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Abstract: The field of DNA computing has recently attracted
considerable attention. Because of its great capacity to conduct
parallel relations, many NP-complete problems are solved by this
approach. In this paper we present a molecular algorithm to
solve the Longest Path Problem. Till now, no molecular
algorithm is presented for this problem in the literatures on the
weighted graph G=(V, E). The proposed molecular algorithm can
be performed in O(|V|?) molecular operations. Special effort is
spent on designing an scaling method for weight values in order
to obtain an appropriate encoding for the problem. The
effectiveness of this algorithm is verified by the computational
simulation.

Keywords: DNA Computing, Genetic Algorithm, Graph Theory,
NP-Completeness.

. Introduction

Since the publication of Adleman’s original paper [1],
several authors have described how various models of
computation may be simulated using bio-molecular methods
[14], [15]. The wvast parallelism, exceptional energy
efficiency, and extra ordinary information density inherent in
molecular computation have raised the possibility that
molecular computation might some day prove capable of
attacking problem that have resisted conventional methods
[2]-[4], [7], [12], [15]. With regard to these advantages, a
major goal of subsequent research is how to use DNA
manipulations to solve NP-Complete problems.

The Traveling Salesman Problem (TSP) is an NP-Complete

problem which is finding a simple path of length |V|- 1 with

minimum cost between two specified vertices in the given
weighted graph G = (V, E). Different DNA computing
solutions are given for this problem in the literatures [1],
[14], [16]. Manipulating the paths in this problem is rather
simple since all the paths should have the same length (each
vertex is seen only once in each path). The given molecular
algorithm for TSP can be also employed to solve the shortest
path problem, even though this problem has polynomial time
algorithm with electronic computers [16].

Another interesting problem in graph theory is the Longest
Path Problem (LPP). This problem is finding a simple path

from a source vertex v, to a target vertex v, with maximum

weight in a given weighted graph G = (V, E). We need to
include the requirement of simplicity for paths; otherwise by
repeatedly traversing the cycles, paths with arbitrary large
weight can be created. We know that finding the longest
simple path between two vertices is NP-Complete (even for
un-weighted graphs). The only molecular algorithm for this
problem is presented in [12] which is designed for un-

weighted graphs with the time complexity O(|V[?). Till now,

no other molecular algorithm is given for longest path
problem in general form. In this paper, we design a molecular
algorithm to solve the longest path problem for a weighted
graph in polynomial-time complexity. We present an
encoding scheme for representing a graph (vertices and
edges) similar to the encoding given by Lee et al. [13]. Based
on this encoding, we present a new molecular algorithm for
solving the LPP for a given weighted graph G = (V, E) with

O(]V|%) molecular operations, including the DNA sequences

construction.

This paper is organized as follows: In Section 1I, we present
the encoding scheme for solving the LPP. Section IlI
describes our molecular algorithm. The generation of optimal
DNA sequences is presented in Section IV. Sections V and
VI provide the experimental results and conclusion,
respectively.

I1. Encoding scheme
As mentioned, the LPP is an NP-Complete problem and is to
find a simple path from the vertex A (source vertex) to the

vertex v, (target vertex) considering the maximum weight in

a given weighted graph G = (V, E). This is an optimization
problem and formally we can write it as:

max > w(e;)

e P
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where P is a path from y_to v, and w(e ) shows the weight

of the edge &; which is appeared in the path P. Figure 1

shows an instance of a graph that has six vertices. Let the
source vertex be 1 and the target vertex be 6. The path with

maximum weight is 1 - 4 — 6 and the weight of this path is

100100. Note that there is no need to have |V| vertices in the

maximum weighted path.

We now explain an encoding scheme for solving LPP by
molecular algorithm. We present an encoding scheme which
is very similar to the encoding given by Lee et al. in [13]. To
implement the fixed length, we use a melting temperature
control encoding method. This method uses fixed-length
DNA strands and represents weights in the graph by melting
temperatures of the given DNA strands. The basic idea is to
design the sequences corresponding to the weights in the
graph, such that the DNA strands for higher-weighted values
have lower melting temperatures than those for lower
weighted values [5], [11]. Several empirical methods are
proposed to calculate the melting temperature. A classical
method is the GC-content method which uses the content of
guanine (G) and cystine (C) in the given DNA strand as a
main factor for determining the melting temperature of the
strand [13]. The nucleotide Adenine (A) is always paired to
the nucleotide Thymine (T) with 2 hydrogen bonds, as well
as the nucleotides C and G with 3 hydrogen bonds. Because
of the number of hydrogen bonds, the base pairing between C
and G is stronger than the one between A and T. So in this
method the DNA sequences with lower amount of GC
content have lower melting temperature.

Based on the above discussion, the encoding scheme for the
vertices and edges of a given weighted graph G = (V, E) are
designed as follows. As mentioned, this encoding scheme is
very similar to the encoding scheme given by Lee et al. [13]
except the encoding of the vertices in the graph is rather
different.

1

100000

Figure. 1: A simple graph example.
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Each weight w. is encoded with a strand of length 2d
(d is a constant value proportional to the number of
vertices |V|) and is called weight sequence, denoted

by 5wi (if w, = w, clearly §wi is the same as§WJ ).

Since the length of each weight sequence is constant,
therefore the number of A/T nucleotides in each
sequence (AT-content) shows the value of the weight.
The sequences corresponding to the higher-weighted
values have more AT-content (and so less GC-
content), therefore the melting temperatures of these
strands are lower than the others. As it is clear, this
encoding scheme can express the real-valued weights.

The index of vertex V; (which is denoted byl,) is
encoded by a strand of length 2d and is called label
sequence, denoted by é‘,i . It should be considered that
the label strands in each vertex are encoded with the

equal number of A/T and G/C nucleotides (i.e. 50%
for AT-content and 50% for GC-content), such that

the half right end (5-end) of &, is the reverse
complement of the half left end (3-end) of &, (5%,

= Reverse(S ", )), where 571, and S"i, are half right
end and half left end of & respectively). For

example, if 51 is equal to GACAGTT then &7, is

equal to AACTGTC. The reason for using this
structure is to eliminate the cycles in the constructed
paths as discussed later in the simulation of our
algorithm. The restriction of using equal amount of
AJT and G/C nucleotides is implied for not violating
the number of A/T nucleotides in weight sequences.

Employing the weight sequences and label sequences
constructed in steps 1 and 2, for each vertex V; whose
in-edge has weight W, and out-edge has weight w;, a

strand of length 4d is assigned. This sequence is
called vertex sequence and is illustrated in below:

=R - =L
L R
By, ‘ iy ‘ of! ‘ B,

where the strands O, =84, + 5%, from index d + 1

to 3d are the label sequence of vertex V, and & R s
the half right end of the complementary weight

sequence corresponding to w, (é‘wk ) and 5ij is
the half left end of the complementary weight
sequence corresponding to W, (§Wj ). For the source

(target) vertex, O w, (5ij) is omitted. It should
be mentioned that the maximum number of
constructed sequences for any vertex V; in the graph
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is equal to in-degree(V; )xout-degree(V;) = oIV

which imposes the construction of O(|V|®) sequences

for all vertices. By breaking down the vertex
sequences into two subsequences, it is possible to

construct O(|V]?) sequences (O(]V|) for each vertex)

and produce all the required O(V|?) vertex

sequences. Instead of constructing the whole vertex
sequence, it is sufficient to construct the

subsequences SRw, 51, and ST, 5LWJ separately,
and then use the complement sequence corresponding

to |i (0),) to connect the constructed subsequences

and produce the vertex sequence. Since the length of
all vertex sequences are 4d instead of 2d for label
sequences, we can add the ligase enzyme in to the test
tube, melt the sequences and use the Gel-
Electrophoresis to separate the vertex sequences from
the complementary label sequences.

4. Any edge €; from vertex V; to vertex V; with weight

W, is encoded with a strand of length 4d and is called
edge sequence such as illustrated in below:

where 5% and S*y, are the half right end of &), and

half left end of 5|j which are the complementary label
sequences of vertices V; and V; , respectively.

5. Auxiliary sequences y; with length (ix4d)+d (i=1, 2,

..., N—2) are constructed for employing in the algorithm.
The first d nucleotides of each sequence is the half right
end of the complementary label sequence of the target

vertex (i.e.5er) and the remaining nucleotides are

arbitrary constructed with 25% of AT-content and 75%
of GC-content for previously mentioned reason (not
violating the GC-content in the weight sequences). This
encoding helps us to distinguish between the strands of
the same length but with different melting temperatures.
More details are given during the discussion of the
algorithm in the next section.
As it is mentioned, this encoding scheme for weight
sequences can also express the real value weights. The
method of DNA sequence generation for this encoding
scheme is given in Section 1V.

I11l. MOLECULAR ALGORITHM

Prior to performing our molecular algorithm, it is assumed
that the required DNA sequences corresponding to the
vertices and edges and their complements are generated with
the method discussed in the next section. The molecular
algorithm for finding the longest path between source vertex
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v, and target vertex v, in a given graph G = (V, E) with n
vertices is summarized in bellow:

Algorithm DNA-LPP:

1. Pour all the strands of length 4d corresponding to the
vertices and edges (vertex and edge sequences) to the
test tube T, with ligase enzyme. In suitable condition,
hybridization and ligation occurs in the tube and
double strands corresponding to all the possible paths
in the graph are constructed.

2. Keep only the strands of length less than or equal to
4dxn—2d that represent the paths of length less than or
equal to n.

3. Keep only those paths which enter all of the vertices
of the graph at most once and begin with the sequence

o,, and end with 6, (4, andJ, are the sequences

corresponding to the source and target vertices,
respectively).

4. Remaining strands are separated and poured in
different test tube with respect to their length (in other
word, with respect to the number of vertices in each
path). Therefore n—1 test tubes T,, Ts, ..., T, are
required for keeping the strands corresponding to the
paths of length 2, 3, ..., n.

5. In each test tube, strands with lowest melting
temperature are kept. This means that in each test tube
T; (2 <i =<n), longest path with exactly i vertices are
kept.

6. Each test tube T; (2 <<i <n) contains strands with
different length. By adding ligase enzyme and the
auxiliary strands i to each test tube T,_;, the strands of
length 4dxn—2d are constructed in each test tube.

7. Pour all the test tubes T,, Ts, ..., T, into the test tube

8. Select the strands with lowest melting temperature that
represent the solution strands.

In Step 1, with respect to the construction of the vertex and
edge sequences, the corresponding complement sequences
are hybridized and ligated and then the double strands
corresponding to all the possible paths of the given graph
are created.

To implement Step 2 of the algorithm, the product of Step
1is run on a Gel- electrophoresis and the strands of length
less than or equal to 4dxn—2d are kept. The selected
double stranded DNA sequences encode paths entering at
most n vertices.

To implement Step 3 of the algorithm, the product of Step
2 is amplified by Polymerase Chain Reaction (PCR) using

primers 5\,5 andévl. If the concentration of DNA

sequences in the test tube is kept low enough to allow
hairpin conformation, the PCR is expected to amplify only
non-hairpin sequences [16]. The non-hairpin sequences
represent the paths which enter all of the vertices of the
graph at most once. It should be noted that, because of the

structure of label sequences (5, =", +Reverse (5"1,))

corresponding to each vertexV;, the existence of two or
more similar label sequences in a strand, forms a hairpin
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(as it is illustrated in Figure 2). Thus only those sequences
encoding paths which have no repeated vertex and begin

with vertex v, and end with vertex v, are amplified.

In Step 4, the content of test tube in the Step 3 is run on a
Gel-electrophoresis again. The (8d)yy, (12d)pp, ..., (4d %
N)pp bands are all separated and kept in the different test
tubes Ty, Ts, ..., T, As it is mentioned, each test tube T;
corresponds to the path of length i (2 <<i <n).

To implement the Step 5, we use the Denaturation
Temperature Gradient PCR (DTG-PCR). The DTG-PCR
is a modified PCR method that the denaturation
temperature is started at low temperature in the beginning
cycles of PCR and gradually is increased in each cycle of
amplification [13]. Thus the sequences with lower melting
temperature (corresponding to the higher-weighted values)
will be amplified more frequently. Later, the sequences
with most amount of A/T nucleotides are chosen by
Temperature Gradient Gel-Electrophoresis (TGGE) in
each test tube T; (2 <i =<n), which represent the longest
path in T;. In this case, each test tube T; contains the strand
corresponding to the longest path with exactly i vertices (2
<i <tn). It should be noted that all the strands in one test
tube have the same length but their length are different
from the strands in the other test tubes. The AT-content of
the constructed sequences corresponding to a path is
proportional to the value of its weight. But the melting
temperature of a sequence is also proportional to the
length of that sequence. So, to obtain the exact solution for
LPP, the strands should have the same size. For this reason
in Step 6, the auxiliary strands i and the ligase enzyme are
added to each test tube T,; By providing suitable
condition, primer extension is occurred and the strands of
length 4dxn—2d are constructed in all the test tubes.

In Step 7, all the test tubes are merged into the test tube T,
and eventually in Step 8, strands with lowest melting
temperature can be selected to represent the solution. Note
that in Step 8, the T, contains all the strands with the same
size corresponding to the longest path of different length.
Clearly, the actual longest path is a path with maximum
weight which is the strand with most amounts of A/T
nucleotides and low melting temperature, and this is
recognized in Step 8 by using DTG-PCR and TGGE as
discussed in Step 5. With respect to the above operations,
the number of molecular operations in our algorithm is
given in the following theorem.

\" Vk Vi

Figure. 2: Hairpin conformation.
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Theorem 1. For a given weighted graph G = (V, E), the
molecular algorithm DNA-LPP is performed in O(|V|?)
molecular operations.

Proof. As mentioned, all the required DNA sequences for our
algorithm can be constructed in O(]V]?) molecular operations.
Considering the molecular operations employed in the
DNA-LPP algorithm, we can see that all the steps 1, 2, 5, and 8
are performed in O(1) and the steps 3, 4, 6, and 7 are
performed in O(|V|) molecular operations. Therefore the
algorithm DNA-LPP is performed in O(|V]) molecular
operations. By summing of the complexity of constructing the
DNA sequences to the complexity of the algorithm DNA-LPP,
we obtain O(V]) in total. O

IVV. GENERATION OF DNA SEQUENCES

Sequence design is strongly needed for successful DNA
computing. Recently, many design requirements for DNA
sequences are proposed [7], [8], [9], [18]. Design
requirements are divided into several aspects. Roughly
speaking, the purpose of these requirements is to prevent
misshybridization and undesired secondary structure, as well
as keeping the uniform chemical characteristics. DNA
sequence design can be considered as an optimization
problem. Alternatively, DNA sequence corresponding to any
encoding scheme can be generated by a genetic algorithm that
minimizes the potential of error in DNA sequences for reliable
molecular operations and produce reliable sequences. Deaton
etal. [7], [8], [9] has explored the use of genetic algorithm for
the optimization of the encoding. In this section, we describe
an optimization method for generating DNA sequences
corresponding to weights and labels of a given graph G = (V,
E) using a genetic algorithm. This genetic algorithm uses the
conventional genetic operations as single point crossover and
single point mutation. The fitness function is defined based on
measurements which are given in [18]. We first present the
genetic algorithm for producing DNA sequences and then
describe the measurements in this section. The genetic
algorithm is summarized in bellow:

1. Generate the sequences randomly with length 2d.
Set counter = 1.
While (counter <= max_count) do
a. Evaluate the fitness of each sequence.
b. Apply genetic operators (crossover and
mutation) to produce a new population.
c. counter= counter + 1.
4. Let the best codes be the fittest encodings.

wn

This genetic algorithm employs a fitness function which is the
summation of different functions based on five different
measures which are introduced by Shin et al. [18] as follows:

Fitness = fAchontent + fH*measure + f3'fend+f8imilarity + fContinuity,

where

o far—comen: 1S @ fitness function for counting the amount
of A/T nucleotides in the sequence.
fi-measwre 1S @n important fitness function for
preventing the mismatched hybridization.
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o fy,, is a fitness function for preventing
hybridization at 3’-end of DNA sequences.

o fsimilarity IS @ fitness function for preventing undesired

hybridization by keeping the sequence as unique as

possible.

feoninuity 1S @ fitness function for preventing

occurrence of same bases continuity in a sequence.

Note that the best fitness value is zero; therefore the genetic
algorithm tries to minimize the fitness function. The most
important fitness function in this genetic algorithm is far—conens-
This function is implemented for controlling the melting
temperature in label and weight sequences. Therefore we
discuss this fitness function more precisely and for the details
of the other fitness functions see [18]. AT-content affects the
chemical properties of DNA sequences. The AT-content
measure is as follows:

fAT—content = Z (ATt arg et (Xi) - ATgenerated (Xi ))2

where AT ... (X) is the desired AT-content for the

sequence X;and AT 4 (X;) is the generated AT-content

generate
for the sequence x; in the current population of genetic
algorithm. As it is mentioned, the label sequences are encoded
with equal number of A/T and G/C nucleotides. Therefore, the
ATarger Tor those sequences are considered as 50% (i.e. d
nucleotides of type A/T where 2d is the length of the generated
sequence). The amount of AT-content in weight sequences is
also optimized by this measurement. This is done so that the
weight sequences with higher value have more AT-content and
thus have higher probability of being content in the final
solution. For this purpose, ATy function is defined to
promote the paths formed with higher costs and low melting
temperature, so that the path with maximum cost could be
found. A simple method for allocating the AT-content is to
count the number of hydrogen bonds in the sequences. For
example, the weight value of 20 can be encoded with 20
hydrogen bonds. However this scheme can not encode real
values, as well as it requires very long DNA strands to encode
the large values. Alternatively, the ATqe COrresponding to the
weight values can be estimated by the relative number of
hydrogen bonds in a sequence over the entire sequences. This
method is suitable for the uniformly distributed weights. In the
other hand, for the weights with non uniform values, this
method can not present a suitable encoding. For example, the
ATiarger for the weights 1, 5, and 100000 are O, 0, and 20,
respectively. So from the melting temperature point of view,
there is no difference between the weights 1 and 5 and the
incorrect solution could be produced. In order to
simultaneously handle the very small and very large weight
values in the graph, we propose a new AT-content allocation
method. Suppose that W = [wy,W,, ... ,\w] is a sorted list of
distinct weights and n; (1 <i <t) is the number of edges with
weight w; in the given graph. Before computing the
AT-contents, some extra weight values are added to the list W
to ensure that all the existing weight values can be
decomposed with respect to the smaller values. For any weight

k-1
wk, if W, < Z:i:lniwi then the value W, — X is added to the

list W as an extra weight value (where X is the largest
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combination of weight values such that 0 < X <w, ) and its
occurrences is considered as 1. The AT-content corresponding
to the Kk -th weight sequence (AT, (W,)) can be

computed as follows:

W, k=1,
k-1
r]i ATtarget ((Swi ) + 1 Wk > Z niWi ! (1)

i=1

ATtarget (5\/\/k ) =

k-1
i=1
k

-1

Z i ATtarget (é‘wi )

otherwise,

where C; comes from the decomposition of W, with respect to
k-1
the previous weight values ( W, ZZizlci\Ni , such that

0 <, £n,). The ATiarge for each sequence is computed with

respect to its corresponding weight value and this encoding is
started from the smallest value to the largest value. As proved
in the following theorem, this new scaling method helps us to
correctly recognize the longest path. It should be noted that if
there is no big gap between the weight values (i.e. each weight
value can be decomposed with respect to the smaller weight
values), then the behavior of our new scaling method is similar
to the linear scaling method. As an example, our scaling
method is not suitable for the weight values such as 1, 2, 4, 8,
..., 2', because it does not change the weight values and the
scaling weights will increase exponentially. We should
consider that, by using the percentage of AT-content, this
problem is not avoidable for approximately consecutive
weight values. For our sample graph given in Figure 1, the
computed ATrge: COrresponding to weight values are shown in
Table 1.

Theorem 2. Suppose that W =[W,, W,,...,W,]is a sorted
weights and N =[n;,n,,...,n] is their

corresponding number of occurrences in the given weighted
graph G = (V, E). For any two collections P and Q of W, if

ZwiePWi > ZWiEQ W, then

w; eP ATtarger (Wi) > ZWi <Q ATtarget (Wi) .

list of

Table 1. Computed AT, fOr weight sequences.

W, n, ATtarg o
1 3

2 2

3 3

100 1 17

105 1 22
100000 1 56
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Proof. Suppose that W (P) = zwiepwi andW (Q) = zwi oW
Since the elements of P and Q are selected from the list W, so
t t
W(P) = Zi:]. piWi and W (Q) = Zi:1qiwi !
where 0 < p,, g, <n,. Now suppose that j be the greatest
index in the decomposition of W (P) and W(Q) such

that P; # (;. There are two possibilities:
j-1 .
Lo w > Z:i:lciwi , then it should be the case

P; >Q; (if not, the inequality does not hold), and from

the Formula 1, we
j-1

ATtarget (WJ) > Zi=1 niWi and

S0 Zw, eP ATtarget (VVI) > ZW. Q ATtarget (W|) :

j-1
2. 1fw; = z::lciwi , then it is possible to rewrite the

decompositions by applying the following rules:
- If p;>(q; then reduce P;to obtain the

have

equality P; =Q; and add the values
(P; —d;)c; to the coefficients p; (1 <i <

7.
- If p;<q; then reduce Q; to obtain the

equality P; =Q; and add the values
(P; — ;)¢ to the coefficients ¢; (1 <i <
7).
By performing the above steps for the remaining indices, we
either prove the the theorem or we obtain P, =Q; (2 <i <t)

and p, =0, +a (where a > 0). In the second case, since all

the coefficients become equal (except the last one), we can
write:

Ahrabian, Ganjtabesh and Nowzari

Thus, by employing the mentioned fitness, crossover, and
mutation functions in the genetic algorithm, it is possible to
design ideal sequences for the encoding scheme for LPP.

V. EXPERIMENTAL RESULT

We developed a tool for simulating our molecular
algorithms. This tool is executed for several instances of
weighted graphs with different sizes which are generated
randomly. For each generated graph of size n, our algorithm
found the longest path (if there is any) between two specified
vertices. The steps of our algorithm for finding the longest
path between the source vertex 1 and target vertex 6 for the
graph shown in Figure 1 are presented in this section. First
we have generated the weight and label sequences required
for encoding the sample graph given in Figure 1 by the
genetic algorithm discussed in previous section. The
generated sequences of length 20 are shown in Table 2 and
Table 3, respectively. Employing the weight sequences and
label sequences shown in these tables, the vertex and edge
sequences are constructed and symbolically demonstrated in
Table 4 and Table 5, respectively.

By pouring vertex and weight sequences into a test tube and
in a suitable condition, the hybridization and ligation are
occurred in the test tube. The constructed double-stranded
DNA sequences show all the possible paths with any weight
in the graph. Among these sequences, the sequences
beginning with vertex 1 and ending with vertex 6 which have
the length less than 6x40 and have no repeated vertex are
separated in a different test tube. By adding the auxiliary
sequences to their corresponding test tubes, the length of all
sequences become same. Among these sequences
corresponding to the paths, the longest path is the sequence
with most amounts of A/T nucleotides which is as follows:

o1y By

5  ATACTCTGCACCGTACCAAGCTCCGETCAAGTGACCGEGEAG —
By Sug
o
TGATTCCACCAGACCATGTC ATATTACTATAGTATAATAT —
5
lg

t QCATTCQCACCTGAACGCTA —3" .
Zwi P AT’( arget (W|) = Z P ATt arget (W|)
i=1
t AT This sequence encodes the path 1 - 4 - 6 which is
- ;qi argec (W) + QAT g (W) obviously the longest path in our sample graph.
t
> zinTtarget (Wn)
i=1
ZWI eQ ATtarg et (W|)
O
Table 2. Weight sequences.
I W, AT-content % symbol Generated weight sequence (5"~ &, —3')
1 1.79 % §W1 GCTGCGCGCGCGCGTCGCCG
2 2 3.57% ” CGCCGCGCAGGGCTGGAGGG
2
3 3 5.36 % S, CTGCGGAGTCGCACCGGCCG
3
4 100 30.37 % J, GAGGCCAGTTCACTGGCCTC
4
5 105 39.29 % S, TGCTACCTCAATGACCGTCG
5
6 100000 100% S, TATAATGATATCATATTATA
6
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Table 3. Label sequences.

Vertex label | AT-content % symbol | Generated label sequence (5’ — 5, -3)

1 50 % 5@1 ATACTCTGCACCGTACCAAG

2 50 % 5% ACTAGTGACGAACTTACGGC

3 50 % 5[3 AGGTAGATTCAGCATACGCG

4 50 % o, TGATTCCACCAGACCATGTC

5 50 % 5; ACGAACCAGCACATCTCAGT

6 50 % 5/: GCATTCGCACCTGAACGCTA

Table 4. Vertex sequences.

Index W, o>V, > W, Symbolic representation | Index W, =V, > W, Symbolic representation
S 5, 5w, 2142255 1505 b

2 153 5(15;1 13 45256 5325(25;5

3 1514 5615;4 14 15352 5;*,1 5, 5;1

4 2—>6 5555(6 15 15356 5;5&5&%

5 3—>6 5535% 16 15452 5345/4 5‘I,_VZ

6 |46 5u0, 7 |1->4-6 54,5, O,

7 556 5535% 18 55452 5335“5@2

8 1-2->5 5325(25;1 19 55456 5335(45t,6

9 15256 5;25[25;5 20 2—>5-4 5;5[55;3

10 35255 5315[25;1 21 25556 5;15[5 5VLV3

1 |3->2-6 5w, B

Table 5. Edge sequences.

Index Vv, >V, Symbolic representation Index Vv, oV, Symbolic representation
L 1-2 5.8, 67, ! 36 51,8, 67,
2 13 5.5, 00, 8 42 5.8, 5.,
3 14 518,07, S 46 51,8, 67,
4 25 55,8, 5, 10 54 51,8, 5,
5 2—>6 55,0, 1 56 51,8, 07,
° 82 513,00,

312
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VI. CONCLUSION

A molecular algorithm for solving the longest path problem
for a weighted graph G = (V, E) is presented. Our algorithm
can be performed in O(V[) molecular operations. In the
utilized encoding scheme, the relative values of AT-content
against GC-content are taken into account to handle the non
uniform weights in the graph. For this reason, a new method
for scaling the weights in the graph is presented. This new
scaling method can be used to solve any similar problem in
the weighted graphs. The algorithm is based on constructing
all the possible paths in a given graph. Later the cycles are
eliminated with respect to the encoding of the vertices. It
should be noted that, although we are searching for a longest
path, the algorithm can eliminate the cycles and so the correct
longest path can be obtained.
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