
International Journal of Computer Information Systems and Industrial Management Applications

ISSN 2150-7988 Volume 3 (2011) pp. 444-452

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Programming of Human-Computer Interactions in

Development of Software Intensive Systems

Petr Sosnin

 Computer Department, Ulyanovsk State Technical University,

Severny Venetc, Ulyaniovsk 432027, Russia

sosnin@ulstu.ru

Abstract: The paper presents a question-answer approach to

programming of human-computer interactions (HCI) during a

collaborative development of software intensive systems.

Efficiency of the general work can be essentially increased if the

human part of the work will be fulfilled as an execution of a

special kind of programs by “human processors” which use

models of question-answer) reasoning. Such approach was

investigated and evolved till an instrumental system providing

the pseudocode programming of human processors combined

with computer processors. Pseudocode programs of the

question-answer type are useful means of HCI. Such programs

and their corresponding instrumental means can be combined

easily with traditional means of HCI.

Keywords: pseudocode programming, human-computer

interaction, question-answer reasoning.

I. Introduction

Reality of HCI as a subject area includes a definite subset of

HCI tasks which reflect this discipline (and phenomenon)

from the side of collaborative actions of a human and a

computer.

Rational human-computer actions have a special

importance in processes of the collaborative

problems-solving, when “combined” consciousness, mutual

understanding and other intellectual human abilities and their

computer models are being included obviously and

constructively into the coordinated activity.

The integration of named intellectual abilities is especially

necessary at designing of software intensive systems (SISs) the

complicated tasks of which can be solved by developers only

collaboratively with the use of rational reasoning.

It is known that the rational reasoning is a natural form for

the inclusion of intellectual (human) actions into the common

work and models of reasoning are used as intermediaries

between human reasoning and automatic actions of computer

assistants.

In this article the question-answer approach to the designing

and using of HCI is presented. The approach is aimed at

increasing the intellectuality of HCI. We can mark the

following features of such approach:

• using the question-answer reasoning (QA-reasoning) and

their models in HCI for the rational connection of human

and computer actions in their collaborative activity for

hierarchical representing the tasks and also for their

modeling, analyzing and programming;

• using the QA-reasoning for pseudo-programming of the

human “processor” (H-processor), which is executing the

human actions, similarly the work being executed by the

computer processor (K-processor);

• using the aspect-oriented designing for creation of the

interfaces embedded into the software intensive systems;

• using the knowledge database for keeping metrics of

usability in the form of precedents for the access to them in

the designing process.

As a source of requirements for materializing the named

features the theory and practice of Collaborative Development

Environments [2] were used. Such type of instrumental

systems supports the development of Software Intensive

Systems (SISs) during which a group of developers are solving

collaboratively the enormous quantity of normative

technological tasks and original project tasks. It is necessary to

indicate that interests of the article are limited by the

human-computer work with tasks at the conceptual designing

of the SISs.

II. Related Works

The problem of rational reasoning in the development process

of SIS is well known. This problem has been investigated for

more than 10 years in the Software Engineering Institute (SEI)

of Carnegie Mellon University [1]. But the question-answer

approach is not used and the problem of “a real time

integration of intellectual efforts” is not indicated in interests

of SEI to the schemes of reasoning and their formalizing.

Artificial intelligence means are not used for supporting

reasoning of developers in such well-known technology as

Rational Unified Process (RUP) [14] and in other similar

technologies, for example, in Microsoft Solution Framework

and Eclipse.

It is a very interesting because there are many types of

reasoning which are investigated and modeled in AI. For

example, the Programs of the European Conferences on AI

(ECAI) include about 20 topics connected with modeling

reasoning (analogical reasoning, case-based reasoning,

common-sense reasoning and others types of reasoning).

Sosnin

445

Adequate AI means which can increase the successfulness

of designing the SIS are absent till now because

problem-solving and decision-making based on the real time

integration of intellectual resources are investigated in AI

only partially (different kinds of models for reasoning which

are useful in definite classes of situations in designing, first of

all case-based reasoning models).

We are convinced that the investigation of question-answer

reasoning is a perspective way for finding the AI means which

can give the positive results helping to solve complicated tasks

and not only in designing the SIS [23].

In the number of relative works using “questions and

answers” (or QA), for example, we can mention reasoning in

the “inquiry cycle” [16] for working with requirements and

“inquiry wheel” [18] for scientific decisions. Similar ideas are

used in the special question-answer system which supports the

development of SIS [8]. The typical schemes of reasoning for

SIS development are presented in [1]. In paper [19] reasoning

is presented on seven levels of its application together with the

used knowledge and in [15] model-based reasoning is

presented as useful means for the software engineering.

But in all publications referred to above, the issue [3] and

the special report [10] the task of the real time integration of

intellectual resources in processes of the problem-solving and

decision-making is not mentioned.

The specificity of suggested means is schematically

presented in Fig. 1 which is inherited and adapted from Fig. 1

of the ACM SIGCHI Curriculum for Human-Computer

Interaction [9].

Figure 1. General question-answer scheme of CHI

The phrase “human as a processor” and partially its

understanding are inherited also from the publication [9]. The

used understanding of the H-processor is mostly aimed at

processing of questions and answers in the work with an

experience of a human and such understanding has differences

with its traditional understanding (for example) applied in the

informational source [6] and [17].

It is necessary to note that the suggested means can be

classified as intelligent and adaptive means in accordance with

the CHI overview [11].

It is necessary to mark a set of publications which are

presented the theory and practice of the H-processor

information model first introduced by Card, Moran and

Newel in [4]. The EPIC version of this model [12] with its

KLM means is similar to the H-processor model which is

described in this article.

The special search of related publications was fulfilled for

keys “programming, human activity”. There are many

publications with explaining the versions of such relations

corresponding with the conjunction “as” (programming as a

human activity). Here we can name authors E. Dijkstra –

“programming as a human activity” [7] and D. Knuth –

“programming as an art” [13].

The other type of rational relations is defined by the

conjunction “of”. The Internet-search of publications with key

words “programming of a human activity” has remained

without interesting results. Such type of relations will be

defined below and implemented constructively for the

processors of the human type.

III. Question-Answer Model of the Task

In accordance with the previous content the interests of this

article are limited by rational HCI means when a group of

designers must solve enormous quantity different tasks at the

conceptual stage of designing the SISs. The HCI scheme is

materialized by the author as a specialized instrumental system

[20] which has the SIS type. Such client-server system is based

on the usage of question-answer reasoning of designers in

processes of the problem-solving what was a cause to name the

system as WIQA (Working In Questions and Answers).

The main screenshot of WIQA, which demonstrates the

possibility of interactions of designers with the current state of

the development process of SIS, is presented in the Fig. 2 with

commentary labels (because this system was used in real

projects only in Russia and it has interfaces in Russian).

Figure 2. The main interface of WIQA

Any project task of the developing SIS is a unit for finding

and registering its current solution in WIQA with the help of

the question-answer reasoning. The result of such work is

being materialized as a question-answer model (QA-model) of

the corresponding task. WIQA is the instrumental system

which supports the development process presented as a tasks

tree any task of which is existed as its QA-model.

Text expression

 (can be edited)

Person responsibility

Plug-ins

QA-protocol

Other

QA-protocol Picture

Task tree

computer

human

questions

answers

Human processor

“questions”

“answers”

QA- processor

Programming of Human-Computer Interactions in Development of Software Intensive Systems

446

In the screenshot is shown that for the chosen task Zi of the

tasks tree its QA-model is accessible through the

Question-Answer protocol (QA-protocol) registering

question-answer reasoning, any unit of which (question Qij or

answer Aij) has a textual expression with necessary pictures

(for example, with UML-diagrams or “block and line

schemes”). Units of the QA-protocol which are accessible for

designers on the monitor screen are presented in Fig. 3.

Figure 3. View of QA-model

In more details any unit of the Z-, Q- or A-type is an

interactive object the properties of which are being opened

when the special plug-ins are used. One of such plug-ins

registers and indicates the responsibility (the assignment of the

tasks) in the designer group.

The similar form of the tasks tree for the reflection of the

development process of SIS is used in the RUP. Moreover, the

set of RUP tasks and the generic framework [22] was used by

the author [21] as a source of requirements for defining and

implementing the normative QA-model of the task which can

be adjusted to the definite tasks being solved by designers.

IV. Interactive Potential of QA-Units

A. Specificity of Programming for H-processor

The investigation of a number of SISs in designing of which

QA-models of tasks were used, has led the author to the

decision “to estimate and evolve the interactive potential of

QA-units for its usage in the programming”.

If we want to find the way for creating the program for the

human processor we must choose firstly the model of the

H-processor. In such choosing we must be oriented on the

reproduction of reactions which must be similar in the reuse. It

is known that the stable reactions of the human on conditions

in surrounding are based on precedents as “actions or

decisions that have already happened in the past and which can

be referred to and justified as an example that can be followed

when the similar situation arises” (such definition of the

precedent is used in many dictionaries).

Therefore, such units of the experience (as a system of

precedents) we have suggested to use as a base for human

reactions on data and operators of H-programs. In such

solution the analog of the expert system with embedded

mechanisms of the case-based reasoning and reusing the

chosen precedents will be the useful model of the H-

processor.

Any typical unit of the experience base (knowledge base) is

implemented as the model of the definite precedent. The

model of precedent (“precedent”) has the original

(productions) structure presented in Fig. 3 where P
T ‒ textual

precedent description, P
QA ‒ question-answer model,

P
L
 ‒ logical (predicate) model, P

G
 ‒ graphical model,

P
I
 ‒ source program code and P

E
 ‒ executing code.

The composite structure of the “precedent” and the

specificity of its production units were chosen for their usage

by H-processor firstly and for the usage by K-processor

secondly. We investigate “precedents” which will have to be

programmed for the human activity with the usage of computer

instruments.

Figure 4. Structure of “precedent”

In programming the H-processor we shall distinguish

between precedents as units of the experience and

“precedents” as computer models of precedents. It is necessary

to notice that there are two variants of mastering the

precedents one of which corresponds to the skill (execution

with the usage of reasoning) and the second corresponds to the

habit (execution with the usage of the automatic access to

typical actions).

The next specificity is connected with computer assistants

which can help the H-processor during the execution of

H-programs based on precedents. Any forms of the computer

help in the human work with the needed precedent must be

used. There are several variants of such help:

• modeling the precedent as “precedent” or modeling the

useful aspects of their existence;

• controlling the real-time actions during the work with the

precedent;

• keeping the attention of a human near the definite aspect of

the precedent with the help of visualized data and/or

operators;

• checking the condition of the fitness for the precedent;

• estimating the adequateness of the chosen precedent;

• adjusting the proper precedent to the new conditions of its

usage;

• creating the new precedent and its mastering.

Q11

Q12

Q1m

Qp1

Q2n

Q22

Q21

Q2

Q1 A1
A11

A12

A1m

A21

A22

A2n

Ap1

Ap2
Apr

Q

A2

Qp Ap

Qp2

Qpr

“precedent Pi”

Keys

Rating

P
T

P
QA

P
L

P
G

P
I

PE

∨∨∨∨

Name

Sosnin

447

It is necessary to notice that all named variants of the

computer help must be programmed in WIQA, first of all, for

the work with models of precedents typical scheme of which is

shown in Fig.3.

The chosen model of the H-processor and the orientation on

the interaction with the traditional expert system are important

arguments to the use of QA-reasoning in programming of the

H-processor.

There are two additional ways for the adaptation of

QA-reasoning to programming. The first way is to provide the

expression of the basic constructions of programming with the

help of elements of QA-reasoning. The second way is to fill

such constructions by the adequate content extracted from

QA-reasoning. But both ways of the adaptation are bound with

the presentation of QA-models from the data point of view.

B. QA-model of Data

As told above, originally the QA-Model of data had been

suggested and developed for the real-time work with such

interactive objects as “Tasks”, “Questions” and “Answers”

which were kept in the specialized database (QA-database)

and used by designers in the corporate network. It is necessary

to notice that “Task” is a type of a question and “Solution of

the Task” is an answer to such question.

On the logical level the QA-model of data can be interpreted

as the specialized hierarchical model of data emulated by

means of the relational model of data. Two hierarchical trees

of data the units of which are connected as questions and

answers is one of specificities of the QA-model of data. The

general version of the QA-model of data (presented in Fig. 5)

includes the dynamic tasks tree the units of which are united

with a system of QA-models for corresponding tasks.

Figure 5. General structure of QA-model of data

Let’s remember that any unit of such model is the

interactive object the unique name and symbolic expression of

which are visually accessible to designers in the tasks tree or in

the corresponding QA-protocol. Other characteristics (for

example such basic attributes as name of creator, time

attributes, indicator of changes, attribute of inheritances) are

being discovered and used in different planned actions with

the data unit.

The QA-database which is built on the base of the

QA-model of data, has the following useful characteristics:

• allocation on the server with the client access to the content

of data in the corporate network with an opportunity of the

access from the Internet;

• visualization on the monitor screen with the possibility of

the interactive access to corresponding objects;

• personification of Z-, Q- or A-units as the registration of the

responsible designer and the group of "support“;

• textual definition Z-, Q- and A-units with an opportunity of

the transformation to the language of the logic of

predicates;

• transformation of the text for the each unit to the

xml-version with positive effects which are being achieved

from such form of data.

Enumerated positive characteristics are only a part of a

value belonging the QA-databases which can be used not only

in the development of SIS. Moreover, it is possible to expand

in the interpretation of the connected pair of QA-units by

following ways:

• “question” → ”cause” and “answer” → “effect”;

• “question” → ”condition” and “answer” → “reaction”.

Named interpretations and their materializations open new

approaches for programming the Expert systems and systems

which are based on rules. Therefore the complex of the

specialized means have been developed for supporting the

work with the QA-database and for programming the

applications with such database.

Let’s continue to present the other versions for useful

interpretation of the QA-model of data:

• “question” → ”name of the variable for the simple type of

data” and “answer” → its “value”;
• “definite composition of questions” → ”typical data”

(for example array, record, set, array of records or table,

stack, queue and others types of composite data) and

“corresponding composition of answers” → its “value”.

So the QA-model of data can be used for emulating the data

of many known types. Let’s continue to develop the emulation

potential of the QA-model of data. Below, the results of such

emulations will be named as QA-data.

C. Means of Additional attributes

Any unit of data is defined by a set of its characteristics which

help to code and keep the unit in the computer memory. Any

unit of QA-data is accessible through its characteristics also. A

set of such characteristics inherits all basic attributes of the

corresponding QA-data but in WIQA there is a special

mechanism for assigning the necessary characteristics to the

definite unit of QA-data. It is the mechanism of additional

attributes (AA) which gives the possibility to expand the set of

basic attributes for any Z-, Q- or A-object keeping in the

QA-database.

The mechanism of AA implements the function of the

object-relational mapping of QA-data to programs objects

with planned characteristics. One version of such objects is

classes in C#. The other version is fitted for pseudocode

programming. The scheme which is used in WIQA for the

object-relational mapping is presented in Fig. 6.

Z11 Z12 Z1m
Zp1

Z2n Z22 Z21

Z2 Z1

Z

Zp

Zp2 Zpr

Task tree of the project

QA-protocols

Programming of Human-Computer Interactions in Development of Software Intensive Systems

Figure 6. Creation of additional attributes

The usage of the AA is supported by the specialized

plug-ins embedded in WIQA. This plug-ins helps the designer

to declare the necessary attribute or a group of attributes for

definite QA-units. In any time the designer can view declared

attributes for the chosen unit. Other actions with the AA must

be programmed in C# or in the pseudocode language

supported by WIQA.

The built and used pseudocode language (LP) as other

languages of such type is similar to the natural language in its

algorithmic usage. The natural language includes universal

means for the creation of H-programs executed by

H-processors. But this type of algorithmic means is not fitted

for K-processors. The language L
P
 helps to build H-programs

which are being executed by the H-processor and K-processor

collaboratively.

Any H-program which is written in the L
p
-language

describes the plan of HCI for the corresponding unit of the

behavioral activity of the precedent type. In the process of the

H-program execution two types of processors are being

included to the collaborative work.

V. QUESTION-ANSWER PSEUDO-PROGRAMMING

A. Forms for Pseudocode text

The language L
P
 as any language for writing the programs

includes means for data declarations and means for coding the

programs operators. In WIQA any line of any H-program is

being written on the “surface” of the corresponding

QA-element. In this case the used QA-element can be

interpreted as a “material for writing” which has useful

properties.

This “material” consists of visualized forms for writing the

symbols string originally intended for registering the texts

which include questions and answers used in processes of the

problem-solving. The initial orientation and features of such

type of strings are being inherited by data and operators of

H-programs and for this reason they are declared as

H-programs of the QA-type. In order to separate this type of

H-programs from H-programs of the others types, they will be

named below as QA-programs.

The feature inheritance gives the possibility to use the

necessary subset of basic attributes and useful additional

attributes for processing any line of the source code of the

QA-program.

It is necessary to remind, that separate writing of each line

of any program was used on punched cards in recent times.

Any punch card fulfilled the role of the individual record. Any

QA-program also consists of “individual records” but records

of the QA-type the efficiency of which is essentially above

than at punch cards. Let’s notice that means of AA can be used

for QA-program strings with means of markup language

collaboratively.

B. Emulation of pseudo-code data

There are two types of lines of the source code one of which

intends for the data emulation and another for the operator

emulation. Let’s begin to describe the emulation with

QA-data.

First of all the AA-mechanism was used for the creation a

subset of objects imitated the typical data (such as scalars of

traditional types, array, record, set and list) in forms of packed

classes (Fig. 7).

Figure 7. Imitation of variable

For the declaration of variables the constructor of QA-data

was developed. This constructor gives the possibilities to

name the QA-variable, to choose its type and to appoint the

initial value for the variable. The constructor can be used as

the self-dependent utility or can be embedded to the translator

of pseudo-programs which is implemented as a compiler and

an interpreter (in two versions).

Let’s remember that any unit of QA-data is created for its

use by the H-processor firstly and for the computer processor

secondly. The visualized declaration of QA-data of the

necessary type and the touchable appointment of the necessary

visual value take into account the interactions possibilities of

the H-processor. But any declared QA-variable is accessible

automatically for the appropriate programs executed by the

computer processor also.

An example of keeping the array with elements of integer

type is presented in Fig. 8 where a set of additional attributes

are used for translating the array declaration to computer

codes.

QA-variable

Basic attributes of

QA-data

Attributes

declared by user

Type of variable,

Attributes of type

Additional

attributes
Index(Address)

«Creator»

Time of changes

.....................

Type of visual icon

Name

Description

...................

.

Value

Necessary methods (operations)

Basic attributes

Virtual relation

(additional

attributes)

server

client

Mechanisms of AA

Relations of

AA-plug-ins

Relation on

QA-database

A set of classes

(additional attributes)

Access to

QA-data

User or the new function

for automatic use

448

Sosnin

449

Figure 8. Declaration of array

Attributes which are assigned for the array are visually

accessible for the designer at any time and can be used not only

for translating. The designer can add useful attributes to the set

of array attributes for example for describing its semantic

features which will be checked in creating and executing the

QA-program.

C. Emulation of pseudo-code operators

The second type of pseudocode lines is intended for writing

the operators. As it was for QA-data we can define for

operators the next interpretations:

• “question” is “ a symbolic presentation of an operator”;

• “answer” indicates by the special marker about “the fact that

the operator was fulfilled”.

In other words, the symbol string of the “question” can be

used for writing (in this place) the operator in the pseudocode

form. The fact or the result of the operator execution will be

marked or registered in the symbol string of the “answer”.

 The next step in the emulation of operators is connected

with taking into account types of operators. For simulating the

basic pseudo-program operators the next constructions were

chosen:

• Appoint: “question” → ”name of variable” and “answer”

→ “appoint the value;

• Goto:“question” → ”condition” and “answer” → “go to

the definite operator of QA-program;

• If: «question» →→→→ «condition» Then «answer» →→→→

«Execute the definite operator»;

• Command: “question” →” the command of the

QA-processor” and “answer” → “execute the command”;

• Function: “question” → ”definition of function” and

“answer” → “compute the value”;

• Procedure: “question” → ”definition of procedure” and

“answer” → “execute the procedure”.

• End: “question” → ”end of program” and “answer” →

“finish the work with QA-program”.

In named operators the following definitions of functions

and procedures are used:

• any function is defined as the expression of the algorithmic

language;

• any procedure is a typical sequence of actions which are

accessible in QA-processor for the execution by the user.

The set of basic operators includes traditional pseudocode

operators but each of which inherits the feature of the

appropriate QA-unit also. Hence, the basic attributes of

QA-unit and necessary additional attributes can be taken into

account in processing the operator and not only in its

translation. In order to underline the specificity of operator

emulation they will be indicated as QA-operators.

In pseudo-programming languages a set of basic operator is

being expanded usually. In described case the expansion

includes cycle-operators such as «for», "while-do" and

«do-until». Emulations of QA-data and QA-operators are

implemented in WIQA and provide the creation of

pseudocode programs for different tasks [20].

VI. Specimens of QA-Programs

A. Types of QA-Programs

Any QA-program creates for the division of the

problem-solving process among the human and computer. In

this case the division is presented in the form of the source

pseudocode the interactions with which are used as the human

so the computer. The definite HCI task can be solved with the

help of its QA-programming.

 But HCI on the base of QA-programs has the additional

feature which is implemented in interactions of designers with

Z-, Q- and A-objects. This feature is the usage of pseudocode

strings of QA-programs as means of HCI. As told above such

interactive objects open very useful positive effects for

designers who can use or change any string as QA-data in the

real time.

Both named features define the essence of

QA-programming for the H-processors firstly and for

computer processors secondly. The basic aim of the

interaction is the access to the human experience in the

precedents forms for its inclusion to the problem-solving

processes (in the development of SISs).

The structure of any precedent includes a condition part and

a part of a reaction each of which has to be QA-programmed.

The value “truth” in the estimation of the conditional part

opens the access to the execution of the appropriate reaction.

Therefore QA-programs for estimating the conditions of

precedents and QA-programs for executing the reaction part of

precedents are two basic types of QA-programs.

But as told above, some QA-programs can be written for

their translating and executing as computer programs. Some of

such QA-programs can be created for supporting the work

with “precedents” and therefore a set of QA-programs was

created by author for the collision avoidance expert system of

the sea vessel.

QA-programs, which are oriented on the computer

execution, are useful in cases when the direct access to the

visualized data is profitable for developers of SISs or for their

users (documenting, decision-making, expert estimating and

other tasks). Such programs are suitable when the library of

QA-templates can be created for a set of typical tasks solving

in SISs. The possibility of working with QA-templates and the

library of templates are included to WIQA.

Additional attributes

Attribute Value

Type_data Array

Measure 1

Type_element integer

Number 5

QA-protocol

The other useful AAi

Q1. Array & Name &

Q1.1. Name[0]

A1.1. 12

Q1.1. Name[0]

A1.1. 12

Q1.1. Name[0]

A1.1. 12

Q1.1. Name[0]

A1.1. 12

Q1.1. Name[0]

A1.1. 12

Programming of Human-Computer Interactions in Development of Software Intensive Systems

For the real time working of the H-processor with

precedents the following QA-program scheme is useful:

QA-PROGRAM_1 (condition for the access to the

precedent):

Q1. Variable V_1 / Comment_1?

A1.Value of V_1.

Q2. Variable V_2 / Comment_2?

A2. Value of V_2.

……………………………………………

QN. Variable V_M / Comment_M?

AN. Value of V_M.

Q0. F = Logical expression (V_1, V_2, …, V_M)?

A0. Value of Expression.

End.

It is necessary to notice that the designer can build or to

modify or to fulfill (step by step) the definite example of this

program in the real time work with the corresponding

precedent which, it may be, designer creates. In presented

typical scheme the logical expression is defined for the

function F.

The next typical scheme reflects the work with techniques

programmed as QA-procedures:

QA-PROGRAM_2 (technique for the typical task):

Q1.K_i, K_j, …, PL_k ?

A1. *

Q2. K_m, QA-P_n, …, K_q?

A2.*

………………………………

QN. K_s, Pl_t, …, QA-P_v?

AN. #

End.

 The program text includes the symbolic names K_x and

Pl-y for the Command and Plug-ins of WIQA and QA-P_z for

the QA-Program written by means of WIQA. It is necessary to

notice that all names of the types K_x, Pl-y and QA-P_z are

indicated positions on the monitor screen for initiating the

actions by touch of the designer. In such “points” of

human-computer interactions the suggested means of HCI are

being combined with traditional means of HCI. In second

typical scheme the symbols “*” and “#” (as “yes” and “no”)

indicate the facts of the execution for operators.

The following fragment of the Outlook reset actions

demonstrates (without A-units) one type of QA-procedures:

Q1. Quit all programs.

Q2. Start On the menu Run, click.

Q3. Open In the box regedit, type, and then OK the click.

Q4. Move to and select the following key:

HKEY_CURRENT_USER/Software/Microsoft/Office/9.0

/Outlook/

Q5. In the Name list, FirstRunDialog select.

Q6. If you want to enable only the Welcome to Microsoft

Outlook greeting, on the Edit menu Modify, click the type

True in the Value Data box, and then OK the click.

……………………………………………………………

Q9. In the Confirm Value Delete dialog box click Yes, for

each entry.

Q.10. On the Registry menu, click Exit.

Q11. End.

About three hundred typical techniques are implemented as

QA-programs for designing the SISs with instruments of

WIQA. A half of these QA-programs are the guide type. To

remember such (or more) quantity of QA-programs is

impossible. Therefore all typical QA-programs are kept in the

special library.

If the definite typical QA-program should be used the

designer must extract this QA-program from the library, create

the new task, include the task to the tasks tree and after such

actions the designer can start to solve the task (to execute the

corresponding QA-program).

The reality of the designer activity is a parallel work with

many tasks at the same time. Therefore the special interpreter

for executing the QA-procedures and the system of

interruption (of the H-processor) are included into WIQA. It

gives the possibility to interrupt any QA-procedure (if it is

necessary) for working with other QA-programs. The

interruption system supports the return to any interrupted

QA-program to its point of the interruption.

B. Example of QA-Functions

WIQA is the instrumental system which supports the

collaborative development of SISs. Moreover WIQA can be

used as a kernel of the developed SIS. If the developed SIS is

implemented with such kernel then such SIS inherits all

potential of WIQA and the possibilities of the

QA-programming also.

The expert system of monitoring the sea vessel surrounding

is an example of such SIS (named EmWIQA). The following

example of the QA-function supports the access to the

precedent which presents the 15th rule of the International

Rules for Preventing Collisions at Sea [5]:

QA-PROGRAM_3 (conditional access to the precedent).

Q1. Velocity V1 of the power driven vessel V_1?

A1.Value of V1.

Q2. Bear_B1 of the vessel V_1?

A2.Value of B1.

Q3. Place of the vessel V_1?

A3. Coordinates of the place_1.

Q4. Velocity V2 of the power driven vessel V_2?

A4.Value of V2.

Q5. Bear_B2 of the vessel V_2?

A5.Value of B2.

Q6. Place of the vessel V_2?

A6. Coordinates of the place_2.

Q7.CPA = expression for computing the Closest Point of

Approach (CPA)?

A7. Value of CPA.

Q8. Cond = (V_1, “keep out of the way”)&

 & (│Bear_1 - Bear_2│ > 11, 5о
) &

 & (CPA-D
DA

- ∆D1 ≤ 0)?

A8. Manoeuvre_Mi.

End.

This QA-function is shown with demonstrated aims only

and therefore without explaining the variables and

expressions. This function is kept in the knowledge base (with

embedded precedents) into the EmWIQA. Such functions are

accessible for program agents (automatically) and for the

sailor on duty (in the automated regime). The knowledge base

of the EmWIQA consists of 155 units each of which includes

450

Sosnin

451

QA-function for choosing the precedent and QA-procedure for

its executing.

VII. Translators of QA-programs

Translation means for the pseudo-programming are evolved

step by step from one kind of QA-programs to the other kind.

Two compilers and two interpreters are embedded in the last

version of WIQA which has been created on C# at the platform

of Microsoft.NET 3.5.

The first compiler provides the processing of QA-programs

which describe the conditional parts of precedents. Copies of

such compiler can be embedded to precedent samples

implemented as agents. The second compiler supports the

translation of QA-programs in the executed codes (.dll-forms).

Both interpreters are intended for H-processors. There are

the following differences between interpreters ‒ the first

interpreter can work with cycle operators and the second

interpreter uses the mechanism of the dynamic compilation for

the current line of the QA-program which is being executed.

Let’s present some details for the first interpreter. As other

translators embedded in WIQA this interpreter is worked with

the LP-language. The lexicon of the created QA-program can

be chosen by the programmer. For the declaration of QA-data

the specialized utility program is developed. This utility

program supports the work with data of traditional algorithmic

types.

The main window of the interpreter is presented in Fig. 9

with commentary labels as for Fig 2. (all interfaces in

Russian).

Figure 9. Screenshot of interpreter

 Interfaces of the main form help to control as executing the

QA-program so its debugging. The user who is fulfilling the

role of the H-processor can interrupt the H-process on any

operator of the QA-program with the possibility of returning to

the point of interruption.

In the set of named translators for indicating the types of

operators the following variants has been used and checked:

• inclusion the key words into the symbolic presentation of

operators;

• selection the type of the operator from the emerging menu;

• appointment the type with the help of additional attributes

(as for QA-data).

In accordance with told above, the usage of the potential of

Z-, Q- and A-objects for emulating the typical data and

simulating the basic program operators opens the possibility to

create the QA-programs which can be translated for their

executing by computer processors also.

Pseudocode texts of QA-programs can be written and

executed (in the real time) by designers working in the

corporate network. Designers interact with QA-programs as

with intermediators between the human and computers and it

gives the arguments to qualify QA-programs as new type of

means for HCI. Moreover, such intermediators can be

translated (in WIQA) firstly to the C# source code and then to

the executed code.

VIII. Aspect-Oriented Designing of Interface

Prototypes

The presented means of HCI open the effective possibilities

for aspect-oriented designing the traditional versions of HCI.

For all usability metrics, which are defined in the standard

ISO/ MEK–9126, corresponding precedents were created. All

of them are united in the library of the typical tasks. Any task

of this library is programmed with the usage of QA-means so

that the corresponding usability metrics is accessible to

designers as the definite interface precedent. The created

library consists of 73 typical tasks any of which can be used for

generating the necessary quantity of copies adjusted to the

places of their materializations in the implemented system.

When in current solving of the project task the designer

discovers the next “point of human-computer interaction” then

the appropriate metrics task is being included to the tasks tree

of the designed SIS. Such task has two subtasks one of which

is a pseudo-program of the precedent condition. The second

subtask is a pseudocode technique providing the inclusion of

the chosen metrics into the solution of the project task.

In order to simplify the use of the aspect-oriented technique

the special plug-ins for the interface prototyping of the project

solutions is developed and embedded into WIQA. The

necessary interface prototype is being generated from the

drawn interface diagram which is being translated to the

scheme of the corresponding QA-program. After that the

scheme of the QA-program is filling by the chosen interfaces

precedents.

IX. Conclusion

Told above contains sufficient arguments to assert that the real

time programming of HCI by the user leads to many positive

effects in the usage of SISs and their development.

QA-programming is the rational way for such work which can

be implemented with the help of WIQA means.

QA-programming of HCI can be implemented at the project

level (as the creation of the tasks tree) and at the pseudocode

level (as writing the QA-programs for H-processors and

computer processors).

QA-programs are useful means of HCI which are additional

for traditional means of HCI. Such means of HCI are adjusted

for the access to the human experience in the precedents forms

which were used in creating the library of the usability metrics

implemented as the set of tasks with embedded interfaces

QA-pseudocode

executed operator

Pascal-like code
dictionary Function

library

execute

interrupt

Programming of Human-Computer Interactions in Development of Software Intensive Systems

precedents.

QA-programs are the kind of pseudo-programs. Any line of

the source code of such pseudo-program inherits the property

of the appropriate QA-unit which is used as the “material” for

writing this line. At any time the programmer can expand the

set of attributes for any line of the definite QA-program if it

helps to solve the corresponding task. The programmer has the

possibility to use the line attributes of the source code in the

operators of the created pseudo-program.

QA-programs also manage accustomed (habitual)

semi-automatic actions when QA-programs (as techniques of

the guide type) show to the designer the sequence of actions

which designer must execute by “touching” with the help of

the marker (or another way) the special signs or definite area

on the monitor screen. Moreover, QA-programs can be

translated to the form which can be executed by the computer

processors.

References

[1] L. Bass, J. Ivers, M. Klein, P. Merson. ”Reasoning

Frameworks,” Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep.

CMU/SEI-2005-TR-007, 2005.

[2] G. Booch, A. W. Brown. Collaborative development

environments. In M. Zelkowitz (Ed.), Advances in

computers, 59, San Diego, CA: Academic Press, 2003.

[3] J. Burger et al. “Issues, Tasks and Program Structures to

Roadmap Research in Question & Answering (Q&A),”

Tech. Rep. NIST, 2001.

[4] S.K.Card, T.P. Thomas, A. Newell. The Psychology of

Human-Computer Interaction, London: Lawrence

Erbaum Associates, 1983.

[5] A.N. Cockcroft. Guide to the Collision Avoidance Rules:

International Regulations for Preventing Collisions at

Sea, Butterworth-Heinemann, 2003.

[6] A. Crystal, B. Ellington. “Task analysis and

human-computer interaction: approaches, techniques, and

levels of analysis.” In proceedings of the Tenth Americas

Conference on Information Systems, New York, New

York, pp 1-9, 2004.

[7] E. Dijkstra. “Programming Considered as a Human

Activity.” Classics in software engineering. ACM Classic

Books Series, pp. 1-9, 1979.

[8] S. Henninger. “Tool Support for Experience-Based

Software Development Methodologies,” Advances in

Computers, Vol. 59, pp. 29-82, 2003.

[9] T. Hewett, R. Baecker, St. Card, T. Carey, J. Gasen, M.

Mantei, G. Perlman, G. Strong, W. Verplank. “ACM

SIGCHI Curricula for Human-Computer

Interaction.”ACM Technical Report, p. 162, 2002.

[10] L. Hirschman, R. Gaizauskas. “Natural Language

Question Answering: The View from Here”.Natural

Language Engineering, Vol. 7, pp. 67-87, 2001.

[11] F. Karray, M. Alemzadeh, J. A. Saleh, M. N. Arab.

“Human-Computer Interaction: Overview on State of the

Art” Smart sensing and intelligent systems, Vol. 1, No.

1(Mar), pp 138-159, 2008.*

[12] D. Kieras, D.E. Meyer. “An overview of the EPIC

architecture for cognition and performance with

application to human-computer interaction”.

Human-Computer Interaction, Vol. 12, 391-438,199.

[13] D. Knuth. “Computer Programming as an Art.”

Communications of the ACM, vol. 17,(12). pp 667-673.

[14] P. Kroll, Ph. Kruchten. The Rational Unified Process

Made Easy: A Practitioners Guide to the RUP.

Addison-Wesley, 2003.

[15] M.H. Lee. “Model-Based Reasoning: A Principled

Approach for Software Engineering”, Software -

Concepts and Tools, Vol.19, #4, pp. 179-189, 2000.

[16] C. Potts, K. Takahashi, A. Anton. “Inquiry-based

Requirements Analysis, “ IEEE Software, Vol. 11, #2, pp.

21-32, 1994.

[17] S. K. D'Mello, A. Graesser, B. King. “Toward Spoken

Human-ComputerTutorialDialogues” Human Computer

Interaction, Vol. 25, # 4, pp. 289-323, 2010.

[18] R.Reiff, W.Harwood, T. Phillipson. “A Scientific

Method Based Upon Research Scientists’ Conceptions of

Scientific Inquiry,” In Proc.2002 Annual International

Conference of the Association for the Education of

Teachers in Science, pp 546-556, 2002.

[19] C. Rich, Y. Feldman. “Seven Layers of Knowledge

Representation and Reasoning in Support of Software

Development,” IEEE Transactions on Software

Engineering, Vol. 8, # 6, pp.451-469. 1992.

[20] P. Sosnin. Means of question-answer interaction for

collaborative development activity”, Hindawi Publishing

Corporation, Advances in Human-Computer Interaction,

vol. 2009, Article ID 619405, 2009.

[21] P. Sosnin. “Question-Answer Approach To

Human-Computer Interaction In Collaborative

Designing.” // In proc. IASDIS: Human Computer

Interactions, Freiburg, Germany, pp. 219-226, 2010.

[22] J.J.B. Vicente, F. Klett. “A Generic Evaluation

Framework for Knowledge-Based Infrastructures: Design

and Applications”, International Journal of Computer

Information Systems and Industrial Management

Applications (IJCISIM), Vol. 3, pp. 290 -297, 2011.

[23] F. Yang, R. Shen, P. Han. “Adaptive Question and

Answering Engine Base on Case Based and Reasoning

Technology,” Journal of Computer Engineering, Vol.29,

#11, pp. 27-28, 2003.

Author Biography

PETR SOSNIN was born in Ulyanovsk in

the USSR, on July 12, 1945. He graduated

from the Ulyanovsk Polytechnic Institute

(1968).

 His employment experience included the

Ulyanovsk Polytechnic Institute and Ulyanovsk State

Technical University. His special field of interests includes AI

applications for computer aided design. P. Sosnin defended

doctor degree in Moscow Aviation Institute (1994). He is an

author of eight books and more three hundred articles.

452

