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Abstract: The field of DNA computing has recently attracted 
considerable attention. Because of its great capacity to conduct 
parallel relations, many NP-complete problems are solved by this 
approach. In this paper we present a molecular algorithm to 
solve the Longest Path Problem. Till now, no molecular 
algorithm is presented for this problem in the literatures on the 
weighted graph G=(V, E). The proposed molecular algorithm can 
be performed in O(|V|2) molecular operations. Special effort is 
spent on designing an scaling method for weight values in order 
to obtain an appropriate encoding for the problem. The 
effectiveness of this algorithm is verified by the computational 
simulation. 

Keywords: DNA Computing, Genetic Algorithm, Graph Theory, 
NP-Completeness.  

I. Introduction 
Since the publication of Adleman’s original paper [1], 
several authors have described how various models of 
computation may be simulated using bio-molecular methods 
[14], [15]. The vast parallelism, exceptional energy 
efficiency, and extra ordinary information density inherent in 
molecular computation have raised the possibility that 
molecular computation might some day prove capable of 
attacking problem that have resisted conventional methods 
[2]-[4], [7], [12], [15]. With regard to these advantages, a 
major goal of subsequent research is how to use DNA 
manipulations to solve NP-Complete problems. 
The Traveling Salesman Problem (TSP) is an NP-Complete 
problem which is finding a simple path of length |V|− 1 with 
minimum cost between two specified vertices in the given 
weighted graph G = (V, E). Different DNA computing 
solutions are given for this problem in the literatures [1], 
[14], [16]. Manipulating the paths in this problem is rather 
simple since all the paths should have the same length (each 
vertex is seen only once in each path). The given molecular 
algorithm for TSP can be also employed to solve the shortest 
path problem, even though this problem has polynomial time 
algorithm with electronic computers [16]. 
Another interesting problem in graph theory is the Longest 
Path Problem (LPP). This problem is finding a simple path 

from a source vertex sv to a target vertex 
tv with maximum 

weight in a given weighted graph G = (V, E). We need to 
include the requirement of simplicity for paths; otherwise by 
repeatedly traversing the cycles, paths with arbitrary large 
weight can be created. We know that finding the longest 
simple path between two vertices is NP-Complete (even for 
un-weighted graphs). The only molecular algorithm for this 
problem is presented in [12] which is designed for un-
weighted graphs with the time complexity O(|V|3). Till now, 
no other molecular algorithm is given for longest path 
problem in general form. In this paper, we design a molecular 
algorithm to solve the longest path problem for a weighted 
graph in polynomial-time complexity. We present an 
encoding scheme for representing a graph (vertices and 
edges) similar to the encoding given by Lee et al. [13]. Based 
on this encoding, we present a new molecular algorithm for 
solving the LPP for a given weighted graph G = (V, E) with 
O(|V|2) molecular operations, including the DNA sequences 
construction. 
This paper is organized as follows: In Section II, we present 
the encoding scheme for solving the LPP. Section III 
describes our molecular algorithm. The generation of optimal 
DNA sequences is presented in Section IV. Sections V and 
VI provide the experimental results and conclusion, 
respectively. 

II. Encoding scheme 
As mentioned, the LPP is an NP-Complete problem and is to 
find a simple path from the vertex sv (source vertex) to the 

vertex tv (target vertex) considering the maximum weight in 
a given weighted graph G = (V, E). This is an optimization 
problem and formally we can write it as: 

∑
∈Pe

ij
ij

ew )(max   
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where P is a path from sv to tv and )( ijew shows the weight 

of the edge ije which is appeared in the path P. Figure 1 
shows an instance of a graph that has six vertices. Let the 
source vertex be 1 and the target vertex be 6. The path with 
maximum weight is 1 →  4 →  6 and the weight of this path is 

100100. Note that there is no need to have |V| vertices in the 
maximum weighted path.  
We now explain an encoding scheme for solving LPP by 
molecular algorithm. We present an encoding scheme which 
is very similar to the encoding given by Lee et al. in [13]. To 
implement the fixed length, we use a melting temperature 
control encoding method. This method uses fixed-length 
DNA strands and represents weights in the graph by melting 
temperatures of the given DNA strands. The basic idea is to 
design the sequences corresponding to the weights in the 
graph, such that the DNA strands for higher-weighted values 
have lower melting temperatures than those for lower 
weighted values [5], [11]. Several empirical methods are 
proposed to calculate the melting temperature. A classical 
method is the GC-content method which uses the content of 
guanine (G) and cystine (C) in the given DNA strand as a 
main factor for determining the melting temperature of the 
strand [13]. The nucleotide Adenine (A) is always paired to 
the nucleotide Thymine (T) with 2 hydrogen bonds, as well 
as the nucleotides C and G with 3 hydrogen bonds. Because 
of the number of hydrogen bonds, the base pairing between C 
and G is stronger than the one between A and T. So in this 
method the DNA sequences with lower amount of GC 
content have lower melting temperature. 
Based on the above discussion, the encoding scheme for the 
vertices and edges of a given weighted graph G = (V, E) are 
designed as follows. As mentioned, this encoding scheme is 
very similar to the encoding scheme given by Lee et al. [13] 
except the encoding of the vertices in the graph is rather 
different. 
 
 
 

 
 
 

Figure. 1: A simple graph example. 
 

 
 
 

1. Each weight iw is encoded with a strand of length 2d 
(d is a constant value proportional to the number of 
vertices |V|) and is called weight sequence, denoted 

by 
iwδ  (if 

iw = jw clearly 
iwδ is the same as

jwδ ). 

Since the length of each weight sequence is constant, 
therefore the number of A/T nucleotides in each 
sequence (AT-content) shows the value of the weight. 
The sequences corresponding to the higher-weighted 
values have more AT-content (and so less GC-
content), therefore the melting temperatures of these 
strands are lower than the others. As it is clear, this 
encoding scheme can express the real-valued weights. 

2. The index of vertex iv (which is denoted by il ) is 
encoded by a strand of length 2d and is called label 
sequence, denoted by

il
δ . It should be considered that 

the label strands in each vertex are encoded with the 
equal number of A/T and G/C nucleotides (i.e. 50% 
for AT-content and 50% for GC-content), such that 
the half right end (5'-end) of 

il
δ is the reverse 

complement of the half left end (3'-end) of 
il

δ ( il
Rδ  

= Reverse( il
L
−

δ )), where il
Rδ and il

Lδ are half right 

end and half left end of 
il

δ respectively). For 

example, if il
Lδ is equal to GACAGTT then il

Rδ is 
equal to AACTGTC. The reason for using this 
structure is to eliminate the cycles in the constructed 
paths as discussed later in the simulation of our 
algorithm. The restriction of using equal amount of 
A/T and G/C nucleotides is implied for not violating 
the number of A/T nucleotides in weight sequences. 

 
3. Employing the weight sequences and label sequences 

constructed in steps 1 and 2, for each vertex iv whose 

in-edge has weight kw and out-edge has weight jw , a 
strand of length 4d is assigned. This sequence is 
called vertex sequence and is illustrated in below: 

 

         
 

where the strands 
il

δ = il
Lδ + il

Rδ from index d + 1 

to 3d are the label sequence of vertex iv and kw
R
−

δ  is 
the half right end of the complementary weight 

sequence corresponding to kw  (
kwδ ) and jw

L
−

δ is 
the half left end of the complementary weight 
sequence corresponding to jw  (

jwδ ). For the source 

(target) vertex, kw
R
−

δ  ( jw
L
−

δ ) is omitted. It should 
be mentioned that the maximum number of 
constructed sequences for any vertex iv in the graph 
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is equal to in-degree( iv )×out-degree( iv ) = O(|V|2) 

which imposes the construction of O(|V|3) sequences 
for all vertices. By breaking down the vertex 
sequences into two subsequences, it is possible to 
construct O(|V|2) sequences (O(|V|) for each vertex) 

and produce all the required O(|V|3) vertex 
sequences. Instead of constructing the whole vertex 
sequence, it is sufficient to construct the 

subsequences kw
R
−

δ il
Lδ and il

Rδ jw
L
−

δ  separately, 
and then use the complement sequence corresponding 

to il ( il

−

δ ) to connect the constructed subsequences 
and produce the vertex sequence. Since the length of 
all vertex sequences are 4d instead of 2d for label 
sequences, we can add the ligase enzyme in to the test 
tube, melt the sequences and use the Gel-
Electrophoresis to separate the vertex sequences from 
the complementary label sequences. 

 
4. Any edge ije from vertex iv  to vertex jv with weight 

kw is encoded with a strand of length 4d and is called 
edge sequence such as illustrated in below:   

           
 

where il
R
−

δ and jl
L
−

δ are the half right end of il

−

δ and 

half  left end of jl

−

δ  which are the complementary label 

sequences of vertices iv and jv , respectively. 

5. Auxiliary sequences iγ  with length (i×4d)+d (i=1, 2, 
…, n−2) are constructed for employing in the algorithm. 
The first d nucleotides of each sequence is the half right 
end of the complementary label sequence of the target 

vertex (i.e. tv
R
−

δ ) and the remaining nucleotides are 
arbitrary constructed with 25% of AT-content and 75% 
of GC-content for previously mentioned reason (not 
violating the GC-content in the weight sequences). This 
encoding helps us to distinguish between the strands of 
the same length but with different melting temperatures. 
More details are given during the discussion of the 
algorithm in the next section. 

As it is mentioned, this encoding scheme for weight 
sequences can also express the real value weights. The 
method of DNA sequence generation for this encoding 
scheme is given in Section IV. 

III. MOLECULAR ALGORITHM 
Prior to performing our molecular algorithm, it is assumed 
that the required DNA sequences corresponding to the 
vertices and edges and their complements are generated with 
the method discussed in the next section. The molecular 
algorithm for finding the longest path between source vertex 

sv  and target vertex tv  in a given graph G = (V, E) with n 
vertices is summarized in bellow: 
 
Algorithm DNA-LPP: 

1. Pour all the strands of length 4d corresponding to the 
vertices and edges (vertex and edge sequences) to the 
test tube T1 with ligase enzyme. In suitable condition, 
hybridization and ligation occurs in the tube and 
double strands corresponding to all the possible paths 
in the graph are constructed. 

2. Keep only the strands of length less than or equal to 
4d×n−2d that represent the paths of length less than or 
equal to n.  

3. Keep only those paths which enter all of the vertices 
of the graph at most once and begin with the sequence 

svδ and end with 
tvδ (

svδ and
tvδ are the sequences 

corresponding to the source and target vertices, 
respectively). 

4. Remaining strands are separated and poured in 
different test tube with respect to their length (in other 
word, with respect to the number of vertices in each 
path). Therefore n−1 test tubes T2, T3, …, Tn are 
required for keeping the strands corresponding to the 
paths of length 2, 3, …, n.  

5. In each test tube, strands with lowest melting 
temperature are kept. This means that in each test tube 
Ti (2 ≤i ≤n), longest path with exactly i vertices are 
kept. 

6. Each test tube Ti (2 ≤i ≤n) contains strands with 
different length. By adding ligase enzyme and the 
auxiliary strands i to each test tube Tn−i, the strands of 
length 4d×n−2d are constructed in each test tube.  

7. Pour all the test tubes T2, T3, …, Tn into the test tube 
T0.  

8. Select the strands with lowest melting temperature that 
represent the solution strands. 

 
In Step 1, with respect to the construction of the vertex and 
edge sequences, the corresponding complement sequences 
are hybridized and ligated and then the double strands 
corresponding to all the possible paths of the given graph 
are created. 
To implement Step 2 of the algorithm, the product of Step 
1 is run on a Gel- electrophoresis and the strands of length 
less than or equal to 4d×n−2d are kept. The selected 
double stranded DNA sequences encode paths entering at 
most n vertices. 
To implement Step 3 of the algorithm, the product of Step 
2 is amplified by Polymerase Chain Reaction (PCR) using 

primers 
svδ and

tv

−

δ . If the concentration of DNA 
sequences in the test tube is kept low enough to allow 
hairpin conformation, the PCR is expected to amplify only 
non-hairpin sequences [16]. The non-hairpin sequences 
represent the paths which enter all of the vertices of the 
graph at most once. It should be noted that, because of the 

structure of label sequences (
il

δ = il
Lδ +Reverse ( il

L
−

δ )) 

corresponding to each vertex iv , the existence of two or 
more similar label sequences in a strand, forms a hairpin 
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(as it is illustrated in Figure 2). Thus only those sequences 
encoding paths which have no repeated vertex and begin 
with vertex sv and end with vertex tv  are amplified. 
In Step 4, the content of test tube in the Step 3 is run on a 
Gel-electrophoresis again. The (8d)bp, (12d)bp, …, (4d × 
n)bp bands are all separated and kept in the different test 
tubes T2, T3, …, Tn. As it is mentioned, each test tube Ti 
corresponds to the path of length i (2 ≤i ≤n). 
To implement the Step 5, we use the Denaturation 
Temperature Gradient PCR (DTG-PCR). The DTG-PCR 
is a modified PCR method that the denaturation 
temperature is started at low temperature in the beginning 
cycles of PCR and gradually is increased in each cycle of 
amplification [13]. Thus the sequences with lower melting 
temperature (corresponding to the higher-weighted values) 
will be amplified more frequently. Later, the sequences 
with most amount of A/T nucleotides are chosen by 
Temperature Gradient Gel-Electrophoresis (TGGE) in 
each test tube Ti (2 ≤i ≤n), which represent the longest 
path in Ti. In this case, each test tube Ti contains the strand 
corresponding to the longest path with exactly i vertices (2 
≤i ≤n). It should be noted that all the strands in one test 
tube have the same length but their length are different 
from the strands in the other test tubes. The AT-content of 
the constructed sequences corresponding to a path is 
proportional to the value of its weight. But the melting 
temperature of a sequence is also proportional to the 
length of that sequence. So, to obtain the exact solution for 
LPP, the strands should have the same size. For this reason 
in Step 6, the auxiliary strands i and the ligase enzyme are 
added to each test tube Tn−i. By providing suitable 
condition, primer extension is occurred and the strands of 
length 4d×n−2d are constructed in all the test tubes. 
In Step 7, all the test tubes are merged into the test tube T0 
and eventually in Step 8, strands with lowest melting 
temperature can be selected to represent the solution. Note 
that in Step 8, the T0 contains all the strands with the same 
size corresponding to the longest path of different length. 
Clearly, the actual longest path is a path with maximum 
weight which is the strand with most amounts of A/T 
nucleotides and low melting temperature, and this is 
recognized in Step 8 by using DTG-PCR and TGGE as 
discussed in Step 5. With respect to the above operations, 
the number of molecular operations in our algorithm is 
given in the following theorem.  
 

 
 

Figure. 2: Hairpin conformation. 

Theorem 1. For a given weighted graph G = (V, E), the 
molecular algorithm DNA-LPP is performed in O(|V|2) 
molecular operations. 
 
Proof. As mentioned, all the required DNA sequences for our 
algorithm can be constructed in O(|V|2) molecular operations. 
Considering the molecular operations employed in the 
DNA-LPP algorithm, we can see that all the steps 1, 2, 5, and 8 
are performed in O(1) and the steps 3, 4, 6, and 7 are 
performed in O(|V|) molecular operations. Therefore the 
algorithm DNA-LPP is performed in O(|V|) molecular 
operations. By summing of the complexity of constructing the 
DNA sequences to the complexity of the algorithm DNA-LPP, 
we obtain O(|V|2) in total.                                                      □ 

                                                                         

IV. GENERATION OF DNA SEQUENCES 
Sequence design is strongly needed for successful DNA 
computing. Recently, many design requirements for DNA 
sequences are proposed [7], [8], [9], [18]. Design 
requirements are divided into several aspects. Roughly 
speaking, the purpose of these requirements is to prevent 
misshybridization and undesired secondary structure, as well 
as keeping the uniform chemical characteristics. DNA 
sequence design can be considered as an optimization 
problem. Alternatively, DNA sequence corresponding to any 
encoding scheme can be generated by a genetic algorithm that 
minimizes the potential of error in DNA sequences for reliable 
molecular operations and produce reliable sequences. Deaton 
et al. [7], [8], [9] has explored the use of genetic algorithm for 
the optimization of the encoding. In this section, we describe 
an optimization method for generating DNA sequences 
corresponding to weights and labels of a given graph G = (V, 
E) using a genetic algorithm. This genetic algorithm uses the 
conventional genetic operations as single point crossover and 
single point mutation. The fitness function is defined based on 
measurements which are given in [18]. We first present the 
genetic algorithm for producing DNA sequences and then 
describe the measurements in this section. The genetic 
algorithm is summarized in bellow:  
 

1. Generate the sequences randomly with length 2d. 
2. Set counter = 1. 
3. While (counter <= max_count) do 

a. Evaluate the fitness of each sequence. 
b. Apply genetic operators (crossover and 

mutation) to produce a new population. 
c. counter= counter + 1. 

4. Let the best codes be the fittest encodings. 
 
This genetic algorithm employs a fitness function which is the 
summation of different functions based on five different 
measures which are introduced by Shin et al. [18] as follows: 
 
Fitness = fAT−content + fH−measure + f3'−end+fSimilarity + fContinuity,  
 
where 

• fAT−content is a fitness function for counting the amount 
of A/T nucleotides in the sequence. 

• fH−measure is an important fitness function for 
preventing the mismatched hybridization. 
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• f3'−end is a fitness function for preventing 
hybridization at 3’-end of DNA sequences. 

• fSimilarity is a fitness function for preventing undesired 
hybridization by keeping the sequence as unique as 
possible. 

• fContinuity is a fitness function for preventing 
occurrence of same bases continuity in a sequence. 

 
Note that the best fitness value is zero; therefore the genetic 
algorithm tries to minimize the fitness function. The most 
important fitness function in this genetic algorithm is fAT−content. 
This function is implemented for controlling the melting 
temperature in label and weight sequences. Therefore we 
discuss this fitness function more precisely and for the details 
of the other fitness functions see [18]. AT-content affects the 
chemical properties of DNA sequences. The AT-content 
measure is as follows: 
 

contentATf − = 2
arg ))()(( igenerated

i
iett xATxAT −∑  

where )(arg iett xAT is the desired AT-content for the 

sequence ix and )( igenerated xAT is the generated AT-content 
for the sequence xi in the current population of genetic 
algorithm. As it is mentioned, the label sequences are encoded 
with equal number of A/T and G/C nucleotides. Therefore, the 
ATtarget for those sequences are considered as 50% (i.e. d 
nucleotides of type A/T where 2d is the length of the generated 
sequence). The amount of AT-content in weight sequences is 
also optimized by this measurement. This is done so that the 
weight sequences with higher value have more AT-content and 
thus have higher probability of being content in the final 
solution. For this purpose, ATtarget function is defined to 
promote the paths formed with higher costs and low melting 
temperature, so that the path with maximum cost could be 
found. A simple method for allocating the AT-content is to 
count the number of hydrogen bonds in the sequences. For 
example, the weight value of 20 can be encoded with 20 
hydrogen bonds. However this scheme can not encode real 
values, as well as it requires very long DNA strands to encode 
the large values. Alternatively, the ATtarget corresponding to the 
weight values can be estimated by the relative number of 
hydrogen bonds in a sequence over the entire sequences. This 
method is suitable for the uniformly distributed weights. In the 
other hand, for the weights with non uniform values, this 
method can not present a suitable encoding. For example, the 
ATtarget for the weights 1, 5, and 100000 are 0, 0, and 20, 
respectively. So from the melting temperature point of view, 
there is no difference between the weights 1 and 5 and the 
incorrect solution could be produced. In order to 
simultaneously handle the very small and very large weight 
values in the graph, we propose a new AT-content allocation 
method. Suppose that W = [w1,w2, … ,wt] is a sorted list of 
distinct weights and ni (1 ≤i ≤t) is the number of edges with 
weight wi in the given graph. Before computing the 
AT-contents, some extra weight values are added to the list W 
to ensure that all the existing weight values can be 
decomposed with respect to the smaller values. For any weight 

wk, if i
k

i ik wnw ∑ −

=
<

1

1
then the value xwk − is added to the 

list W as an extra weight value (where x  is the largest 

combination of weight values such that )0 kwx <<  and its 
occurrences is considered as 1. The AT-content corresponding 
to the k -th weight sequence ))(( arg kett wAT  can be 
computed as follows: 















>+

=

=

∑

∑∑
−

=

−

=

−

=

,)(

)1(,1)(

,1

)(
1

1
arg

1

1
arg

1

1

1

arg

otherwiseATc

wnwATn

kw

AT
k

i
wetti

k

i
iikwett

k

i
iwett

i

ik

δ

δδ

 
where ic comes from the decomposition of kw with respect to 

the previous weight values ( ∑ −

=
=

1

1

k

i iik wcw , such that 

ii nc ≤≤0 ). The ATtarget for each sequence is computed with 
respect to its corresponding weight value and this encoding is 
started from the smallest value to the largest value. As proved 
in the following theorem, this new scaling method helps us to 
correctly recognize the longest path. It should be noted that if 
there is no big gap between the weight values (i.e. each weight 
value can be decomposed with respect to the smaller weight 
values), then the behavior of our new scaling method is similar 
to the linear scaling method. As an example, our scaling 
method is not suitable for the weight values such as 1, 2, 4, 8, 
…, 2t, because it does not change the weight values and the 
scaling weights will increase exponentially. We should 
consider that, by using the percentage of AT-content, this 
problem is not avoidable for approximately consecutive 
weight values. For our sample graph given in Figure 1, the 
computed ATtarget corresponding to weight values are shown in 
Table 1. 
Theorem 2. Suppose that ],,,[ 21 twwwW = is a sorted 

list of weights and ],,,[ 21 tnnnN = is their 
corresponding number of occurrences in the given weighted 
graph G = (V, E). For any two collections P and Q of W, if 

∑∑ ∈∈
>

Qw iPw i
ii

ww then

∑∑ ∈∈
>

Qw iettPw iert
ii

wATwAT )()( argarg .  

 
 
 
 
 

Table 1. Computed ATtarget for weight sequences. 
 

iw  in  ettAT arg  

1 3 1 
2 2 2 
3 3 3 
100 1 17 
105 1 22 
100000 1 56 
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Proof. Suppose that ∑ ∈
=

Pw i
i

wPW )( and ∑ ∈
=

Qw i
i

wQW )( . 

Since the elements of P and Q are selected from the list W, so 

∑ =
=

t

i iiwpPW
1

)( and ∑ =
=

t

i iiwqQW
1

)( , 

where iii nqp ≤≤ ,0 . Now suppose that j be the greatest 

index in the decomposition of )(PW  and )(QW  such 

that jj qp ≠ . There are two possibilities: 

1. If ∑ −

=
>

1

1

j

i iij wcw , then it should be the case 

jj qp > (if not, the inequality does not hold), and from 
the Formula 1, we 

have i
j

i ijett wnwAT ∑ −

=
>

1

1arg )( and 

so∑ ∑∈ ∈
>

Pw Qw iettiett
i i

wATwAT )()( argarg . 

2. If ∑ −

=
=

1

1

j

i iij wcw , then it is possible to rewrite the 

decompositions by applying the following rules: 
– If jj qp > then reduce jp to obtain the 

equality jj qp = and add the values 

ijj cqp )( − to the coefficients ip  (1 ≤i ≤ 
j−1). 

– If jj qp < then reduce jq  to obtain the 

equality jj qp = and add the values 

ijj cqp )( −  to the coefficients iq  (1 ≤i ≤
j−1). 

 
By performing the above steps for the remaining indices, we 
either prove the the theorem or we obtain ii qp =  (2 ≤i ≤t) 

and α+= 11 qp  (where α > 0). In the second case, since all 
the coefficients become equal (except the last one), we can 
write: 

)(

)(

)(

)(

)()(

arg

arg

arg
1

arg
1

arg
1

arg

iett

Qw iett

iett

t

i
i

iett

t

i
i

iett

t

i
iPw iett

wAT

wAT

wATq

wATq

wATpwAT

i

i

α+

>

=

=

∑
∑

∑

∑∑

∈

=

=

=
∈

     

 □ 
 

Table 2.   Weight sequences. 

Thus, by employing the mentioned fitness, crossover, and 
mutation functions in the genetic algorithm, it is possible to 
design ideal sequences for the encoding scheme for LPP.  

V. EXPERIMENTAL RESULT 
We developed a tool for simulating our molecular 
algorithms. This tool is executed for several instances of 
weighted graphs with different sizes which are generated 
randomly. For each generated graph of size n, our algorithm 
found the longest path (if there is any) between two specified 
vertices. The steps of our algorithm for finding the longest 
path between the source vertex 1 and target vertex 6 for the 
graph shown in Figure 1 are presented in this section. First 
we have generated the weight and label sequences required 
for encoding the sample graph given in Figure 1 by the 
genetic algorithm discussed in previous section. The 
generated sequences of length 20 are shown in Table 2 and 
Table 3, respectively. Employing the weight sequences and 
label sequences shown in these tables, the vertex and edge 
sequences are constructed and symbolically demonstrated in 
Table 4 and Table 5, respectively. 
By pouring vertex and weight sequences into a test tube and 
in a suitable condition, the hybridization and ligation are 
occurred in the test tube. The constructed double-stranded 
DNA sequences show all the possible paths with any weight 
in the graph. Among these sequences, the sequences 
beginning with vertex 1 and ending with vertex 6 which have 
the length less than 6×40 and have no repeated vertex are 
separated in a different test tube. By adding the auxiliary 
sequences to their corresponding test tubes, the length of all 
sequences become same. Among these sequences 
corresponding to the paths, the longest path is the sequence 
with most amounts of A/T nucleotides which is as follows:  
 

 
 
This sequence encodes the path 1 →  4 →  6 which is 
obviously the longest path in our sample graph. 
 
 
 
 
 
 
 

i  iw  
AT-content % symbol Generated weight sequence ( 35 ′−−′

iwδ ) 

1 1 1.79 % 
1wδ  

GCTGCGCGCGCGCGTCGCCG 

2 2 3.57 % 
2wδ  

CGCCGCGCAGGGCTGGAGGG 

3 3 5.36 % 
3wδ  

CTGCGGAGTCGCACCGGCCG 

4 100 30.37 % 
4wδ  

GAGGCCAGTTCACTGGCCTC 

5 105 39.29 % 
5wδ  

TGCTACCTCAATGACCGTCG 

6 100000 100% 
6wδ  

TATAATGATATCATATTATA 
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Table 3.  Label sequences. 

 
Table 4. Vertex sequences. 

 
 
 
Table 5.  Edge sequences. 

 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 
  

Vertex label i  AT-content % symbol Generated label sequence ( 35 ′−−′
il

δ ) 

1 50 % 
1

δ  ATACTCTGCACCGTACCAAG 

2 50 % 
2

δ  ACTAGTGACGAACTTACGGC 

3 50 % 
3

δ  AGGTAGATTCAGCATACGCG 

4 50 % 
4

δ  TGATTCCACCAGACCATGTC 

5 50 % 
5

δ  ACGAACCAGCACATCTCAGT 

6 50 % 
6

δ  GCATTCGCACCTGAACGCTA 

Index 
jik wvw →→  Symbolic representation Index 

jik wvw →→  Symbolic representation 

1 21→  L
w21

δδ  
12 524 →→  L

w
R
w 122 δδδ   

2 31→  L
w11

δδ   
13 624 →→  L

w
R
w 522 δδδ   

3 41→  L
w41

δδ  
14 231 →→  L

w
R
w 131 δδδ   

4 62 →  
65 δδ

R
w  

15 631 →→  L
w

R
w 331 δδδ   

5 63 →  
63 δδ

R
w  

16 241 →→  L
w

R
w 244 δδδ   

6 64 →  
66 δδ

R
w  

17 641 →→  L
w

R
w 644 δδδ   

7 65 →  
63 δδ

R
w  

18 245 →→  L
w

R
w 243 δδδ   

8 521 →→  L
w

R
w 122 δδδ   

19 645 →→  L
w

R
w 643 δδδ   

9 621 →→  L
w

R
w 522 δδδ   

20 452 →→  L
w

R
w 351 δδδ   

10 523 →→  L
w

R
w 121 δδδ   

21 652 →→  L
w

R
w 351 δδδ   

11 623 →→  L
w

R
w 521 δδδ   

   

 

Index 
ji vv →  Symbolic representation Index 

ji vv →  Symbolic representation 

1 21→  L
w

R
221  δδδ  

7 63→  L
w

R
633  δδδ  

2 31→  L
w

R
311  δδδ  

8 24 →  L
w

R
224  δδδ  

3 41→  L
w

R
441  δδδ  

9 64 →  L
w

R
664  δδδ  

4 52 →  L
w

R
512  δδδ  

10 45→  L
w

R
435  δδδ  

5 62 →  L
w

R
652  δδδ  

11 65→  L
w

R
635  δδδ  

6 23→  L
w

R
213  δδδ  
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VI. CONCLUSION 
A molecular algorithm for solving the longest path problem 
for a weighted graph G = (V, E) is presented. Our algorithm 
can be performed in O(|V|2) molecular operations. In the 
utilized encoding scheme, the relative values of AT-content 
against GC-content are taken into account to handle the non 
uniform weights in the graph. For this reason, a new method 
for scaling the weights in the graph is presented. This new 
scaling method can be used to solve any similar problem in 
the weighted graphs. The algorithm is based on constructing 
all the possible paths in a given graph. Later the cycles are 
eliminated with respect to the encoding of the vertices. It 
should be noted that, although we are searching for a longest 
path, the algorithm can eliminate the cycles and so the correct 
longest path can be obtained.  
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