
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 3 (2011) pp. 568-577
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

A Repartition Structure for Collision Detection
and Deformation of Discrete Objects Based

on 3D Wavelets

Xavier Heurtebise1 and Sébastien Thon1

1 LSIS: Laboratoire des Sciences de l’Information et des Systèmes
IUT de l’Université de Provence, Rue Raoul Follereau, 13200 Arles – France

{xavier.heurtebise, sebastien.thon}@univ-provence.fr

Abstract: In a virtual sculpture project, we would like

to sculpt in real-time 3D objects sampled in volume elements
(voxels). The drawback of this kind of representation is that a
very huge number of voxels is required to represent large and
detailed objects. Consequently, the memory cost will be very
large and the user/object interaction will be slowed down. We
proposed a multiresolution representation of 3D objects thanks
to a 3D wavelet transform, in order to reduce the memory cost
and to adapt the processing and display times with a desired level
of detail. In order to allow real-time performance during the
sculpting process, we propose in this paper a repartition
structure, which is an octree whose each node contains maximal
and minimal density for each area of the 3D object. Moreover, we
combine this structure with a multiresolution collision detection,
to accelerate the sculpting process during the addition and
subtraction of matter into the 3D object thanks to a tool, both
with the same multiresolution representation.

Keywords: virtual sculpture, discrete wavelet, voxels, collision
detection, levels of detail, min/max octree.

I. Introduction
In this paper, we present a multiresolution model based on 3D
wavelets to represent a 3D object as a discrete set of volume
elements (voxels). Such a discrete representation is of great
use in:
• medical imaging: management of MRI or CT-scan data;
• surgical simulations: bone surgery, dental surgery;
• scientific simulations: simulation of heterogeneous

systems such as semiconductor device simulation,
molecular dynamics, plasma physics, and fluid mechanics;

• virtual sculpture: easy simulation of sculpture operations
such as addition or subtraction of material by simply
adding or removing voxels.

The major issue of discrete representations of volumes is the
huge memory cost of very large 3D objects. proposed a
multiresolution sculpture system based on 3D Haar wavelets
[1]. A major advantage of this model is that sculpted objects
can then be used as new tools, because the same model is used
for both objects and tools. However, when 3D objects and
tools are very large, during sculpture operations, the number of

useful voxels of objects and tools can become very huge.
Consequently, the sculpture operations become slower. In
order to accelerate the sculpture operations, we propose in this
paper several solutions:
• First, we propose a collision detection algorithm based on

an octree, in order to refine the collision detection between
objects and tools, both using the same model, based on 3D
wavelets.

• Second, we use a min/max octree, that we called
repartition structure, where each node contains maximal
and minimal density for each area of the associated object.

• Third, we speed up the collision detection algorithm thanks
to the repartition structure during sculpture operations.

II. Previous work
In this paper, we would like to sculpt in real-time 3D objects
with tools, both using the same model, based on 3D wavelets.
In order to accelerate the sculpture operations, we would like a
multiresolution collision detection algorithm. We present
multiresolution representation in section II.A, in order to
represent 3D objects and tools. Then, we describe in section
II.B existing methods of virtual sculpture. Finally, we present
in section II.C existing collision detection algorithms.

A. Multiresolution representations
In this paper, we tackle the problem of virtual sculpture of a
very large 3D object with a tool, both represented with spatial
enumerations. Such a spatial enumeration is a set of volume
elements called voxels, obtained by sampling the volume of a
3D object. It can be seen as a 3D image composed of voxels,
while a 2D image is a bidimensional array composed of pixels.

To make a spatial enumeration from a 3D object, several
methods have already been suggested. The simplest way is a
uniform discrete spatial enumeration, by regularly sampling
the object into voxels with the same size. However, a major
drawback of this representation is the large number of voxels
needed to represent very large objects with detailed features
(for example, a 3D image in 1024×1024×1024 has more than
one billion voxels). This entails three main problems. The first
one is the important memory cost to store this uniform spatial

Heurtebise and Thon

569

enumeration. The second one is that the display of these
objects becomes slower. Finally, operations on these objects
such as sculpture actions or displacements become less and
less interactive.

To further improve the use of spatial enumeration, several
methods of multiresolution representations have been
proposed. Therefore, processing and display times are adapted
with the desired level of detail. Among these methods, there
are trees and 3D wavelet decomposition.

An octree can also be seen as a hierarchical representation
of 3D object. The maximum level of subdivision of the octree
defines the finest level of detail of a multiresolution
representation. Boada et al. [1] define a section in an octree
that determines the displayed nodes for a given level of detail.
This method is extended to a “n-tree” by Ferley et al. [3].

The second multirésolution methods use bounding volume
trees, used in collision detection. These methods propose to
modify properties of the voxels, such as the size with AABB
(axis-aligned-bounding-box) method [4], the orientation with
OBB (oriented-bounding-box) method[5], or even the shape
with sphere tree [6][7]. Thanks to these three methods, the
object rendering is optimized because the original object
shape can be approached with less voxels than with a simple
uniform spatial enumeration, but to the cost of higher
computation times.

The third multiresolution method uses wavelet transform.
Wavelets are a mathematical tool for representing functions
hierarchically. In our case, these functions are discrete 3D
functions that define a set of voxels. Muraki [8] shows the use
of 3D Haar wavelets [9] to represent a 3D object. Pinnamaneni
et al. [10] build a 3D Haar wavelet decomposition from a
sequence of 1D Haar wavelet decomposition in each direction
of the 3D voxels grid. Wavelet decomposition allows us to
display a 3D object faster according to the level of detail. It
also permits to drastically cut down the memory cost, because
high compression ratio can be achieved on wavelets
coefficients, especially if lossy compression schemes are used.
Heurtebise [11] uses same wavelet decomposition into a
sequence of 1D wavelet transform in each direction of the 3D
voxels grid, but he studied several wavelets, such as Haar
wavelet, orthogonal Daubechies wavelet, bi-orthogonal
Cohen-Daubechies-Feauveau wavelet…

B. Virtual sculpture
In a voxel representation, several kinds of information can be
stored, such as density of matter, color, material, hardness,
elasticity… According to the kind of information, the mode of
representation may be different.

A first volumetric method has been implemented by
Galyean and Hughes [12]. Their model is defined with a
uniform discrete spatial enumeration that contains density
values. 3D tools modify the discrete potentials describing the
object. Basic operations like addition or subtraction, and
several tool definitions (heat gun, sand paper or color
modifier) are proposed.

Ayasse and Müller [13] perform sculpture operations by the
use of CSG (Constructive Solid Geometry). Complex objects
are created by successive modifications of the material with a
tool according to simple operations such as difference, union

or intersection. However, the object and the tool are
represented by simple uniform spatial enumerations.
Moreover, voxels are limited to binary values (full or empty).
The authors propose to reduce the computation time for each
sculpture operation by using only the effective voxels
according to a given displacement of the tool. However, they
do not use a multiresolution representation to improve the
display performance.

Raffin et al. [14] perform sculpture operation by moving the
matter, into a 3D object, with a tool. Both of them are
represented by a set of voxels. The authors proposed a method
of diffusion of the matter by decomposing it along each axis x,
y and z according the normal of collision point between the
tool and the matter to be sculpted. They proposed also an
algorithm to distribute the matter to surface neighbors, using a
plasticity value of the object matter, in order to perform a more
realistic result. The main drawback of this method is the size of
the tool in order to have real-time performances.

Dewaele and Cani [15] proposed a deformable model for
virtual clay. Sculpture operations are addition, subtraction and
deformation of matter through the interaction with rigid tools.
Their deformations, both large and small scale, mimic the
effects of tools on real clay. The authors proposed two steps.
The first one is the processing of the influence of static tools on
the matter, by determining the displacement vector for each
voxel of the matter. The second one is the displacement of the
matter from each voxel of the object to its neighbours.

Angelidis et al. [16] presented sweepers, a new class of
space deformations suitable for interactive and intuitive virtual
sculpture. When an artist moves a tool, it causes a deformation
of the working shape along the path of the tool: the authors
used simple path (translation, scaling or rotation). Tools are
simply shapes, subsets of 3D space. An advantage is that he
artist can use shapes already created as new tools to make
more complex shapes. Furthermore, more complex
deformations are achieved by using several tools
simultaneously in the same region. For representing shapes,
Angelidis et al. [16] presented a mesh refinement and
decimation algorithm that takes advantage of the definition of
deformations.

In the Kizamu project, Perry and Frisken [17] use ADFs
(Adaptively sampled Distance Fields) to model and to sculpt
the material. A 3D object is sampled adaptively with a 3D grid
according to the details of the object. Each grid cell contains a
scalar specifying the minimum distance to the object shape.
This distance is signed to distinguish the inside from the
outside of the shape. Sculpture operations use CSG, but the
Euclidean distance field used instead of density raises
discontinuity problems and increases the update computation
time.

Bærentzen and Christensen [18] propose the Level-Set
method to deform the material. This method stores distance
fields around the exterior of a 3D object. The single tool is a
blob (a sphere) represented by an implicit function, which
limits the sculpture capabilities.

To represent an object to be sculpted, Ferley et al. [3] also
use distance fields, stored in a “n-tree” hierarchical
representation where the sampling rate depends on object’s
details. The tool is limited to an ellipsoid defined by an

A repartition structure for collision detection and deformation of discrete objects based on 3D wavelets

570

implicit function discretized to perform sculpture actions on
the object: this limitation is very restrictive if the user wishes
to use more complex tool shapes to perform specific sculpture
actions. Raffin et al. [19] propose a hierarchical model of
virtual sculpture based on an octree [20]. However, the tools,
defined as voxels sets, remain parallel to the axis, which limits
the orientation of the tool and the sculpture operations.

We proposed in [1] a multiresolution sculpture system
based on 3D Haar wavelets. A major advantage of this model
is that sculpted objects can then be used as new tools, because
the same model is used for both objects and tools. Moreover,
any orientation of tools [21] is possible, which does not limit
the sculpture operations. Furthermore, we proposed in [22] an
extension of this model, that combines octree and wavelet
transform (a 3D object is roughly sampled in an octree, where
each leaf containing data is thinly sampled thanks to a 3D
wavelet transform), to manage very large volume datasets.

C. Spatial Collision Detection
In order to deform the matter with a tool, we need to know if
tools collide the matter. Two approaches can be used to
determine the collision between tools and the matter: static
collision detection (only the positions of tools and the matter
are known at distinct instant) and dynamic collision detection
(the movement of tools and object are considered: the
positions of the tools and the matter are known at all instants).

The obvious approaches to collision detection for multiple
and/or very detailed objects are very slow. Indeed, if we want
to know the potential collision between N objects, checking
the collision between every object against every other object is
too inefficient to be used, because the complexity is quadratic,
in O(N2). Moreover, if we want to know the potential collision
between two objects with complex geometry, checking the
collision between these objects each face against each other
face, is itself quite slow.

Thus, considerable research has been applied to speed up
the problem. Kitamura et al. [22], Hubbard [6], and O’Sullivan
and Dingliana [24] used hybrid collision detection, with the
following phases:
• Broad phase:

o Phase 1: progressive delimitation levels. This phase
restricts the subspaces with a potential by using
hierarchies of space subdivisions.

o Phase 2: accurate broad levels. In this phase, the
approximate test is performed to identify interfering
objects using a coarse representation of object shapes
(such as bounding volumes).

• Narrow phase:
o Phase 3: progressive refinement levels. Hierarchical

approximations are suitable to well determine the
object-parts in potential collision.

o Phase 4: exact level. The tests use a tightly
representation of object shapes to accurately identify
any object parts, selected in the previous phase, that
actually cause interference.

In the literature, several data structures are used to solve
collision queries. We can classify these data structures in

different categories depending on the criterion followed to
model the workspace and objects.

For geometric models, collision, proximity and interference
queries are computed by using the geometry of the two
possible candidate objects. In the narrow phase at the exact
level, the queries are formulated by using the geometry of
objects. Dobkin and Kirkpatrick [25] proposed a collision
detection algorithm between two polyhedrons in O(log2 v)
where v is the average number of vertex of two polyhedrons.
This method requires the convexity of polyhedrons, and only
one collision point is given even if more collision points exist.
Linear programming algorithms [26] allow checking collision
between two convex polytopes if and only if there exists a
separation plane between them. Feature based algorithms
focus on the relationships between the sets of features
(vertices, edges and faces) of the two polytopes. The algorithm
of Lin-Canny [27] constructs the Voronoï Region (set of
points closer to a feature than any other) of each feature. Then
it computes the distance between the closest features of two
polytopes to elucidate whether they collide. This algorithm
takes O(f) time, where f is the number of features. The method
takes advantage of coherence because closest features will not
change significantly between two consecutive frames.
Simplex based algorithms treat the polytopes as the
convex-hull of a point set. Gilbert et al. [28] presented the GJK
algorithm, which detects collisions and gives a measure of
interpenetration. Cameron [29] developed the Enhanced GJK
algorithm. Volume minimization based algorithms focus on
the intersection volume of two objects. Faure et al. [30]
proposed an image-based method of the intersection volume
between two polyhedra, using surface rasterization in three
orthogonal directions. Moreover, the authors proposed the
integration of pressure forces over the pixels of the
intersection volume, to compute forces applied to the vertices
of the polyhedra. Their method handles deformable and rigid
objects without any precomputation, by combining the speed
of surface-based methods [31][32] with the robustness of
distance-based methods [33][34].

For space partition trees, space decomposition techniques in
a hierarchical ways are considered. In the broad phase at the
progressive delimitation level, the queries are often
formulated by using the space partition trees. However, these
trees are also used to refine collision detection between two
objects, during the narrow phase at the progressive refinement
levels. Examples of space partition hierarchies include regular
grids of voxels [30], octrees [6][22], BSP-trees [35], kD-trees
and their extensions [36][37]. The advantage of regular grids
of voxels is the computation time in O(1) for the collision
detection, but the major drawback is the huge memory cost of
this method, for very detailed workspace. The advantage of
octrees is the reduced memory cost in relation to the previous
method. The computation time is proportional to the number
of levels of subdivision of the octrees. For BSP-trees and
kD-trees [35][36][37], the efficiency depends on the size
and/or the number of levels of subdivision of the tree. The
main drawback is the build of the tree in O(N2), where N is the
number of objects.

For bounding volumes (BV), the objects are enclosed in
volumes of simple geometry such as spheres, AABBs, OBBs,

Heurtebise and Thon

571

k-DOPs and convex hulls. BVs are used during the broad
phase at accurate broad levels, in order to check easily and
quickly collision between two objects. However, BVs are
often used in hierarchical volume representations, called
bounding volume trees: sphere trees [6][7], AABB-trees [4],
OBB-trees [5], k-DOP trees [38] and convex hull trees [26].
BV trees are used in the narrow phase at progressive
refinement levels. Klosowski [38] quantized the computation
time for collision detection. They demonstrated that the
thinness of BV influences the number of collision tests
between each pair of BVs. Moreover, the simplicity of BV
influences the efficiency of the intersection test between two
BVs.

III. Our original contribution
Many models have already been proposed in order to represent
3D objects as discrete sets of voxels. We have already
proposed in previous papers a discrete representation to
reduce the memory cost and display times, which become very
huge when 3D objects are very large.

In this paper, we propose to solve the problem of
computation times, which become very important, when 3D
objects are very large and/or very detailed. For that, we
propose the use of a min/max octree that we called “repartition
structure”. Indeed, it allows us to easily and quickly determine
the maximal and minimal densities of an area of a 3D object.
The main contribution of this paper is to use this structure to
enhance the collision detection between a tool and the matter,
during the sculpture operations: as the tool is moved by the
user, its voxels are in different local frame than the sculpture’s
one. Such operations of addition and subtraction of material
are then simply performed by modifying density values of
voxels.

The remainder of the paper is organized as follows. In
section IV, we describe the multiresolution model based on 3D
wavelets, proposed in a previous paper. In section V, we
describe our repartition structure. Then, in section VI, we
propose a collision detection algorithm between objects and
tools, both using the same multiresolution model. In section
VII, we present dynamical and interactive modifications of 3D
objects thanks to sculpting tools. Then, we conclude and
present future works.

IV. Multiresolution model
In a virtual sculpture project, we represent the 3D objects to be
sculpted as a discrete set of voxels to easily handle subtraction,
addition and displacement of matter by tools. Each voxel
contains a density value coded in a byte (from 0 for an empty
voxel to 255 for a full one). However, a uniform spatial
enumeration is expensive in processing and display times.

Thus, we use our multiresolution model based on 3D Haar
wavelets [1], based on the hierarchical structure proposed by
Pinnamaneni et al. [10]. This principle can be extended to
other discrete wavelet transform [11], such as orthogonal
wavelets, bi-orthogonal wavelets, interpolated wavelets… For
each level of details, the 1D wavelet transformation is applied
in x-, y- and z-direction successively (Figure 1). For each
transformation step, we have a block ‘L’ with low-resolution

coefficients obtained by a low-pass filter, and a block ‘H’ with
detail coefficients obtained by a high-pass filter.

We display this discrete object with the Marching Cubes
algorithm [39] that provides a smooth surface instead of a set
of blocky voxels. During display, they take the advantage of
the multiresolution nature of the model given by the 3D
wavelets to display the more appropriate level of details
according to the situation (distance between the object and the
point of view, needed frame rate). Moreover, we implemented
a data cache [1] that improves performances by storing in
memory the useful levels of detail, in order to avoid extracting
the level each time we need to use it.

Figure 1. 3D Haar wavelet transform.

V. The repartition structure
In this paper, we use this same model to represent both objects
and tools. So, we will take the advantage of the multiresolution
representation to accelerate the processing times, during the
collision detection and the sculpting process.

Indeed, consider an area of the 3D object to be sculpted. If
the density values at a given level of detail n allow us to deduce
that no sculpture operation is possible in this area, we can stop
the refinement processing steps of the collision detection at the
level of detail n. However, the density values at the level of
detail n do not allow us to define the interval of density values
(from 0 to 255) at the rougher level of detail n – 1, except if we
use the detail coefficients of the wavelet transform. So, in
order to define the density repartition of an area of N voxels of
the 3D object at a level of detail, we need to know the
following data at a finer level of detail: the density repartition
of this area (N/8 voxels), and all the detail coefficients (7N/8
detail coefficients) of the wavelet transform in this area.
Consequently, in order to define the density repartition of an
area of N voxels of the 3D object, at a level of detail, we need
to know N coefficients, at a finer level of detail.

In order to reduce the processing time to define the density
repartition of an area of a 3D object, we propose the use of a
min/max octree, called repartition structure. This structure is

A repartition structure for collision detection and deformation of discrete objects based on 3D wavelets

an octree that stores the density repartition of this 3D object, at
different levels of detail. Each node contains two values: the
maximal and minimal densities of an area of the 3D object
contained in this node. Figure 2 illustrates this structure in the
2D case thanks to a quadtree: this principle is the same in 3D
thanks to an octree. As shown on figure 2, the quadtree is
completely developed: the leaves are the areas, with a size of
2×2×2 voxels, and the root is the area, with a size of n×n×n
voxels (with n = 2p and p is the number of levels of detail of the
3D object).

Moreover, for each non-terminal node (i.e. each node
different from a leaf) of this octree, the minimal density
(respectively the maximal density) is the smallest (respectively
the greatest) of the minimal densities (respectively the
maximal densities) of all the child nodes. For example of
figure 2, the minimal density of the area B1 is defined by:
min(B1) = min(min(B5), min(B6), min(B9), min(B10)).

As the octree is completely developed with a structure set by
the size of the 3D object, we can represent this octree with a
vector V, whose handling is easier, faster and cheaper in
memory:
• The first element, at the position 0, is the root of the octree.
• The size of the vector V is N = (n3 – 1) / 7, where n is the

size of the 3D object.
• The size of the repartition structure is S = 2N × d, where d

is the number of bytes to store a density value (for
example, 1 for ‘char’, 2 for ‘short int’ and 4 for ‘long int’,
on 32-bits operating system).

• The element, at the position i < INT((N – 1)/8), has eight
children from the position j1 = 8i + 1 to the position
j8 = 8i + 8. The operator ‘INT(x)’ correspond to the integer
part of ‘x’

• The element, at the position i > 0 has one parent at the
position j = INT((i – 1)/8).

• The level of detail p of the octree contains the elements
from the position ap = 1 + 8 + … + 8p – 1 to the position
bp = ap + 8p – 1. Recursively, we have: a1 = 2; if p > 0,
bp = 8ap; if p > 1, ap = bp – 1 + 1.

The octree structure allows us to move easily from a node to its
parent or its children into the repartition structure, as each
node is set. The build of the repartition structure is easy and
starts from the leaves to the root. For each leaf of the octree,
we set the minimal and maximal densities thanks to the 3D
objects at the finest level of detail. Once all the leaves are
filled, we update the repartition structure from the leaves to the
root.

During the sculpture process (see section VII), the

repartition structure will be updated according to the modified
voxels of the 3D object. If one voxel is modified, the minimal
or maximal density of the corresponding leaf of the octree will
be modified, and we update the repartition structure from this
leaf to the root of the octree. However, if several voxels are
modified, the update of the octree will be made in one pass,
rather than density by density.

VI. Our collision detection algorithm
In section II.C, we have presented the classification given by
O’Sullivan and Dingliana [24]. For the broad phase, there
exist several performing algorithms to check quickly collision
between N objects and to determine the candidate pairs of
objects in collision. Among these algorithms, we will use the
“sweep and prune” algorithm [40] that is very efficient. For
the narrow phase, we will use the hierarchical structure of
multiresolution model of the 3D objects, in order to refine
progressively the collision detection from the entire object (the
roughest level of detail) to the different voxels (the finest level
of detail).

A. The complete hierarchical collision detection
In order to refine the collision detection during the narrow
phase thanks to 3D wavelet transform, we propose a very easy
method, based on the collision detection thanks to octree
method, with following conditions:
• Each node of the octree becomes a voxel at a given level of

detail of 3D wavelet transform.
• The eight children of a node of the octree become the eight

underlying voxels at a more detailed level of detail of 3D
wavelet transform.

• The root of the octree becomes the voxel at the roughest
level of detail of 3D wavelet transform.

• A voxel whose density value is lower than threshold T, is
considered as empty, else it is considered as full or
partially full. It is necessary that threshold T is very small
in relation to the maximal density.

The main drawback of this algorithm is the necessity to go to
the finest level of detail of each object in order to check
collision between two voxels for each object. Indeed, if two
objects are very detailed, the computation time will be very
high, and the collision detection can be non-interactive. In
order to accelerate the collision detection, we propose to use
not only a bounding volume of each voxel, but also the
repartition structure (described in section V).

Figure 2. Repartition structure, in the 2D case: a quadtree (on right) contains the minimal (min(Bi))

and maximal (max(Bi)) values of the densities for each zones Bi of the 2D image (on left).

572

Heurtebise and Thon

573

B. The choice of bounding volume (BVs)
The choice of BVs for the detection collision is very crucial,
because the computation time depends on this choice.

Each 3D object is sampled in a set of voxels that are cubes.
If we check collision between two 3D objects, sampled in two
sets of cubes, the simplest method of collision detection uses
the OBB to represent each cube, in their respective orientation.
However, the computation time of collision detection between
two OBBs is greater than two AABBs or two spheres: 200
operations needed to perform the interference test between
two OBBs versus 6 for AABBs and 8 for spheres. Therefore,
we prefer to use AABB or sphere to represent each voxel in
order to reduce the computation time of collision detection. If
we use AABBs to represent each voxel of 3D objects, it is
necessary to compute again the AABBs for each voxel when
3D object rotates. In order to allow the rotation of 3D objects,
we prefer using spheres to represent each voxel during the
collision detection.

However, if we want to reduce the most possible the
computation time and to allow any orientation of 3D objects,
we use the smallest AABB of the bounding sphere for each
voxel during collision detection, in despite of the tightness of
the detection. Indeed, for any orientation of 3D objects, the
AABB of the bounding sphere for each voxel does not change.
Moreover, the computation time of collision detection
between two spheres is greater than two AABBs of two
spheres: 8 operations needed to perform the interference test
between two spheres versus 6 for AABBs.

C. Enhanced hierarchical collision detection
We propose an enhanced hierarchical collision detection
algorithm, based on our repartition structure. Consider Ni the
node of the repartition structure of the 3D object i, for each
level of detail LODi. If the BVs of N1 and N2 have no
intersection, there is no collision: refinement of collision
detection is useless.

Consider the case of the BVs of N1 and N2 are in collision. If
repartition structures give for N1 or/and N2 maximal densities
that do not exceed the threshold T, there is no collision. On the
other hand, if repartition structures give for N1 and N2 minimal
densities that exceed the threshold T, there is necessarily

collision for the voxels of each object at the finest level of
detail, contained in the intersection of the BVs of N1 and N2. In
these two cases, refinement of collision detection is useless.
Else, we refine the smallest voxel in size between N1 and N2, if
possible. However, if no refinement is possible for both N1 and
N2, so all the voxels of two 3D objects, at the finest level of
detail, are in the intersection of the BVs of N1 and N2.

 With this method, it is no longer useful to know the 3D
object for each level of detail, but only the repartition structure
associated to the 3D object, which is cheaper in memory than
the 3D object and its levels of detail, or even the 3D wavelet
transform. Indeed, the repartition structure has a memory cost
of (n3 – 1)/7 where n×n×n is the size of the 3D object (with n =
2p and p is the number of levels of detail of the 3D object).
Meanwhile, all the levels of detail of the 3D object have a
memory cost of (8n3 – 1)/7 and the 3D wavelet transform has a
memory cost of n3.

VII. Virtual Sculpture
Our model can easily handle sculpture operations by simply
adding or removing matter into a 3D object thanks to a tool,
i.e. by modifying the density values of each voxel of the object
to be sculpted. A major advantage of our method is that the
tool used for virtual sculpture has the same representation than
the matter. So, the user can create his or her own tools to sculpt
another 3D object. The tools can take any orientation and any
position in relation to the object [1].

A. Steps of the addition/subtraction of matter
During the sculpture operations, such as addition and
subtraction of matter thanks to a tool, a first phase allows to
determine which voxels of the tool and the matter to be
sculpted are in collision: this phase is called “collision
detection phase”. The following operations are performed:
• In a first step, we perform the collision detection, by using

the “sweep and prune” algorithm to determine which tools
Ti collides the matter M to be sculpted.

• In a second step, we refine the collision detection between
each tool Ti and the matter M by using the algorithm 1. We
obtain two lists LTi and LM of voxels for tool Ti and matter
M, respectively. For this step, when we subtract the matter

Algorithm 1. Simple collision detection algorithm between two blocks.

Function COLL (voxels: VTi, VM; LOD: lodTi, lodM)
 If VTi collides VM
 Then
 Variable V’M
 If (Op = ‘subtraction of matter’)
 Then V’M = VM
 Else V’M = Max density – VM

 If (VTi ≥ T and V’M ≥ T) then
 If (lodTi = 0 and lodM = 0) then
 Add VTi to the list LTi, and VM to the list LM
 Else if (lodTi = 0 or (lodM ≠ 0 and size(VM) > size(VTi))) then
 For each VM[k] ⊂ VM, with LOD lodM-1 Do COLL (VTi, VM[k], lodTi, lodM–1)
 Else
 For each VTi[k] ⊂ VTi, with LOD lodTi–1 Do COLL (VTi[k], VM, lodTi–1, lodM)

A repartition structure for collision detection and deformation of discrete objects based on 3D wavelets

with a tool, we check collision between each voxel VTi of
the tool Ti with the dual V'M of the voxel VM of the matter
M, whose value is equal to the maximal density minus the
current density.
Then, we perform a “sculpting phase” whose operations

are the following:
• In a first step, we apply the method of discrete rotation,

presented by Heurtebise and Thon [21], only for the voxels
in the intersection area, which is the AABB of the list LTi of
voxels for tool Ti. We obtain a new list LR,Ti of voxels of the
tool after the discrete rotation.

• In a second step, for each voxel VM of the matter M, with
VM included in LM, we find which voxels VTi of the tool Ti,
with VTi included in LR,Ti, intersect it. Then we compute the
new value of VM according to the selected sculpting mode
and the filling percentage D of the voxel VM by the voxels
VTi of the tool Ti. This voxel value is clamped to the
maximal value (respectively the minimal value) during the
operation of addition (respectively subtraction) of matter,
because we have density values in a given interval.
Figure 3 shows this principle in 2D where the values are
given in percentage, i.e. 100% (respectively 0%) is used
for the maximal density (respectively the minimal density).
The principle is the same in 3D.
o In the “addition of matter” mode, the filling

percentage D is given to the value of the voxel VM of
the matter M, only if the filling percentage D is
greater than the value of the voxel VM.

o In the “subtraction of matter” mode, the empty
percentage D', equal to the difference between the
maximal density and D, is given to the value of the
voxel VM of the matter M, only if the empty
percentage D' is smaller than the value of the voxel
VM.

• In a third step, we modify the wavelet data according to
this new voxel value. In order to accelerate this step, we
can update the wavelet data after the modification of a set
of voxels VM of the matter, instead of voxel by voxel.

• In a fourth step, we update the repartition structure
according to the modified voxels.

• In a last step, for each level of detail, we use the Marching
Cubes algorithm to rebuild the triangulated surface, only
for the modified parts of the 3D object, corresponding to
the matter M, to improve the computation time.

Figure 3. Addition (c) and subtraction (d) of matter

to a cubic object (a) with a spherical tool (b).

Algorithm 2. Hierarchical collision detection algorithm between two blocks.

Function ENH_COLL (nodes: Ntool, Nobj; mode: Op)
 If Ntool collides Nobj
 Then
 Variable Nmax, Nmin
 If (Op = ‘subtraction of matter’)
 Then Nmax = Nobj,max and Nmin = Nobj,min
 Else Nmax = Max density – Nobj,min and Nmin = Max density – Nobj,max

 If (Ntool,max ≥ T) and (Nmax ≥ T) then
 If ((Ntool is node or Ntool,min ≥ T) and (Nobj is node or Nmin ≥ T)) then
 Add to the list C[tool,obj],
 all the pairs (Vtool,Vobj) ⊂ (Ntool ∩ Nobj), with LOD = 0
 Else if (Nobj is node or Nmin ≥ T) then
 For each child Ntool[i] of node Ntool Do ENH_COLL (Nobj, Ntool[i], Op)
 Else if (Ntool is node or Ntool,min ≥ T) then
 For each child Nobj[i] of node Nobject Do ENH_COLL (Nobj[i], Ntool, Op)
 Else if (size(Ntool) > size(Nobj)) then
 For each child Ntool[i] of node Ntool Do ENH_COLL (Nobj, Ntool[i], Op)
 Else
 For each child Nobj[i] of node Nobj Do ENH_COLL (Nobj[i], Ntool, Op)

574

Heurtebise and Thon

575

B. Enhancement of the addition/subtraction of matter
An enhancement of this sculpting method is the use of the
repartition structure, in the algorithm 2, to apply sculpting
operations not at the finest level of detail, but at a rougher level
of detail, in order to reduce the computation times, if
necessary. The interest is to permit to modify interactively the
matter with a tool. In the second step of the collision detection
phase, we stored in the list C[Ti,M] the couples of voxels
(Vti,VM) or (Vti,V'M) of the tool Ti and the matter M,
respectively, in collision at the finest level of detail of two
objects.

C. Experiments
The results given in this paper have been obtained on a PC
with an Intel Core 2 Duo 3 GHz with 4 GB memory, a NVidia
GeForce 9800 GTX+ with 1 GB video memory, and Windows
Seven 32 bits.

To determine the performance of each algorithm in function
of the size of the tool for an object in 512×512×512 voxels, we
perform two kinds of tests: addition and subtraction of matter.
For that, we create a filled (respectively empty) cube and a tool
with a given shape (sphere), for subtraction (respectively
addition) of matter. Then, we move the tool inside the 3D
object with a given step and we compute the average times per
frame of sculpture operations. For each algorithm, the
sculpture times are given in table 1. In this table, we compare
our algorithms with a virtual sculpture method without
collision detection algorithm (called algorithm 0 in table 1) to
refine the sculpture operations. In order to compare the
collision detection algorithms, the sculpture time excludes the
display times, which depends on the level of detail for display.

Table 1. Average sculpture times (in milliseconds)
per frame, for addition and subtraction of matter,

and several size of tool in n×n×n = n3 voxels.

Algorithms Addition of matter Subtraction of matter
323 643 1283 323 643 1283

#0 28.5 137.7 1001 27.9 138.4 1027
#1 38.9 195.9 1558 37.7 183.3 1572
#2 29.3 103.8 782.2 29.2 102.5 781.2

The table 1 shows that the sculpture times depend on the

size of the tool and the collision detection algorithm. Indeed, if
the size of the tool increases, the average number of voxels of
the tool in collision with the matter increases, consequently the
sculpture times increase.

Furthermore, the sculpture times, for the algorithm 1, are
higher than for the algorithm 0 without collision detection.
Indeed, the algorithm 1 uses a collision detection based on an
octree method, where the detection is made on all the levels of
detail of the object and the tool. So, the collision times become
so high that the sculpture times, for the algorithm 1, is higher
than in the case where no collision detection is used.

However, if we use the algorithm 2, based on our repartition
structure, the sculpture times become smaller than the ones
with the algorithm 1 or the algorithm 0 without collision
detection. Indeed, it is not needed to detect the collision
between a tool and the matter at the finest level of detail,
because the algorithm 1 stops the refinement before the finest

level of detail when minimal density is greater than a given
threshold. Furthermore, as the repartition structure, based on
an octree, is completely developed, the processing time for
each displacement into the repartition structure is optimized.

On the other hand, the repartition structure associated to a
3D object is cheaper in memory than the 3D object and its
levels of detail, or even the 3D wavelet transform. Indeed, the
repartition structure has a memory cost of (n3 – 1)/7 where
n×n×n is the size of the 3D object (with n = 2p and p is the
number of levels of detail of the 3D object). All the levels of
detail of the 3D object have a memory cost of (8n3 – 1)/7 and
the 3D wavelet transform has a memory cost of n3.

Consequently, the repartition structure allows us to reduce
the memory cost and the sculpture times during the sculpture
process, thanks to the use of detection collision algorithm
based on the repartition structure.

 (a) Teeth before (b) Teeth after

 (c) Vetebra before (d) Vertebra after

Figure 4. Teeth (a) and (b), and human lumbar vertebral body
L3 (c) and (d), both sculpted with several tools (sphere and

cylinder, in different size between 8×8×8 and in 64×64×64),
thanks to the two kinds of sculpture operation: addition and
subtraction of matter. The collision detection algorithm used
for these sculptures is the algorithm 2. The framerate during
the sculpture operations and the display is upper than 5 FPS.

VIII. Conclusion
We have presented in this paper a multiresolution model for
virtual sculpture of 3D objects with tools, using 3D wavelet.
The major drawbacks of multiresolution model [1] are the
problem of computation times and the limitation of the
memory size, which become very important, when 3D objects
are very large and/or very detailed. In order to solve these
problems, we proposed in the paper the use of a min/max
octree that allows us to easily and quickly know the maximal
and minimal densities of an area of a 3D object. Moreover,
during the sculpture operation, we do not need to store all the
levels of detail of our multiresolution model thanks to this
structure. Then, our main contribution was the use of this
structure to enhance the collision detection between a tool and

A repartition structure for collision detection and deformation of discrete objects based on 3D wavelets

the matter to be sculpted, during the sculpture operations.
Finally, we simply perform operations of addition and
subtraction of material by modifying density values of voxels.
To verify the applicability of our sculpting system, we have
conducted many sculpting sessions, which have resulted in
numerous interesting sculptures. Two examples are shown on
figures 4(a) and 4(b): Dental Scan [41] in 512×512×167
voxels, and on figures 4(c) and 4(d): micro-CT scan of a
human lumbar vertebral body L3 [42] in 244×512×512 voxels

IX. Future work
Many improvements of our sculpture system are possible, by
investigating open issues such as dynamical collision
detection, other sculpture operations, realistic deformation,
memory cost or computation time.

Our collision detection algorithm does not allow us to know
if a tool collides the matter between two distinct instants. We
plan to extend our collision detection algorithm to the
spatio-temporal collision detection, in order to have realistic
sculpting operation.

We will also investigate other sculpture operations, such as
the displacement of the matter, and we plan to take more
advantage of the levels of detail of the 3D Haar wavelet, in
order to accelerate these sculpture operations. In order to
obtain a realistic deformation of the matter by a tool, we plan
to add other information into our model, such as viscosity or
hardness.

Memory cost to store very large 3D objects in memory can
be very huge. Consequently, we plan to use our repartition
structure with the extended model, presented by Heurtebise et
al. in [22], which combines octree and wavelets: a 3D object is
roughly sampled in an octree, where each leaf containing data
is thinly sampled thanks to a 3D wavelet transform.

References

[1] X. Heurtebise, S. Thon, G. Gesquière. “Multiresolution
Representation and Deformation of Wavelet-based 3D
Objects”, In Short Communication Proceedings of
WSCG’06, Plzen, Czech Republic, 2006.

[2] I. Boada, I. Navazo, R. Scopigno. “Multiresolution
Volume Visualization with a Texture-Based Octree”,
The Visual Computer, XVII(3), pp. 185-197, 2001.

[3] E. Ferley, M. P. Cany, J. D. Gascuel. “Resolution
Adaptive Volume Sculpting”, Graphical Models,
LXIII(6), pp. 459-478, 2001.

[4] G. V. D. Bergen. “Efficient Collision Detection of
Complex Deformable Models using AABB Trees”,
Journal of Graphics Tools, II(4), pp. 1-14, 1997.

[5] S. Gottschalk, M.C. Lin, D. Manocha. “OBBTree: A
Hierarchical Structure for Rapid Interference Detection”,
In Proceedings of ACM SIGGRAPH, pp. 171-180, 1996.

[6] P. M. Hubbard. “Collision Detection for Interactive
Graphics Applications”, IEEE Transactions on
Visualization and Computer Graphics, I(3), pp.
218-230, 1995.

[7] G. Bradshaw, C. O’Sullivan. “Adaptive Medial-Axis
Approximation for Sphere-Tree Construction”, ACM
Transactions on Graphics, XXIII(1), pp. 1-26, 2004.

[8] S. Muraki. “Approximation and Rendering of Volume
Data using Wavelet Transforms”, In Proceedings of the
3rd conference on Visualization'92, pp. 21-28, 1992.

[9] A. Haar. Zur Theorie der Orthogonalen
Funktionensysteme, Ph.D. thesis, Gottingen, Germany,
1909.

[10] P. Pinnamaneni, S. Saladi, J. Meyer. “3-D Haar Wavelet
Transformation and Texture-Based 3-D Reconstruction
of Biomedical Data Sets”, In VIIP’01Proceedings of the
International Association of Science and Technology for
Development, Marbella, Spain, ACTA Press, pp.
389-394, 2001.

[11] X. Heurtebise. Représentation Multirésolution et
Déformation d’Objets 3D Définis par Enumération
Spatiale, Ph.D. thesis, Arles, France, 2007.

[12] T. A. Galyean, J. F. Hughes. “Sculpting: an Interactive
Volumetric Modeling Technique”, ACM SIGGRAPH
Computer Graphics, XXV(4), pp. 267-274, 1991.

[13] J. Ayasse, H. Müller. “Interactive Manipulation of Voxel
Volumes with Free-formed Voxel Tools”, In
Proceedings of the Vision Modeling and Visualization
Conference, pp. 359-366, 2001.

[14] R. Raffin, G. Thibault, G. Gesquière. “Simple and
Efficient Tools for Virsculpt”, In GRAPP’06
Proceedings of the first international conference on
computer graphics theory and applications, Lisboa,
Portugal, pp. 436-440, 2006.

[15] G. Dewaele, M. P. Cani. “Interactive Global and Local
Deformations for Virtual Clay”, Graphical Models,
LXVI(6), pp. 352-369, 2004.

[16] A. Angelidis, G. Wyvill, M.-P. Cani. “Sweepers: Swept
User-Defined Tools for Modeling by Deformation”, In
SMI’04 Proceedings of 2004 International Conference
on Shape Modeling and Applications, IEEE, Genoa,
Italy, pp. 63-73, 2004.

[17] R. N. Perry, S. F. Frisken. “Kizamu: A System for
Sculpting Digital Characters”, In Proceedings of ACM
SIGGRAPH, pp. 47-56, 2001.

[18] J. A. Bærentzen, N. J. Christensen. “Volume Sculpting
Using the Level-Set Method”, In Proceedings of the
Shape Modeling International, pp. 175-182, 2002.

[19] R. Raffin, G. Gesquière, E. Rémy, S. Thon. “VirSculpt:
A Virtual Sculpting Environment”, In GraphiCon’04
Proceedings, Moscow, pp. 184-187, 2004.

[20] J. A. Bærentzen. “Octree-based Volume Sculpting”, In
Proceedings of IEEE Visualization’98, IEEE CS Press,
pp. 9-12, 1998.

[21] X. Heurtebise, S. Thon. “Discrete Tools for Virtual
Sculpture”, In GRAPP’06 Proceedings of the first
international conference on computer graphics theory
and applications, Lisboa, Portugal, pp. 436-440, 2006.

[22] X. Heurtebise S. Thon. “Multiresolution Representation
and Deformation of very Large Volume Datasets based
on Haar Wavelets”, In GMAI ‘08 Proceedings of the
2008 3rd International Conference on Geometric
Modeling and Imaging, IEEE Computer Society, pp.
34-40, 2008.

[23] Y. Kitamura, A. Takemura, F. Kishino. “Efficient
Collision Detection among Objects in Arbitrary Motion
using Multiple Shape Representations”, In Proceedings
of the 12th IAPR International Conference, Jerusalem,
Israel, pp. 390-396, 1994.

576

Heurtebise and Thon

576

[24] C. O'Sullivan, J. Dingliana. “Real-time Collision
Detection and Response using Sphere-trees”, In
Proceedings of Spring Conference on Computer
Graphics, pp. 83-92, 1999.

[25] D. P. Dobkin, D. G. Kirkpatrick. “Determining the
Separation of Preprocessed Polyhedra - A Unified
Approach”, In ICALP’90 Proceedings of the 17th
International Colloquium on Automata, Languages and
Programming, London, UK, pp. 400-413, 1990.

[26] R. Seidel. “Linear Programming and Convex Hulls made
Easy”, In Proceedings of the 6th annual ACM
symposium on Computational Geometry, New York,
USA, pp. 211-215, 1990.

[27] M.C. Lin, J.F. Canny. “A Fast Algorithm for Incremental
Distance Calculation”, In Proceedings of IEEE
International Conference on Robotics and Automation,
Sacramento, CA, USA, pp. 1008-1014, 1991.

[28] D. Gilbert, D. W. Johnson, S. S. Keerthi. “A Fast
Procedure for Computing the Distance between Objects
in Three-Dimensional Space”, In Proceedings of IEEE
International Conference on Robotics & Automation,
4(2), pp. 193-203, 1988.

[29] S. A. Cameron. “Enhancing GJK: Computing Minimum
and Penetration Distances between Convex Polyhedral”,
In Proceedings of International Conference on Robotics
& Automation, pp. 3112-3117, 1997.

[30] F. Faure, S. Barbier, J. Allard, F. Falipou. “Image-based
Collision Detection and Response between Arbitrary
Volumetric Objects”, In SCA'08 Proceedings of the 2008
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Dublin, Irland, pp.155-162, 2008.

[31] G. Hirota, S. Fisher, A. State, C. Lee, H. Fuchs. “An
Implicit Finite Element Method for Elastic Solids in
Contact”, In Proceedings of Computer Animation 2001,
Seoul, pp. 136-146, 2001.

[32] P. Volino, N. Magnenat–Thalmann. “Resolving Surface
Collisions through Intersection Contour Minimization”,
ACM Transactions on Graphics, XXV(3),
pp. 1154-1159, 2006.

[33] B. Heidelberger, M. Teschner, R. Keiser, M. Müller,
M.H. Gross. “Consistent Penetration Depth Estimation
for Deformable Collision Response”, In Proceedings of
VMV’04, pp. 339-346, 2004.

[34] J. Barbič, D. L. James. “Time-critical Distributed
Contact for 6-DoF Haptic Rendering of Adaptively
Sampled Reduced Deformable Models”, In SCA’07
Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, San Diego, CA,
USA, pp. 171-180, 2007.

[35] B. Naylor, J. Amanatides, W. Thibault. “Merging BSP
Trees Yields Polyhedral Set Operations”, In Proceedings
of the 17th annual conference on Computer graphics
and interactive techniques, XXIV(3), pp. 115-124,
1990.

[36] M. Held, J. T. Klosowski, and J. S. B. Mitchell, “Speed
Comparison of Generalized Bounding Box Hierarchies”,
Technical report, Department of Applied Math, State
University of New York at Stony Brook, 1995.

[37] S. Redon. Algorithms for Interactive Dynamics
Simulation of Rigid Bodies, Ph.D. thesis, Evry, France,
2002.

[38] J. T. Klosowski. Efficient Collision Detection for
Interactive 3D Graphics and Virtual Environments,
Ph.D. thesis, State University of New York at Stony
Brook, 1998.

[39] W. E. Lorensen, H. E. Cline,. “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”,
Computer Graphics, XXI(4), pp. 163-169, 1987.

[40] J. D. Cohen, M. C. Lin, D. Manocha, M. K. Ponamgi.
“I-COLLIDE: an Interactive and Exact Collision
Detection System for Large-scale Environments”, In
SI3D’95 Proceedings of the 1995 symposium on
Interactive 3D graphics, pp. 189-196, 1995.

[41] DICOM Sample Image Sets (OSIRIX).
http://pubimage.hcuge.ch:8080/

[42] G. Beller, M. Burkhart, D. Felsenberg, W. Gowin, H.C.
Hege, B. Koller, S. Prohaska, P. I. Saparin, J. S.
Thomsen. Vertebral Body Data Set ESA29-99-L3,
http://bone3d.zib.de/data/2005/ESA29-99-L3/

Author Biographies
Xavier Heurtebise is a temporary researcher in
Computer Science at the University of Provence, France,
since 2007.
He joined the LSIS Laboratory, Marseille, France, in
2007. His research focuses on multiresolution
representation and deformation of discrete 3D objects.
He received his Ph.D. in Computer Science at the
University of Provence, France, in 2007. He graduated

from the Ecole Nationale Supérieure de Cachan, France, in
2003 and obtained a M.S in Computer Science from the
University of Provence in 2004.

Sébastien Thon is an assistant professor in Computer
Science at the University of Provence, France, since
2002. He received his B.S., M.S. from the University of
Limoges, France, as well as his Ph.D. in Computer
Science in 2001. He joined the LSIS Laboratory,
Marseille, France, in 2002. His main research interests
include natural phenomena modeling, animation and

virtual sculpture.

	I. Introduction
	II. Previous work
	A. Multiresolution representations
	B. Virtual sculpture
	C. Spatial Collision Detection

	III. Our original contribution
	IV. Multiresolution model
	V. The repartition structure
	VI. Our collision detection algorithm
	A. The complete hierarchical collision detection
	The choice of bounding volume (BVs)
	C. Enhanced hierarchical collision detection

	VII. Virtual Sculpture
	A. Steps of the addition/subtraction of matter
	B. Enhancement of the addition/subtraction of matter
	C. Experiments

	VIII. Conclusion
	IX. Future work

