 
Micro-F1 ↑ 0.736 0.600 0.760 0.700 0.681 
Macro-F1 ↑ 0.742 0.612 0.766 0.704 0.685 
One-Error  ↓ 0.319 0.399 0.904 0.287 0.311 
Coverage ↓ 1.245 1.143 4.255 0.845 0.993 

AveragePrecision  ↑ 0.092 0.092 0.084 0.105 0.113 
 ECC 

HammingLoss ↓ 0.470 0.494 0.470 0.543 0.462 
Accuracy ↑ 0.148 0.168 0.159 0.119 0.270 
Precision ↑ 0.152 0.176 0.162 0.163 0.339 

Recall ↑ 0.392 0.471 0.423 0.486 0.570 
F-Measure ↑ 0.219 0.256 0.235 0.244 0.425 

SubsetAccuracy ↑ 0.006 0.010 0.007 0.002 0.002 
Micro-F1 ↑ 0.233 0.257 0.247 0.244 0.339 
Macro-F1 ↑ 0.219 0.253 0.243 0.258 0.308 
One-Error  ↓ 0.775 0.801 0.775 0.796 0.629 
Coverage ↓ 2.720 2.725 2.662 2.795 0.463 

AveragePrecision  ↑ 0.470 0.494 0.470 0.543 0.471 
 EPS 

HammingLoss ↓ 0.092 0.143 0.085 0.105 0.115 
Accuracy ↑ 0.729 0.592 0.751 0.692 0.677 
Precision ↑ 0.759 0.611 0.778 0.717 0.672 

Recall ↑ 0.731 0.609 0.760 0.699 0.720 
F-Measure ↑ 0.745 0.610 0.769 0.708 0.695 

SubsetAccuracy ↑ 0.698 0.555 0.715 0.660 0.609 
Micro-F1 ↑ 0.736 0.600 0.759 0.700 0.687 
Macro-F1 ↑ 0.742 0.612 0.765 0.704 0.695 
One-Error  ↓ 0.242 0.398 0.225 0.287 0.299 
Coverage ↓ 0.858 1.142 0.689 0.843 0.877 

AveragePrecision  ↑ 0.824 0.733 0.846 0.809 0.798 
 
Table IV shows the performance of the problem 
transformation methods for multi-label classification using 
the emotions dataset. For this dataset, once again, it can be 
observed that the predominance is divided into k-NN (BR and 
CC), SVM (LP, RAKEL, PS and EPS) and MLP (ECC). The 
results of the statistical test showed that, unlike the previous 
dataset,  the predominance of the methods with the best results 
occurred only for CC, PS, ECC and EPS. For BR, LP and 
RAKEL, although there is always a learning method with the 
best result, there is no statistical evidence to state that this 
result is significant different from the results provided by the 
other learning methods for the majority of the cases. 

TABLE IV.  RESULTS OF PROBLEM TRANSFORMATION METHODS USING 
EMOTIONS DATASET 

BR 
Measure 

KNN DT SVM NB MLP 

HammingLoss ↓ 0.188 0.261 0.194 0.225 0.218 
Accuracy ↑ 0.551 0.432 0.532 0.549 0.516 
Precision ↑ 0.687 0.543 0.671 0.618 0.626 

Recall ↑ 0.641 0.566 0.617 0.755 0.645 
F-Measure ↑ 0.663 0.553 0.642 0.679 0.635 

SubsetAccuracy ↑ 0.307 0.164 0.280 0.248 0.241 
Micro-F1 ↑ 0.678 0.577 0.661 0.675 0.647 
Macro-F1 ↑ 0.653 0.566 0.626 0.655 0.626 
One-Error  ↓ 0.256 0.403 0.292 0.307 0.294 
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Coverage ↓ 1.775 2.622 2.401 1.851 1.860 
AveragePrecision  ↑ 0.806 0.687 0.750 0.789 0.785 

 LP 
HammingLoss ↓ 0.215 0.263 0.198 0.229 0.236 

Accuracy ↑ 0.560 0.463 0.584 0.519 0.516 
Precision ↑ 0.649 0.574 0.677 0.640 0.632 

Recall ↑ 0.671 0.575 0.698 0.635 0.624 
F-Measure ↑ 0.659 0.574 0.687 0.637 0.628 

SubsetAccuracy ↑ 0.336 0.216 0.351 0.263 0.268 
Micro-F1 ↑ 0.661 0.578 0.688 0.630 0.622 
Macro-F1 ↑ 0.647 0.561 0.675 0.616 0.606 
One-Error  ↓ 0.365 0.439 0.310 0.393 0.365 
Coverage ↓ 2.319 2.608 2.235 2.345 2.423 

AveragePrecision  ↑ 0.395 0.495 0.369 0.438 0.444 
 RAKEL 

HammingLoss ↓ 0.198 0.234 0.186 0.251 0.209 
Accuracy ↑ 0.577 0.502 0.592 0.518 0.556 
Precision ↑ 0.679 0.612 0.710 0.596 0.670 

Recall ↑ 0.699 0.631 0.703 0.711 0.677 
F-Measure ↑ 0.688 0.621 0.706 0.647 0.673 

SubsetAccuracy ↑ 0.332 0.238 0.341 0.218 0.295 
Micro-F1 ↑ 0.686 0.630 0.701 0.635 0.666 
Macro-F1 ↑ 0.664 0.619 0.681 0.617 0.650 
One-Error  ↓ 0.292 0.326 0.260 0.326 0.289 
Coverage ↓ 2.145 1.986 1.989 2.102 1.964 

AveragePrecision  ↑ 0.776 0.766 0.798 0.761 0.787 
 CC 

HammingLoss ↓ 0.197 0.197 0.207 0.223 0.211 
Accuracy ↑ 0.584 0.470 0.554 0.556 0.553 
Precision ↑ 0.691 0.574 0.649 0.575 0.663 

Recall ↑ 0.695 0.578 0.661 0.753 0.665 
F-Measure ↑ 0.693 0.576 0.655 0.652 0.664 

SubsetAccuracy ↑ 0.349 0.248 0.310 0.260 0.308 
Micro-F1 ↑ 0.689 0.588 0.663 0.677 0.663 
Macro-F1 ↑ 0.652 0.576 0.633 0.659 0.648 
One-Error  ↓ 0.283 0.435 0.347 0.315 0.307 
Coverage ↓ 1.756 2.535 2.318 1.813 1.800 

AveragePrecision  ↑ 0.801 0.683 0.741 0.786 0.788 
 PS 

HammingLoss ↓ 0.203 0.203 0.192 0.226 0.211 
Accuracy ↑ 0.579 0.455 0.599 0.541 0.572 
Precision ↑ 0.670 0.564 0.675 0.636 0.661 

Recall ↑ 0.698 0.561 0.728 0.679 0.698 
F-Measure ↑ 0.684 0.562 0.701 0.657 0.679 

SubsetAccuracy ↑ 0.351 0.218 0.367 0.286 0.337 
Micro-F1 ↑ 0.681 0.571 0.704 0.650 0.673 
Macro-F1 ↑ 0.666 0.554 0.692 0.631 0.656 
One-Error  ↓ 0.723 0.469 0.902 0.427 0.791 
Coverage ↓ 3.801 2.590 4.364 2.331 3.944 

AveragePrecision  ↑ 0.469 0.671 0.344 0.713 0.433 
 ECC 

HammingLoss ↓ 0.630 0.651 0.640 0.645 0.494 
Accuracy ↑ 0.275 0.282 0.268 0.282 0.279 
Precision ↑ 0.293 0.294 0.284 0.306 0.320 

Recall ↑ 0.727 0.792 0.729 0.816 0.552 
F-Measure ↑ 0.418 0.428 0.409 0.445 0.405 

SubsetAccuracy ↑ 0.003 0.022 0.002 0.002 0.007 
Micro-F1 ↑ 0.426 0.438 0.422 0.448 0.428 
Macro-F1 ↑ 0.419 0.432 0.416 0.442 0.430 
One-Error  ↓ 0.863 0.802 0.836 0.879 0.792 
Coverage ↓ 3.892 3.817 3.975 4.003 3.293 

AveragePrecision  ↑ 0.420 0.438 0.420 0.412 0.480 
 EPS 

HammingLoss ↓ 0.203 0.276 0.193 0.224 0.213 
Accuracy ↑ 0.579 0.440 0.599 0.541 0.579 
Precision ↑ 0.670 0.555 0.673 0.641 0.637 

Recall ↑ 0.698 0.553 0.735 0.676 0.733 
F-Measure ↑ 0.684 0.554 0.703 0.658 0.682 

SubsetAccuracy ↑ 0.351 0.201 0.366 0.283 0.329 
Micro-F1 ↑ 0.681 0.554 0.705 0.652 0.681 
Macro-F1 ↑ 0.666 0.536 0.691 0.632 0.666 
One-Error  ↓ 0.336 0.442 0.300 0.398 0.322 
Coverage ↓ 2.211 2.599 2.138 2.258 2.160 

AveragePrecision  ↑ 0.757 0.677 0.775 0.729 0.765 

 
After analyzing all three datasets individually, we will do a 
general analysis, taking into consideration all three datasets 
together. First of all, there is a consensus about the best 
supervised learning for two multi-label methods, BR (with 
k-NN being the best result for all three datasets) and LP 
(SVM). However, these best results were not statistically 
significant for the marjority of the cases (only for the scene 
dataset). On the other hand, for PS, EPS, CC and ECC, there 
is the same best result for two datasets  (SVM for PS and EPS, 
MLP for ECC and k-NN for CC). RAKEL was the only 
multi-label method in which there is no predominance of a 
supervised learning method.  
The overall best supervised learning (summing the best 
results of all three datasets) was SVM since it provided the 
highest number of best results (98 out of 231), followed by 
MLP (51) and k-NN (47). The other learning methods had 
performance much poorer than these two methods. Figure 1 
illustrates the number of best results for each dataset. When 
analyzing the best results for the different datasets, SVM 
provided the highest number of the best results for all datasets.  

Figure 1.  The performance (best results) of the learning algorithms, 
separated by multi-label classification method. 

B. Algorithm Adaptation Methods 
 

Table V shows the performance of the algorithms adaptation 
methods for multi-label classification when applied to yeast 
dataset. From Table V, it can be observed that ML-kNN has 
provided the best results for 10 evaluation metrics (coverage 
was the only exception). Of these 10 best results, 8 of them 
were statistically significant. Based on this, we can say that 
ML-kNN had a better performance than BPMLL for most of 
the evaluation metrics, when applying the yeast dataset. 

TABLE V.  RESULTS OF ALGORITHMS ADAPTARION METHODS USING 
YEAST  DATASET 

 ML-kNN BPMLL 
HammingLoss ↓ 0.193 0.322 

Accuracy ↑ 0.520 0.185 
Precision ↑ 0.718 0.189 

Recall ↑ 0.600 0.236 
F-Measure ↑ 0.654 0.210 

SubsetAccuracy ↑ 0.189 0.185 
Micro-F1 ↑ 0.651 0.202 
Macro-F1 ↑ 0.476 0.459 
One-Error  ↓ 0.234 0.805 
Coverage ↓ 6.301 2.523 

AveragePrecision  ↑ 0.762 0.428 
 

Table VI shows the performance of the algorithms adaptation 
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methods for multi-label classification when applied to scene 
dataset. As in the previous dataset, ML-kNN provided the 
best results for all evaluation metrics and these best results 
were statistically significant in 10 cases (out of 11). 

TABLE VI.  RESULTS OF ALGORITHMS ADAPTATION METHODS USING 
SCENE DATASET 

 ML-kNN BPMLL 
HammingLoss ↓ 0.085 0.579 

Accuracy ↑ 0.691 0.212 
Precision ↑ 0.811 0.629 

Recall ↑ 0.714 0.700 
F-Measure ↑ 0.759 0.663 

SubsetAccuracy ↑ 0.643 0.212 
Micro-F1 ↑ 0.747 0.233 
Macro-F1 ↑ 0.750 0.219 
One-Error  ↓ 0.226 0.466 
Coverage ↓ 0.456 7.447 

AveragePrecision  ↑ 0.867 0.629 
 

Table VII shows the performance of the algorithms adaptation 
methods for multi-label classification when applied to 
emotion dataset. The same behavior of the previous datasets, 
ML-kNN with the best results and most of these best results 
were statistically significant. 

TABLE VII.  RESULTS OF ALGORITHMS ADAPTARION METHODS USING 
EMOTIONS DATASET 

 ML-kNN BPMLL 
HammingLoss ↓ 0.262 0.433 

Accuracy ↑ 0.366 0.276 
Precision ↑ 0.624 0.347 

Recall ↑ 0.408 0.443 
F-Measure ↑ 0.493 0.389 

SubsetAccuracy ↑ 0.143 0.276 
Micro-F1 ↑ 0.489 0.381 
Macro-F1 ↑ 0.469 0.426 
One-Error  ↓ 0.386 0.668 
Coverage ↓ 2.327 3.159 

AveragePrecision  ↑ 0.708 0.542 

C. Problem Transformation Versus Algorithm Adaptation 
 

In this subsection, the best problem transformation method 
will be compared with the best algorithm adaptation method. 
In order to do this analysis, the best result for each evaluation 
metric was pick for each approach. For instance, the best 
result for hamming loss in the problem transformation 
methods was obtained by BR using kNN. In this case, this 
value was used to compare with the best result of this measure 
obtained by the algorithm adaptation. Table VII presents the 
best results for problem transformation methods and 
algorithm adaptation methods, for all three datasets. 

TABLE VIII.  RESULTS OF THE BEST RESULTS FOR PROBLEM 
TRANSFORMATION AND ALGORITHM ADAPTATION METHODS, 

FOR ALL THREE DATASETS 

Yeast dataset 
 Adaptation Transformation 

HammingLoss ↓ 0,193 0,094 
Accuracy ↑ 0,520 0,723 
Precision ↑ 0,718 0,756 

Recall ↑ 0,600 0,704 
F-Measure ↑ 0,654 0,729 

SubsetAccuracy ↑ 0,189 0,691 
Micro-F1 ↑ 0,651 0,729 

Macro-F1 ↑ 0,476 0,731 
One-Error  ↓ 0,234 0,256 
Coverage ↓ 2,523 1,081 

AveragePrecision  ↑ 0,762 0,717 
Scene dataset 

HammingLoss ↓ 0,085 0,084 
Accuracy ↑ 0,691 0,751 
Precision ↑ 0,811 0,778 

Recall ↑ 0,714 0,760 
F-Measure ↑ 0,759 0,769 

SubsetAccuracy ↑ 0,643 0,717 
Micro-F1 ↑ 0,747 0,760 
Macro-F1 ↑ 0,750 0,766 
One-Error  ↓ 0,226 0,225 
Coverage ↓ 0,456 0,463 

AveragePrecision  ↑ 0,867 0,846 
Emotion dataset 

HammingLoss ↓ 0,262 0,192 
Accuracy ↑ 0,366 0,599 
Precision ↑ 0,624 0,691 

Recall ↑ 0,408 0,816 
F-Measure ↑ 0,493 0,703 

SubsetAccuracy ↑ 0,276 0,367 
Micro-F1 ↑ 0,489 0,705 
Macro-F1 ↑ 0,469 0,692 
One-Error  ↓ 0,386 0,283 
Coverage ↓ 2,327 1,756 

AveragePrecision  ↑ 0,708 0,713 
 

In analyzing Table VIII, it can be observed that the algorithm 
adaptation provided the best results, when compared with the 
problem transformation method in 28 out of 33 analyzed 
cases. Of these 33 cases,  22 cases where statistically 
significant.  

The results obtained in this table show that the use of 
algorithm adaptation methods has been the best option for 
mutlti-label methods, when compared with the problem 
transformation methods.  

VI. Final Remarks 
This paper presented a comparison between different methods 
of multi-label classification for different domain application, 
more specifically three different domains (datasets). As they 
are algorithm-independent approaches, five different learning 
algorithms were used. Finally, these methods were analyzed 
using 11 different evaluation metrics 
In the experimental results, it can be observed that there are 
some useful information about the choice of the supervised 
learning method related to a multi-label method. For instance, 
the best  supervised learning method for BR was always k-NN 
and for LP was SVM. There are also some supervised 
learning methods which were the best for most of the 
analyzed cases (two out of three datasets), SVM for PS and 
EPS, MLP for ECC and k-NN for CC. This may be a good 
indication of which supervised learning method to be used 
when we choose a multi-label method. 
Of the problem transformation methods, the ones using SVM 
usually presented the overall best results for all datasets. This 
may have occurred because SVM manages better with 
features from the datasets and methods used. Of the algorithm 
adaptation methods, ML-kNN has provided the best results in 
almost all analyzed cases. In order to analyze which is the best 
multi-label method, the best problem transformation result  
was comparatively analyzed with the best algorithm 
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adaptation result and the algorithm adaptation methods had 
provided the best results for almost all evaluation metrics. 
This results may be an indication theat the use of algorithm 
adaptation methods can be a better choice than the problem 
transformation methods, even when we use a wide range of 
supervised learning methods. 
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