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Abstract: Spread of information in a crowd is analysed in
terms of directed percolation in two-dimensional spatial net-
work. We investigate the case when the information transmit-
ted can be incomplete or damaged. The results indicate that
for small or moderate probability of errors, it is only the criti-
cal connectivity that varies with this probability, but the shape
of the transmission velocity curve remains unchanged in a wide
range of the probability. The shape of the boundary between
those already informed and those yet uninformed becomes com-
plex when the connectivity of agents is small.
Keywords: spatial networks, percolation, agents, information,
phase transition

I. Introduction

We consider the process of information spreading in a spatial
network. Our motivation is twofold. First, on the contrary
to the scale-free networks [1, 2, 3, 4, 5, 6], spatial networks
are less investigated in social systems; a recent exceptionis
[7]. Still, in numerous applications the spatial distribution of
agents does matter. This is so in particular when the effec-
tiveness of communication depends on the geometrical dis-
tance between agents, as it is with visual or voice communi-
cation. Second - and this is the aim of this work - is to take
into account possible errors or inaccuracy of transmission.
This is an essential difference between standard modelling
of this kind [8, 9] and our model. We assume that at each
time step a message is sent by each agent already informed to
his/her each as-yet-uninformed neighbour, in each case with
probabilityp.
The probability that a particular information bit is damaged
along the way can be considered as reflecting the complexity

of the information so that even when heard, it is completely
absorbed by an agent and not passed along to the neighbour.
It may also reflect the level of trust between an agent and
his neighbour so that information is deemed to be passed
along only when the source is trusted. It is quite likely that
in an emergency and life threatening situation, the value of
p would be in the region of 0.5 and in such a case the group
is unlikely to arrive at a consensus on the course of action
to be taken and the spatial network of informed agents will
remain unconnected. It is important in such a case that an
external source that can be trusted whether it be an author-
ity figure such as the driver of the underground train or an
AmI device be used to give instructions about options avail-
able for rescue. This would artificially increase the value of
p and consequently increase the velocity of connections. The
results indicate that thisp does not have to be perfectly 1 and
as long as the level of trust does not go below a certain crit-
ical level such as the driver himself needing help but still in
a frame of mind to think rationally the group should be able
to consider a variety of options relatively quickly. This isin
fact reflected in real events such as the July 7th, 2005 London
Underground bombings where passengers waited for instruc-
tions to come through and followed the instructions of the
driver even when the driver was injured and not in a position
to offer all the necessary help [10].

II. Calculations

The algorithm is constructed as follows. First, the spatial
network is determined: positions of nodes are randomly se-
lected as points on a2 × 2 square. For a given tolerance
parameterµ, a circle of radiusµ is set around each nodei,
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and the nodesj within the circle are linked to the nodei. The
matrix elementc(i, j) of the connectivity matrix is set to be
one, otherwise it is zero.
The simulation of the process starts from some number of
nodes at one side of the square, which are treated as in-
formed. The probability that a given message is passed along
each link is denotedp, and the probability that this message
is damaged or blocked isq = 1−p. Then, at each simulation
step, the numberk(i) of informed neighbours is found for
each nodei which represents an agent who is not informed
yet. During each time step, each as-yet-uninformed node is
informed with the probability

P (i; p) = 1− (1− p)k(i). (1)

In other words, to remain uninformed at given time step is
equivalent to not-to-be informed by each ofk neighbours.
We measure the velocity, i.e. the average number of nodes
being informed during one time step. The parameters of the
simulation are: the number of nodesN , the tolerance pa-
rameterµ and the probabilityp. However, it is clear that
for a given and fixed area an increase ofN four times and
a simultaneous decrease ofµ two times should remain the
system locally unchanged. We are interested not that much
in µ, but rather in the mean degree〈k〉. Below some critical
value〈k〉c, the system remains not connected and the infor-
mation does not spread at all. In the Erdős–Ŕenyi networks,
this critical value〈k〉c = 1; however, the spatial network is
much more correlated, with the clustering coefficientC close
to 0.46. It is straightforward to expect thatk varies with the
tolerance parameter asµ2. The degree distributionP (k) of
the spatial network is Poissonian, i.e.

P (k) = exp(−〈k〉) ·
〈k〉k

k!
. (2)

III. Results

In Fig. 1 we show the numbern of informed agents against
time t, measured in time steps defined above, for various
values of the distanceµ which allows for the communica-
tion. The relevant part of the plot is the ascending one; once
the system boundaries are reached,n does not increase any
more. The inclination of the relevant part is the velocity
α(µ). The critical distanceµ can be converted to the con-
nectivity 〈k〉, i.e. the mean degree of the spatial network.
As a consequence of the geometrical character of the 2-
dimensional space, the mean connectivity〈k〉 increases with
µ asµ2, as it is demonstrated numerically in Fig. 2.
The velocityα is shown in Fig. 3, as dependent on the differ-
ence between the connectivity〈k〉 and the critical connectiv-
ity kc. As we see, the plots forp = 0.9 andp = 0.5 coincide.
We know from the data that also the plot forp = 1.0 coincide
with those two, withkc=2 (the same as forp = 0.9). How-
ever, the plot forp = 0.1 does not coincide with the other
ones. Still, the critical exponentβ, defined as

α ∝ (〈k〉 − kc)
β (3)

is almost the same for all investigated plots, and it is close
to the value of two-dimensional directed percolation [9],
β = 0.584. We note that as in the vicinity ofkc > 0 the

connectivity〈k〉 can be approximated by a linear function of
µ, the exponentβ is the same for the plotsα(〈k〉) andα(µ).
In a series of subsequent plots (Figs. 4-8) we show the char-
acter of time andp dependence of the boundary between the
spatial areas occupied by informed and uninformed agents.
As we see, the shape of the boundary is linear for largeµ,
what means that the connectivity is also large. However,
for smallµ the boundary becomes a complex line, which re-
minds a fractal. We interpret this result as an interplay with
the fluctuations of the connectivityk. In other words, the mo-
tion boundary can be stopped at some areas where agents are
distributed with small density; which means that their num-
ber of neighbours is smaller, than the average value〈k〉.

IV. Conclusion

The aim of our calculations was to describe the possibility of
incomplete or damaged message. The main result is that in
these conditions, the only modification of the results is the
shift of the plot towards higher value ofk. As we read from
the legend, the critical connectivity〈k〉 increases from 2 for
p = 1 and0.9 to about 6 forp = 0.1. As remarked above,
the plot for this value ofp deviates from the others. It seems
to us however, that what is surprising here is not the devia-
tion, but rather the coincidence of the plotsα(〈k〉 − kc) for
p = 0.5 and higher. This coincidence means that the low
probability of the message transmission can be exactly com-
pensated by the number of message senders. In terms of sta-
tistical physics, the universality class of the transitionseems
to be the same for the deterministic (p=1) and the probabilis-
tic (p <1) variant of the process; ‘seems to be’, because the
numerical evidence allows for only preliminary statements.
The results, found in a simple two-dimensional room, should
apply also to other geometries, if only the connectivity dis-
tribution is not damaged by, for example, narrow corridors.
What is specific for the spatial network is the lack of the
small-world effect [1]. The spatial character of communi-
cation is specific for the visual or voice messages in a crowd,
where both the spatial range and the probability of an effi-
cient message transfer remain limited. A specific example of
this problem is discussed elsewhere [11]. If the communi-
cation with electronic means is taken into account, this could
not only accelerate the motion of the boundary shown in Figs.
4-8, but also lead to an entire modification of the whole struc-
ture of the communication network. This problem will be
discussed in a separate work.
A question appears, to what extent the results depend on our
assumption is the only absorbing state in our model scheme:
those uninformed can be informed and probably will be,
while those informed probably will not forget. We could
extend this irreversibility to both states, when we deal with
spreading rather a decision to pass the message or not than a
message itself. It is likely then, that an agent will find unfea-
sible to change his/her decision. In a limit case neither de-
cision ‘No’ nor ‘Yes’ cannot be modified. When the amount
of decisions ‘No’ exceeds some critical value, the spreading
is stopped. This variant seems to be analogous rather to the
conventional percolation [12], than to the directed one.
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Figure. 1: The numbern of informed nodes against timet for different values of the tolerance parameterµ. The velocityα
in the next plot is the derivative of the plot presented here,before the saturation appears.N = 104, p = 0.9
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Figure. 2: The numerical proof that the mean degree〈k〉 varies asµ2
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Figure. 3: The plot velocityα againstk − kc for three values ofp
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Figure. 4: Visualisation of the front of being informed against time forN = 104, p = 0.1, µ2 = 0.02.
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Figure. 5: Visualisation of the front of being informed against time forN = 104, p = 0.1, µ2 = 0.001.
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Figure. 6: Visualisation of the front of being informed against time forN = 104, p = 0.1, µ2 = 0.0006.

411Probabilistic Spreading of Information in a Spatial Network



-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

t=
80
70
60
50
40
30
20
10
0

Figure. 7: Visualisation of the front of being informed against time forN = 104, p = 0.9, µ2 = 0.001.
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Figure. 8: Visualisation of the front of being informed against time forN = 104, p = 0.9, µ2 = 0.0006.
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