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Abstract: Preventing, diagnosing, and treating disease is
greatly facilitated by the availability of biomarkers. Recent im-
provements in bioinformatics technology have facilitated large-
scale screening of DNA arrays for candidate biomarkers. Here
we discuss a gene analysis method that we call the LEAve-one-
out Forward selection method (LEAF) for discovering informa-
tive genes embedded in expression data, and propose an addi-
tional algorithm for extending LEAF’s capabilities. An iterative
forward selection method incorporating the concept of leave-
one-out cross validation (LOOCV), LEAF provides a discrimi-
nation power score (DPS) for genes. We show that LEAF identi-
fies genes that correspond to known biomarkers. Therefore, our
method should provide a useful bioinformatics tool for biomed-
ical, clinical, and pharmaceutical researchers.
Keywords: biomarkers, data mining, gene expression profiles, can-
cer classification

I. Introduction

Recent progress in bioinformatics technology has facili-
tated large-scale screening for candidate biomarkers [1]. A
biomarker, as the name implies, is a cell-derived substance
such as a gene, protein or enzyme that can be used to eluci-
date physiological or pathological process [2]. In our previ-
ous study, we have proposed a novel method called LEAve-
one-out Forward selection method (LEAF) for analysis of
gene expression data [12]. This method enabled us to con-
struct a ranking system of informative genes using a param-
eter reflecting the efficiency of the class discriminant desig-
nated the Discriminant Power Score (DPS).
We applied LEAF to three public leukemia datasets
(ALL/AML, ALL/MLL, and MLL/AML) [3, 4]. The results

show that our method yields a stable discriminant result with
100% accuracy using a three-gene set. Furthermore, some
genes with high DPS values are cancer-related genes (top-h
genes), as clarified by research in recent years.
Nevertheless, two problems remain to be resolved, namely:
(1) We have not selected a criterion for defining the h-value.
(2) The candidate list of associated genes is insufficient to
assign a discrete biological function (correlation and causal
relation between genes).
Here we briefly introduce LEAF and then propose a solution
to address these problems. Thus, using public gene function
database, we propose a simple and straightforward method
for determining the top-h genes (h-value) and conduct a bi-
ological functional analysis of the genes. Subsequently, we
designed a gene analysis framework for assembling the in-
formation supporting consideration of a biological process.

II. LEAF: LEAve-one-out
Forward selection method

A. Materials: Cancer dataset

We used three well-known leukemia datasets provided by
Armstrong et al., which includes acute lymphocytic leukemia
(ALL), mixed lineage leukemia (MLL), and acute myeloge-
nous leukemia (AML) [3]. These datasets are available at the
Broad Institute [4]. Details of the datasets are summarized in
Fig. 1A.
Fig. 1B presents two datasets are arranged in the form of a
data matrix. The matrix size is CN × TG, where CN de-
notes Class1 N +Class2 N . Furthermore, Class1 N and
Class2 N , respectively, represent the number of samples in
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Figure. 2: Overview of LEAF’s methodology
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Figure. 1: Cancer dataset “Leukemia dataset” [4]

Class 1 and Class 2, and gk (k = 1, 2, . . . , TG) corresponds
to a gene expression value, and TG signifies the total number
of genes: TG = 12,582.

B. LEAF: LEAve-one-out Forward selection method

We have proposed a robust and accurate gene selection
method based on forward selection called forward selection

method (FSM) [10]. To satisfy a maximal variance ratio (F -
value) between two disease classes, FSM cumulatively se-
lects gene one-by-one and ultimately identifies a set of genes
(a gene ranking) that is informative for disease classification.
In fact, LEAF is an iterative FSM inspired by leave-one-out
cross validation (LOOCV) [11]. Details of the algorithm
have been published [12]. Figure 2 outlines the method.
First, one test sample is taken from the dataset. Then the
remaining samples are used as a learning set. Subsequently,
we apply FSM to the learning set and obtain a gene ranking.
These steps are repeated for every test sample.
Finally, we extract a highly robust set of genes in a classi-
fication based on discriminant power, called DPS. DPS is
a parameter of the class discriminant ability defined for all
genes. DPS(k) (1 � k � TG) represents the DPS value of
the gene with the k-th gene-index-number.
Figure 7 displays the DPSs of genes calculated from the re-
spective pairs of the leukemia datasets. The horizontal axis
shows the gene index number, and the vertical axis indicates
the DPS given for each gene. The DPS graph can help visu-
alize genes’ statistical importance. Genes with higher DPSs
can be regarded as those contributing more significantly to
discrimination between the classes. That is, significant genes
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Figure. 3: DPS vs. gene-index-number of leukemia dataset.
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Figure. 4: Outline for defining h-value

are represented as peaks in the DPS graph.

C. Determination method of h-value (top-h genes)

Because previous work [12] has not provided any criterion
(cut-off threshold) for obtaining a set of discriminative genes,
here we introduce an interactive method for extracting the
top-h genes that are used to generate a final discriminant
function. The identification method of the h-value is illus-
trated in Fig. 4. The h-value is calculated by the following
steps:

1. Descending sort of DPS (Fig. 4A).

2. Decision of h-value.

(a) Normalize the horizontal and vertical axes by di-
viding by their respective maximum values (Fig.
4B).

(b) Find the shortest Euclidean distance on the DPS
graph to the origin. The abscissa value of the point
is called the h-value.

(c) Extract the set of genes having DPSs � h-value.
(d) Recreate a DPS graph using only the gene set ob-

tained in Step (c).

(e) Repeat from Step (a) to Step (d) unless the num-
ber of points is 1 or all points take an identical
distance.

Thus, we employ the nearest neighbor point (h-value) from
the origin for detecting drastic curvature in the descend-
ing sorted-DPS graph. We can then extract genes having
high DPSs, which are ranked higher than the h-value. This
method narrows down top-h-genes by interactively iterating
the above procedure. Obviously, many iterations drastically
decrease gene numbers, potentially eliminating biologically
meaningful genes. In this study, therefore, the number of it-
erations in the decision of h-value is set to two (the respective
h-values are referred to as h1 and h2).

III. Evaluation and Verification

Figure 5 shows the evaluation procedure of our method,
HCSETi(i = 1, 2, . . . , h) represents a cumulative gene set
of the top-i in the DPS ranking. For each HCSETi, we con-
struct discriminant models by a LOOCV and calculate a clas-
sification accuracy (Fig. 5A). Finally, a Discriminant result
matrix as shown in Fig. 5B is generated, and the performance
of our method is evaluated by using Accuracy rates derived
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from each HCSETi. In addition, we conduct a function en-
richment analysis for HCSETh and discuss the biological
significance of genes included in

A. Classification accuracy and DPS

We generate discriminant result matrices for every pair of the
three datasets (ALL, MLL and AML). Figure 6 shows the
classification accuracies obtained using the cumulative gene
sets (HCSET1, HCSET2, . . . , HCSET20) for each pair of
datasets. From these figures, we can see that perfect classi-
fications are stably achieved by using three or more genes in
all the pairs. Figure 7 exhibits the DPSs of genes calculated
for the respective pairs of datasets. The genes with higher
DPSs can be regarded as ones having greater contribution to
discriminating between the classes.

IV. Biological function analysis

The h-values of each dataset are presented in Table 1. Ideally,
it is preferred that the extracted genes provide biologically
useful information in addition to imparting high discrimina-
tory power to different classes. We conducted a biological
function analysis of gene group in reference to the Gene on-
tology tool [5, 6] and the University of Washington’s L2L
microarray analysis tool [7]. Below we focus on the top-h2
genes’ biological function.
In the L2L program, a p value for the significance of overlap
between the given list and the function list of the databases
is calculated by using the binomial distribution. Tables 3, 4
and 5 summarizes the L2L results. In the three datasets, we
can observe that functions related to human cancer, such as
colon carcinoma, gastric cancer, and breast cancer, exhibit
statistical significance.
Table. 2 summarizes the primary functions of the top-h2
genes obtained using Gene ontology. As expected, genes
related to leukemia in addition to leucocyte communica-
tion, such as TCL1A, RPL38, CALLA, and IL8RB [8], are
selected from every dataset pair. In particular, it should
be noted that ribosomal protein L38 (RPL38) is highly ex-
pressed in pancreatic cancer cell lines [9].

V. Gene analysis Framework

For basic biomedical and translational research purposes, it
is not sufficient to list informative candidate genes without

Table 1: h and DPS values of Leukemia Dataset
Dataset h1 DPS h2 DPS

ALL vs. AML 104 0.0168 10 0.1287
ALL vs. MLL 123 0.0192 11 0.1030
MLL vs. AML 139 0.0179 9 0.1042

knowing the pathways in which their products participate.
Our method for mining biomarkers is based upon differen-
tial gene expression analysis, thereby providing functional
information. We propose this as a gene-analysis framework,
which applies LEAF. An overview of the framework (Fig. 8)
illustrates the processes by which it operates.

1. Analysis of the dataset using LEAF, and display of DPS
(Figs. 8A and B).

2. Calculation of h-values (Fig. 8C).

3. Extraction of the genes based on the h-value (Fig. 8D).

4. Analysis of top-h2 genes (Fig. 8E).

(a) Construction of a discriminant model.

(b) Output of a summary (i.e., Table 2).

5. Gene-network analysis for top-h1 genes.

6. Output of the dependency rules based on probabilistic
reasoning.

Interaction between genes can be inferred using the model
of dependency structure (correlation and causal relationship).
Figure 8G shows that gene-network analysis expresses a de-
pendency using a graphical structure.
A graph node is a gene; an arrow represents the existence of
dependency between nodes. One method of building gene
networks uses a Bayesian network [13, 14]. We can apply
probabilistic reasoning [15] and search for the biological pro-
cess that supports discovery of a biomarker. Moreover, in this
framework, we use biological ontology for the construction
and interpretation of a Bayesian network.
Gene Ontology (GO) is a popular gene function database
consisting of three independent ontologies: Biological pro-
cess, molecular functions, and cellular components. Each
node of the ontology corresponds to a certain biological func-
tion and includes one or more genes.
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Figure. 6: Accuracy rate vs. cumulative gene set of leukemia dataset
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Figure. 7: DPS vs. gene-index-number of leukemia dataset

Actually, GO does not have only a common vocabulary in
biological science. It does provide a classification tree of the
concept of generalization and specialization (i.e., the “part-of
link” for which biological process A consists of a molecular
interaction X and Y.).
We prepare software agents [16, 17] that searches for a can-
didate biological process to built, BN. They change the node
value of a gene network variously, and perform probabilis-
tic reasoning. We store the candidate of a biological process
sought by the agent as a general knowledge format (OWL
ontology).

VI. Conclusion

LEAF is an iterative FSM incorporating the concept of
LOOCV; it also provides a DPS of genes. Moreover, we
can determine the top-h according to the distribution of DPS
value for each dataset using a simple algorithm for determin-
ing h-values. The h-values can be used as criteria for iden-
tifying candidate or informative genes. Our method shows
that the biological functions of extracted genes correspond
well with those reported in the literature. Finally, we pro-
pose a gene analysis framework for using LEAF for basic
biomedical research and drug discovery. From these results,
we expect that our method will provide a powerful tool to ex-
plore biomarker candidates and as a new method for disease
diagnosis.
We plan to develop an automatic detection method of h-value
based on information criterion such as AIC (Akaike Informa-
tion Criterion) [18] and evaluate the usefulness of the method

by applying it to other datasets.
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