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Abstract 

 
Image reconstruction is an important task in X-ray 

computed tomography. In this paper we discuss the 
results of morphological analysis of test objects in 
high-noise conditions and compare image 
reconstruction using two widely employed methods in 
computed tomography, namely Filtered Back 
Projection and Algebraic Reconstruction Technique. In 
our test tomography experiments, we used a laboratory 
X-ray source designed and manufactured at the 
Institute of Crystallography, Moscow, Russia. 
 
1. Introduction 
 

This work is devoted to the problem of image 
reconstruction [1-7] and morphological analysis of 
images in X-ray computed tomography (CT). A key 
problem here is image reconstruction from the 
distribution of linear attenuation coefficients inside the 
object under study. In medical applications, it is often 
more important to determine only the parameters of 
inclusions, such as their size, position, etc. with some 
controlled accuracy. This can be done by performing 
morphological analysis [8, 9]. 
 
2. Test object 
 

A polypropylene vial, 10.5 mm in diameter and 
with 1.6 mm wall thickness, filled with water was used 
as a test object. This is a classical test object widely 
employed for calibration of medical tomographs and is 
convenient because it is comprised of two distinctly 
separated homogeneous media. The vial diameter and 
composition/thickness of its walls can be adjusted in 
such a way that the absorption of a given X-ray is 

significant at a relatively high transmission, which in 
turn would ensure an image contrast at a level of 
several dozen percent. In our experiments, the vial was 
illuminated by X-rays (Mo-Kα radiation, λ=0.07 nm) 
in parallel [5, 6] scan mode. 

 
3. Image reconstruction 
 

In the following we describe the mathematical 
model we used for image reconstruction. Assume that 
the test object is illuminated with a beam of intensity I0. 
Let f(x,y) be the distribution of the attenuation 
coefficient in the plane of the scanned phantom section 
and φ be the rotation angle of beam incidence. At 
separation ξ from the origin of co-ordinates, an 
infinitely thin X-ray beam can be described by (see 
also Figure 1) 

 

ξϕϕ =+ sincos yx   (1) 
 

If the channel width of the position-sensitive 
detector is infinitely small, the recorded signal can be 
represented as 
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where δ is the Dirac delta function. 
 Introducing a new function, this expression can be 

rewritten in the following form: 
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Figure 1.  Scheme of laboratory X-ray 

microtomograph. 
 
The transformation that converts the object function 

f(x,y) into the projection function p(φ,ξ) is termed the 
Radon transformation [10]. The reconstruction of an 
image (distribution of linear attenuation coefficient) 
from a set of recorded projections is a classical 
problem in tomography [5,6] and is typically being 
solved using either integral (e.g. filtered back-
propagation (FBP)) or algebraic (ART) methods. In 
this paper, we present a comparison of the results 
obtained by these two methods and describe a 
morphological approach to evaluate the shape 
parameters of investigated object inclusions. 
 
4. Shape parameters of inclusions: 
morphological approach 
 
The function ),( yxf  is defined by the vial shape. It is 
a stepwise function which takes on value с1 outside of 
the circle that represents the external boundary of the 
vial, is equal to с2 between the walls of the vial, and 
equals c3 inside the circle of the internal boundary. 
This can be expressed as 

∑
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i

ii yxcyxf χ .  (4) 

where the functions ),( yxiχ  are equal  to 1 at points 
(x,y) where icyxf =),(  and are 0 otherwise. The set of 
linear combinations ),( yxiχ , i=1,2,3, forms a 3-
dimensional linear sub-space of all functions. The sub-
space kind is defined by four numerical parameters 

),,,( 2100 ddyx  describing the centre co-ordinates and 
circle diameters of the vial. 

Having substituted Equation (4) into Equation (3), 
we obtain that ),( ξϕp  is an element of the 3-
dimensional sub-space ),,,( 21003 ddyxV . This sub-
space originates from the linear combinations of the 

functions obtained by integration of ),( yxiχ  
multiplied by the delta function. This kind of sub-space 
is also defined by ),,,( 2100 ddyx . 

Let’s choose these parameters so that the results of 
the projection measure ),( ξϕp  are as close as possible 
to the sub-space. We define the morphological distance 
from the function ),( ξϕp  to ),,,( 21003 ddyxV  by a 
fractional value whose numerator is the Euclidean 
distance )),,,,(( 21003 pddyxVρ  from ),( ξϕp  to 

),,,( 21003 ddyxV  and whose denominator is the 
distance ),( 0 pVρ  from ),( ξϕp  to the set 0V  of 
functions that are constant [7-8]: 

 

),0()),2,1,0,0(3()()2,1,0,0( pVpddyxVpddyxj ρρ=    (5) 

The denominator is discarded when p ϕ ,ξ( )= const  
which  corresponds  to measurements of a projection of 
homogeneous space. Such a projection is formally is 
described by 

c1 = c2 = c3            (6) 
In the presence of a casual error of measurement 

),( ξϕp  morphological affinity is not equal to 0 with a 
probability of 1. If the noise is Gaussian, then 

)(),,,( 2100
pj ddyx  is a random variable with the 

distribution depending on parameters ),,,( 2100 ddyx . 
The value j(x0 ,y0 ,d1 ,d2 ) (p)  is a measure of similarity 

of the given measurements with theoretically 
calculated data from the vial with (x0, y0,d1,d2). It is 
the noise to signal ratio provided that x0, y0 ,d1,d2  are 
the true values of shape parameters of the vial. If this 
condition is met then the difference of the numerator 
ρ(V3 (x0, y0,d1,d2), p)  from 0 can be explained only 
by the presence of noise. The denominator represents 
the difference of projection from the constant of its 
best approximation and characterises the projection 
part, bearing information about the parameters of the 
vial. 

A point estimate of ),,,( 2100 ddyx  can  be obtained 
using a solution to the following variation problem: 

 

  
2,1,0,0

min)()2,1,0,0( ddyx
pddyxj → .  (7) 

 

For our test object, the minimum of )(),,,( 2100
pj ddyx  

was attained at the inner vial diameter about 7.8 mm 
and outer diameter 10.5 mm, which agrees well with 
the size of the test object used in the experiments. 

According to [11], the set which can be used to 
evaluate parameters ),,,( 2100 ddyx  with probability α  
has the form: 

Ψα (p) = (x0, y0,d1,d2) : j(x0 ,y0 ,d1 ,d2 ) (p) ≤ cα{ }    (8) 
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A diagram of the function j(x0 ,y0 ,d1 ,d2 ) (p)  of co-
ordinates of the vial centre at fixed values of diameters 
d1,d2 is shown in Fig. 2.  

 
Figure 2.  Function j(x0 ,y0 ,d1 ,d2 ) (p)  of co-ordinates of 

vial centre at fixed values of diameters d1,d2 . 
 
Setting the value of noise to signal ratio, we will 
receive set of points (x0, y0,d1,d2){ } , that give the 
position of the vial centre. It is the set of points, for 
which diagram lays been lower than chosen value. 
 
5. Filtered back-projection method 
 

This method is most frequently being used in 
medical tomography [1,5]. It is based on a projection 
theorem according to which the Fourier transform of 
projection data along coordinate ξ, 
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is equivalent to the Fourier transform of the object 
function in polar co-ordinates 

 
dxdyyxiyxfF yxyx ∫∫ +−= ))(exp(),(),( ωωωω     (10) 

 

i.e. 
 

),(),( yxFP ωωωϕ =   (11) 
 

For reconstruction of image f(x,y), one has to 
perform the reverse Fourier transform of  P(φ,ω) 

 

∫∫Φ= ϕωωϕω ωξ ddePyxf i),()(),(     (12) 
 

where Ф(ω) is the function of the frequency filter. 

For a parallel measurement scheme 
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where 1
max )2( −= dTω  is the maximal sampling rate, Td 

the linear size of detector array element, and ]1,0[∈ε  
some parameter. 

In practice [1,5,6], Equation (12) can be solved 
using the filtered backprojection (FBP) method. Let 
Ф(ω) be given by Equation (13) and K(ξ) be its Fourier 
transform, then the product of Ф(ω) and the Fourier 
transform of projection can be regarded as the Fourier 
transform of the convolution of projection with 
function K(ξ): 
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A sample FBP reconstruction is shown in Figure 
3(a). Shown in Figure 3(b) are cross-sections obtained 
by FBP and by a modified ART method introduced in 
the following section. 

Integral calculation is performed using a numerical 
method. Conveniently, data processing can occur 
almost in parallel with measurement, since the 
calculation of a return projection after a filtration can 
be performed during registration of the following 
projection, and the result of the calculation  
summarised in appropriate storage locations. 

 

 
Figure 3.  a) Section of polypropylene tubes with 

water reconstructed by FBP. Average rate of 
absorption - water: μ= 0094 mm-1, σ2=1.5·10-4; 

polypropylene: μ=0056 mm-1, σ2=0.6·10-4, 
b) Cross-section of the reconstructed image. Gray 

line: FBP reconstruction; black line (smooth): ART 
reconstruction with median filtering, γ=0.005. 

 
Before the real experiment, mathematical 

simulation has been performed to estimate the optimal 
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conditions. To reach the optimum here means to reduce 
the time of experiment performance, and to keep 
acceptable quality of the reconstruction. The FBP 
technique was used for condition estimation. 
Understandably, the structure of liquid, at scales 
comparable with resolution of the device, is 
homogeneous and constant in terms of density. Hence, 
disorder  values  in  terms of fluid density, and also 
average value of density received  during the 
experiment can characterise the accuracy of the method 
of measurement and reconstruction.  

 

 
 

 
 

 
 

Figure 4. Absorption and standard deviation 
depending on number of projections, used for 
reconstruction, for different noise levels and 

different parts of the object (a,b – outside of object; 
c,d – water; e,f – polipropilen tube). 

 
The simulation parameters were as follows:-  
• the size of the reconstructed region (size of 

slice) is 250x250 pixels; 
• pixel size is 0.1x0.1 mm2; 
• the vial is presented by a cycle with an 

external diameter of 104 pixels and an internal 
diameter is 88 pixels; 

• the linear attenuation coefficient in the wall of 
vial is 0.006 pixel-1, linear attenuation 
coefficient inside the vial is 0.01 pixel-1; 

• the simulated projections were distorted with 
additive noise, having normal distribution. 

Figure 4 shows, how quickly and to what value the 
reconstructed value converges when increasing the  
number of projections and at different levels noisiness 
of the original signal. At noise levels of less than 30% 
and number of projections of more than 70 (these 
conditions correspond to the real experiment) the 
intensity of artefacts does not exceed 0.002 mm-1, 
which makes about 5% of the tabulated value of linear 
absorption coefficient of the object under study. 

The observed dependencies show that 72 
projections measured during the experiment is 
sufficient so as to obtain the correct reconstructed 
value with an accuracy about 5%. Underestimated 
values of are due the frequency filtering method used 
in reconstruction by FBP. Hence this part of the signal 
energy is diffused. 
 
6. Modified ART method 
 

In this method, an image to be reconstructed is 
covered by a grid comprising of N pixels. For the j-th 
pixel, the function fj is assumed to be constant. Then 
the integral Equation (3) can be reduced to the 
following system of linear algebraic equations: 

 

Mitfp ii ,,1     ),,( K=        (16) 
 

where the i-th component of vector ti is regarded as the 
weighting coefficient which, in the model of infinitely 
thin beams [12], is the path length of an X-ray beam 
passing through the j-th pixel, and М is the total 
number of points in all recorded projections, i.e. the 
product of the number of projection angles Mφ and 
array elements in the position-sensitive detector). 

Equation (4) is solved using the iteration method 
[13]. For each iteration k, there is a solution kf  which 
is improved upon by the projection of vector 
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on the i-th hyperplane defined by equations from (16). 
Here, γ is the relaxation parameter [14]. 

In our implementation of the algorithm we first 
calculate a set of weight sparse matrices it  for all 
rotation angles. 

In many ART implementations the weights are 
simply replaced by 1s and 0s depending on whether the 
centre of the pixel is within the fine ray. This makes 
the implementation easier. This approximation, 
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although easy to implement, often leads to artefacts in 
the reconstructed images. In our calculations, we used 
the beam–strip model [12]. The weighting coefficient 
was calculated as the ratio of pixel area hit by the beam 
to the overall pixel area. The beam diameter was 
chosen equal to the size of detector array element. 

An iteration is assumed completed when projection 
onto all hyperplanes has been performed. The choice of 
path tracing represents a standalone problem [15]. 

To minimise the influence of two neighbouring 
hyperplanes on each other we used the following 
scheme: 

p(ϕ1,ξ1), p(ϕ1 +
π
2

,ξ1), p(ϕ1,ξ2), p(ϕ1 +
π
2

,ξ2),...,

p(ϕ1 +
π
2

,ξN
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2
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π
2

,ξN
2
)

. (18) 

Because the projections are noisy, the intersection 
of the hyperplanes is not a point in the N-dimensional 
space but a polygon. Each iteration projects the 
estimated solution to a polygon wall area. On the other 
hand, the solution sought for belongs to the image class 
sub-space. The size, shape and position of the sub-
space depend on the accuracy of the image description 
(accuracy of the image model). The image sub-space 
and the polygon can intersect or be close to each other. 
The regularisation operator brings the estimated 
solution from the polygon wall area to the image sub-
space [16]. The space of the piecewise constant 
functions is well suited for the description of the 
tomography images. However, it is very difficult to 
construct the projector which brings an estimated 
solution to this image sub-space. We have taken the 
space of piecewise smooth functions as the image 
space, i.e. if the function belongs to this space it will 
belong to the same space after the median operator was 
implemented. Then the median filtering operator can 
be used as the projector from the polygon wall area to 
the image sub-space. We have implemented the 
median filtering as the second sub-iteration [17,18]. 

The non-negativity constraint is reinforced, when 
instead of f<0 we set f=0.  

One iteration is completed after the full set of 
measurements has been processed. 

In the next iteration it is projected onto the 
hyperplane represented by the first Equation in (16), 
and successively onto the rest of the hyperplanes in 
Equation (16), then the filtering is implemented and so 
on until the last iteration. 

In the last iteration, all images  are saved. The final 
step of the algorithm is the averaging over these 
images to exclude the specific influence of the last 
hyperplane projection. 

The initial guess 0f  is assigned a value of zero. It 
was shown [19] that from any initial guess the 
sequence generated by the ART converges to a 

weighted least square solution. This initial guess is 
projected on the hyperplane represented by the first 
Equation in (16) to yield 0

1f
r

. The subscript indicates 
how many hyperplanes are included in the correction 
process. After each projection onto a hyperplane, the 
estimated image is updated. The first sub-iteration is 
finished if the correction over all hyperplanes is 
finished. 

The results are presented in Figure 5. For water, 
μ=0.098 mm–1, σ=0.003 mm–1. On 2хAMD Opteron 
275 computer (RAM 8 Gb), the reconstruction time for 
the 2D image was 4 s. 

 

 
Figure 5. а) Result of the reconstruction by ART. 

Used parameters: γ=0.01; median filtering mask is 
3x3 pixels. 

b) Cross-section of the reconstructed image. Gray 
line: reconstruction without median filtering, γ=0; 
black line: reconstruction with median filtering, 

γ=0.005. 
c) Cross-section of the reconstructed image. Gray 
line: median filtering mask is 3x3, γ=0; black line:  
γ=0.03, reconstruction without median filtering. 

 
7. Conclusions 
 

In this paper we have performed image 
reconstruction using two different methods. In 
conditions of high noise, each of the methods has its 
own advantages. FBP provides better reconstruction of 
boundaries, ART shows lower dispersion upon 
reconstruction within prolonged areas, while 
morphological analysis is better in reconstruction of 
inclusions. A new modified version of ART was used 
in our experiments and shown to give good results. 
Currently, we are planning to perform rapid image 
reconstruction by combining the above methods. 
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