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Abstract: For a few years cameras have been available
which are able to provide depth values gained from a PMD
chip through the Time-of-Flight principle. Recently, cameras
combining a normal color chip with such a PMD chip in a
monocular setup have been developed. One drawback of these
2D/3D cameras is that the resolution of the depth images is
much lower than those of the color images due to the limited
resolution of current PMD chips. This holds true whenever
PMD cameras and normal cameras are used together. How-
ever, for certain applications high resolution depth images are
desirable. The color images can be utilized to generate high
resolution depth images which are closer to the ground truth
than the depth images produced with common scaling methods.
A widely spread method to fuse the color and depth images
is cross bilateral filtering and this rather general method is
adopted in several approaches.
In this paper different bilateral filtering strategies are com-
pared in theory as well as in practice and especially the
iterative application is addressed. Similar approaches based
on a cost volume or on Markov Random Fields are addressed
additionally.

Keywords: Bilateral Filter, Time-of-Flight, PMD, Super-
Resolution, Sensor Data Fusion.

I. Introduction

In recent years cameras utilizing PMD technology to gener-
ate depth information through the Time-of-Flight principle
have become available. They operate by emitting modulated
infrared light and by measuring the phase difference to the
received light. The phase difference directly corresponds to
the distance of the reflecting object. PMD based cameras
are often used in conjunction with normal color cameras and
typically, the generated images are registered to gain pixels
with color and depth information. Furthermore, cameras that
combine a color and a PMD chip in a monocular setup have
been developed, e.g., ZESS MultiCam see figure 1 and [1]
or the ZCam (utilizing a different technology), eliminating
the need for a registration of the color and depth images.
These cameras record images with high frame rates but
the resolution of the depth images, typically 64 × 48 up to
204×204 pixels, is up until today low compared to the color
images. Another problem is the relative high noise level of

(a) 3k MultiCam F-Mount

(b) 41k MultiCam C-Mount

Figure. 1: The MultiCam was developed at the ZESS and
includes a color and a PMD chip in a monocular setup. A
previous version uses the 3k PMD chip from PMDTec (64×
48 pixels) and a VGA color CMOS chip. The newest version
incorporates a 1.3 mega pixel color CMOS chip and the 41k
PMD chip (204× 204 pixels).

the depth information.
Nevertheless, the additional dimension compared to ordi-

nary video makes it possible to overcome ambiguities and
distortions in standard image processing tasks.
For many applications high resolution depth images are
desired but a simple linear or quadratic scaling of the
depth images will result in invalid depth values whenever
the real geometry of the scene differs from the assumed
planar or spherical one respectively, see figure 2 for an
illustration. The depicted color and depth images are part of
the Middlebury dataset, cf. [2].
Instead of presuming certain geometry, it is possible to
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(a) Input image (b) Original depth (c) Downsampled by factor 10

(d) Linearly scaled (e) Cubically scaled

Figure. 2: Illustration of the deficiencies of standard resizing techniques when resizing depth images.

assume that color and depth coincide, i.e., close pixels
with similar color have also a similar depth. A common
approach for this purpose is cross bilateral filtering but there
are several possibilities how to apply it and how to choose
the parameters. In this paper several different approaches
are discussed and compared in theoretical and a practical
setting. Additionally, bilateral filtering is a computationally
expensive procedure and therefore, it is also addressed how
to restrict the bilateral filtering to an useful region of interest
that accounts for the nature of the depth values gained from
a PMD-chip.
Furthermore, recent depth super-resolution methods based
on Markov Random Fields (MRF) or a cost volume to judge
depth assignments are discussed and evaluated.

II. Related Work

Crabb et al. use in [3] a bilateral filter for depth augmented
alpha matting, which is also the focus of the work of Wang,
cf. [4]. A preliminary foreground described in terms of
probabilities is generated with the help of a dividing plane
in space. The closer the pixel is to the point of view the
more likely it belongs to the foreground. A bilateral filter
is then applied on this alpha matte fusing the depth and
color information. Schuon et al. proved in [5] the ability of
bilateral filtering to deal with geometric objects and in [6] a
variant designed to handle noise and invalid measurements

is presented.
Yang et al. define a cost function or cost volume in [7]
which describes the cost of in theory all possible refinements
of the depth value associated with a color pixel. Again a
bilateral filter is applied on this volume and after sub-pixel
refinement a proposed depth is gained. The optimization is
performed iteratively to achieve the final depth map. The
incorporation of a second view is discussed also. Bartczak
and Koch presented a similar method using multiply views,
see [8]. An approach working with multiple depth images
is described in [9]. The data fusion is here formulated in
a statistical manner and modeled using Markov Random
Fields on which an energy minimization method is applied.
Earlier Diebel and Thrun presented in [10] a similar method
which operates on a color and a depth image.
Another advanced method to combine range and color
information was introduced by Lindner in [11]. It is based
on edge preserving biquadratic upscaling and performs a
special treatment of invalid measurements.

III. Bilateral Filtering

Firstly, the method of bilateral filtering will be introduced
and later it is discussed how it can be applied on 2D/3D im-
ages. Afterwards, more complex approaches are briefly ex-
plained.
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A. Fundamentals

The method of bilateral filtering was introduced by Tomasi
in [12] and it works by calculating for each pixel a weighted
mean of all other pixels. The weight depends on the distance
in space between both pixels and their photometric similarity.
In practice, only the neighbors are involved in the calculation
(meaning the measure is truncated in space). Let the vector
x = [x, y]T denote the position of a pixel and let a (vecto-
rial) signal s(x) = [s1(x), s2(x), ..., sn(x)]T represent some
(vectorial) value at that position, e.g., the RGB color values
and the (measured) distance. Then the weighted mean µ

s(x)

for a pixel x is given by

µ
s(x)

=

∑
xi∈N(x)

s(xi) · h
[
g(x), g(xi)

]
∑

xi∈N(x)

h
[
g(x), g(xi)

] (1)

with N(x) representing some neighborhood of the pixel x
and h[·, ·] being the weighting function depending on the
distance between the pixels of interest. The summation in-
volves all pixels xi within the specified neighborhood. g(·)
is some functional mapping of the pixel, depending on the
pixel position and optionally depending also on the pixel
value. If it depends only on the pixel position (e.g. g(x) = x)
we have a conventional space variant or space invariant fil-
ter (h

[
g(x), g(xi)

]
= h[x − xi]), defined in the space do-

main. If g(·) additionally depends on the signal value itself

(e.g. g(x) =
[
xT , s(x)

T
]T

), we have a filter which works
in the space/similarity domain. If we restrict ourselves to
scalar valued weighting functions a general quadratic form
expressed in terms of the vector g is a good choice:

h
[
g(x), g(xi)

]
=

exp
{
−
(
g(x)− g(xi)

)T ·Π−1 · (g(x)− g(xi)
)}

(2)

Instead of defining the neighborhood directly with the Eu-
clidean distance in space

N2
d (x) = {x̂ : ‖x− x̂‖2 < d} (3)

it can now also be specified using the weighting function
h[·, ·]

Nε(x) =
{
x̂ : h

[
g(x), g(x̂)

]
> ε
}

(4)

with a threshold ε ≤ 1 thus involving all dimensions of the
signal in the specification of the neighborhood. This corre-
sponds to a truncated weighting function h[·, ·]. Now assum-
ing that s(x) = [x, s1(x), s2(x), ..., sn(x)]

T
= [x, ŝ(x)]

T ,

g(x) = s(x) and Π =

[
I · σspace 0

0 Πsignal

]
, where I is

the identity matrix corresponding in rank to the dimensions
of x, the multivariate weighting function separates into the
product of two Gaussian kernels:

h
[
g(x), g(xi)

]
= exp

{
− (x− xi)

T
(x− xi)

σ2
space

}
· exp

{
−(ŝ (x)− ŝ(xi))

T ·Π−1signal · (ŝ (x)− ŝ(xi))
}
.

(5)

Thereby, it is possible to specify the neighborhood radius d
such that Nε(x) ⊂ N2

d (x) by d =
√
−σ2

space log ε, which
reduces the computational complexity, since there are less
than 4d2 pixels xi ∈ N2

d (x) and these pixels can be directly
addressed.
Another typical assumption is restricting Πsignal to be
diagonal Πsignal = diag

(
σ2
1 , σ

2
2 , ..., σ

2
n

)
resulting in an

independence of the signal dimensions. The different
natures of space, depth measurements and color values can
be accounted for by choosing different smoothing values
σ2
space, σ

2
1 , σ

2
2 , ..., σ

2
n in the weighting function.

In the examples the signals s(x) are of the form
s(x) = [x, y, d(x), r(x), g(x), b(x)]

T with d(x) being
the distance measurement and r(x), g(x), b(x) denote
the RGB color value for a pixel x. The mapping g(·)
is simply the complete signal value g(x) = s(x) and
Π = diag

(
σ2
space, σ

2
space, σ

2
d, σ

2
color, σ

2
color, σ

2
color

)
. It

might be advantageous to weight the color components
differently or to use the L*a*b or the Luv color space to
make differences between color values perceptually uniform.

B. Iterative Application

It is possible to apply the bilateral filter iteratively. Different
approaches to that end are possible. Firstly, only the depth
values d(x) can be refined by the bilateral filter. This means
in practice that in each step the depth map produced in the
previous step and the original image are supplied to the bilat-
eral filter. For a pixel x and a recorded signal s(x) = s(0)(x)
this leads to the update formula for filtered signal values
s(1)(x), s(2)(x), ...

s(j+1)(x) =s(0)(x) · diag (1, 1, 0, 1, 1, 1)

+ µ
s(j)

(x) · diag (0, 0, 1, 0, 0, 0) . (6)

It should be mentioned that the mapping g(x) in µ
s(j)

(x)

uses the updated values of s(j)(x), i.e., g(x) = g(j)(x) =

s(j)(x).
Another possibility is to refine all measured dimensions.
This can be written with the recursion formula

s(j+1)(x) =s(0)(x) · diag (1, 1, 0, 0, 0, 0)

+ µ
s(j)

(x) · diag (0, 0, 1, 1, 1, 1) . (7)

Finally, it can be operated on all dimensions simultaneously
leading to

s(j+1)(x) = µ
s(j)

(x). (8)

When processing each point independently from all others,
i.e.,

µ
s(j)

(x) =

∑
xi∈N(x)

s(0)(xi) · h
[
s(j)(x), s(0)(xi)

]
∑

xi∈N(x)

h
[
s(j)(x), s(0)(xi)

] , (9)

this procedure is equivalent to the Mean-Shift algorithm
[13]. The coordinates of the signal are not changed in
the first two possibilities (eq. 6 and 7) and therefore, it is
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possible to address the neighboring pixels directly. The
complexity lies then in O(d2) for each iteration with d being
the radius of the neighborhood N2

d (x). In the last case (eq.
8) the neighborhood is unknown if the pixels are processed
simultaneously. Therefore, the signals for all pixels have
to be checked in a trivial implementation, although space
partitioning techniques such as kd-tree [14] or a spatial
registration of the filtered signals using dynamic arrays can
be applied to reduce the complexity.

C. Cost Volume Optimization Problem

Yang in [7] and Bartczak in [8] assign each (discrete) depth
change of a pixel a quadratic and truncated cost. Let
d1, . . . , dm be all possible depth values d(x) for a pixel x.
Then the cost function c (x, dk) which assigns a cost to a
change of the depth d (x) = dk is given by

c (x, dk) = min
{
γ, (d(x)− dk)

2
}

(10)

where γ is a truncating threshold. This cost function spans
the initial cost volume C(0) =

(
c
(

[x, y]
T
, dk

))
xydk

. The

costs C(·)
··dk

to refine all pixels to a certain depth dk are called
a slice and on each slice a bilateral filter is applied iteratively.
For the slice C(j)

··dk
a signal is given by

s(j)(x) =
[
x, y, d(x), r(x), g(x), b(x), C

(j)
xdk

]T
(11)

and the mapping is again g(x) = s(x).
The smoothing values are similarly Π =
diag

(
σ2
space, σ

2
space, 0, σ

2
color, σ

2
color, σ

2
color, 0

)
. The

filtered cost volume in iteration (j + 1) is determined by

C
(j+1)
xdk

= µ
s(j)

(x) · [0, 0, 0, 0, 0, 0, 1] . (12)

Now the filtered signal can be calculated with

s(j+1)(x) =
[
x, y, d̂(x), r(x), g(x), b(x), C

(j+1)
xdk

]T
, (13)

d̂(x) = arg min
dk

{
C

(j+1)
xdk

}
. (14)

Alternatively, the local minimum of a quadratic function that
is fitted to the minimum d̂(x) and its neighbors can be used
in the refined signal, which is called sub-pixel refinement.
The cost volume method is based on the assumption that the
scene is piecewise planar and therefore the cost of a pixel
for a certain depth is correlated to the cost of refining the
neighboring pixels to the same depth.
The minimum cost for a pixel can be directly used in the
next iteration as current depth estimate.

D. Markov Random Field Optimization

Another possibility to construct a high resolution depth map
is to formulate this task in a Markov Random Field (MRF)
and to maximize the posterior probability as is described by
Diebel and Thrun in [10]. This posterior probability depends
on the squared difference between the generated depth map

and the available depth measurements as well as on the
squared difference between the depth values of neighboring
pixels weighted by their photometric similarity. This follows
again the assumption that photometric and depth similarities
coincide.
The logarithmic posterior is minimized by the conjugate
gradient method. In each optimization step the photometric
weights have to be determined multiple times (in the line
search). Therefore, each iteration corresponds to multiple
iterations in the bilateral filtering methods described above.

IV. Region of Interest for PMD Chips

As mentioned before bilateral filtering is a computationally
expensive procedure. But in many image processing tasks
only certain parts of the images are actually interesting
and form the so-called region of interest (ROI). Applying a
bilateral filter only on the ROI care must be done cautiously.
Obviously, iterative calculations depend directly on the
results of all neighbors. But the information of each pixel
propagates in theory throughout the whole image after a
certain number of iterations. But in practice the influence
of non neighboring pixels is negligible for usual values of
σspace. Therefore, in addition to the pixels of the ROI at
least their neighbors should be processed as well.
When using a PMD-camera with a much lower resolution
than the available color image, it is essential to take the
characteristic behavior of the PMD-chip into account when
determining which area of the image should be filtered in
addition to the ROI. The PMD-data has a high noise level
and is affected by reflectance, illumination (visible light
as well as infrared light) and material of the objects in the
scene.

Two different cases can be considered: Either a high

(a) Schematic depth image (b) Final region of interest

Figure. 3: Schematic view of a foreground object covering
several depth pixel blocks and the resulting region of interest,
on which the bilateral filter shall be applied.

resolution ROI is available which was gained at least
mainly from the color image or a low resolution ROI was
determined based on the depth data. In both cases the ROI
should be enlarged by all pixels that share the same depth
pixel as a pixel in the ROI. This can be seen as filling the
low resolution depth pixels. Additionally, all neighboring
depth pixels should be included, because when a depth pixel
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(a) Middlebury data: Aloe (b) Middlebury data: Baby3

(c) Middlebury data: Midd1 (d) Recorded image

Figure. 4: Comparison of the generated depth images with the original depth or the handmade ground truth respectively using
different radii for σs = 10, σc = 30 and a downsampling factor of 10.

covers a border of an object it is unknown whether it is the
result of measuring the background or the object. If iterative
filtering is used, all pixels in the neighborhood depending on
the neighborhood radius are to be processed as well. If only
the border of an object is to be refined, inner pixel blocks
can be neglected, see figure 3 for an illustration. When
considering the computational cost of bilateral filtering,
possible implementations on a GPU should be mentioned as
well and will be discussed further in the next section.

V. Experiments

The different methods described in section 3 to scale the low
resolution depth images gained from a PMD based camera
are compared in this section qualitatively and quantitatively.
Since the ground truth, i.e., a high resolution depth image,
is normally not available or can only be derived per hand,
the Middlebury dataset, cf. [2], was used in the experiments
in addition to real camera images with handmade ground
truth. The following methods are being evaluated: Depth
refinement (eq. 6), depth and color refinement (eq. 7),

pixelwise (eq. 8, 9), cost volume (eq. 11,12) and MRF
optimization.
In table 1 the iterative development of the refined depth im-
ages for a Middlebury image using the different methods and
common parameters is shown. The available ground truth
depth image was downsampled by a factor of 10 to gain a
low resolution depth image to use as the starting point for the
super-resolution methods. Here σspace = 10, σcolor = 30,
σ−1d = 0 and 10 iterations were used. The resulting depth
maps are then compared to the original depth image. The
results for different images are shown in figure 4. Values
for the downsampled depth image and linearly as well as
cubically scaled images are given for comparison. A wide
variety of parameters were used on several images from the
dataset to ensure that the given results are representative. In
figure 5 the iterative development for the different methods
is illustrated and in figure 6 different downscaling factors are
compared.
Afterwards, the described methods are used on images
recorded with the already mentioned MultiCam. An exam-
ple is shown in figure 7 using a radius of 10 and again, the
iterative development is shown in figure 2. A ground truth
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(a) Middlebury data: Aloe (b) Middlebury data: Baby3

Figure. 5: The discussed methods in different iteration steps for σs = 10, σc = 30, a radius of 5 and a downsampling factor
of 10.

(a) Downsampling factor 4 (b) Downsampling factor 10 (c) Downsampling factor 20

Figure. 6: Comparison of the generated depth images with the original depth for different downsampling factors 4, 10, 20
based on the Middlebury data (Midd1) with σs = 10 and σc = 30.

was created for a few frames per hand and it was used to
measure the filtered depth images. The differences (SSD)
using different radii are also given in figure 4 as well as the
results using simple upscaling techniques.
The results clearly show that all methods produce depth
images that are much more accurate than a simple scaling
using standard techniques with the MRF method being an
exception. Linear and cubic scaling blur the depth images
which results in greater differences. The methods of depth
only and depth and color refinement perform very similarly.
The pixelwise approach is slightly weaker. The cost volume
method produces subjectively the nicest results, but it tends
towards to smooth contours especially for higher radii.
This behavior is in particular problematic for real recorded
images. The MRF optimization method produces visibly
good results but it changes to depth values to much and
thereby it diverges from the ground truth. It turns out, that
σ−1d = 0, i.e., neglecting the depth values when determining
the weights (Cross Bilateral Filtering) performs best. This
assertion holds true for all methods. Even in the MRF
optimization ignoring the differences to the available depth
measurements performs best. The fact that the results for

the synthetic and the real data are very similar proves the
validity of the results. Only the MRF optimization performs
significantly better for the real scenario when using high
radii, although it takes then easily several minutes to process
a single image.

In figure 8 processing times per iteration are given for the
different methods applied on the Middlebury image (see
figure 2) with a resolution of 465× 370 pixels and measured
on a Intel Pentium IV Core2Duo processor running at 3
GHz. There are also processing times for two GPU imple-
mentations of the depth only refinement method given, for
which an ATI HD 5770 graphics card was used. In the first
implementation all calculations for a pixel in an iteration
are done in one thread on the GPU and the second one is
a vectorized version. Here the pixelwise method performs
best. The runtime of the cost volume method depends on
the number of discrete depth steps (slices) of which 100
were used. The processing times using only 10 slices are
similar to those of the pixelwise method. As expected
the GPU versions perform by more than one order of
magnitude better. These numbers should provide an estimate
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(a) Input image (b) Recorded depth map (c) Hand made ground truth

(d) Depth only refinement (e) MRF Optimization

(f) Pixelwise refinement (g) Cost volume method (radius 5)

Figure. 7: Comparison of the filtered depth images with the original depth for the or the handmade ground truth respectively
using different radii for σs = 10, σc = 30 and a downsampling factor of 10.

of possible applications for these methods. Performance
values for the MRF optimization are omitted due to the large
dependence on the conjugate gradient method for which
many implementations are possible.

VI. Conclusion

In this paper different bilateral filtering techniques are
formulated and compared from a theoretic point of view as
well as using real 2D/3D recordings. When working with
2D/3D images usually the different types of data have to
be fused. In a monocular setup this can simply be done

by rescaling using common scaling techniques, otherwise
the images have to be registered first. It was found, that
all described bilateral filtering methods can be used to
scale the depth images and produce more accurate results.
Additionally, the cost volume based method results in strong
but often also to smooth contours. The depth and the depth
and color refinement methods perform very similarly and
better than the pixelwise method. On the other hand this
is the fastest one as the computational demand of these
methods is addressed as well. Two possible solutions to
reduce the processing times are discussed: the limitation of
the filtering to a region of interest and an implementation on
special hardware such as GPUs.
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Table 1: Resulting depth images after applying the super-resolution methods on a complete input image and a low resolution
depth image using different parameters.

Input image Depth image Downsampled factor 10 Linear upscaled

Only depth refinement method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

Color and depth refinement method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

Pixelwise method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

Cost volume method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

MRF opt. method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10
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Table 2: Resulting depth images after applying the super-resolution methods on a real recored input image and a low resolution
depth image using different parameters.

Input image Depth image Linear upscaled Ground truth

Only depth refinement method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

Color and depth refinement method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

Pixelwise method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

Cost volume method, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10

MRF opt. method,, Radius 5, σs = 10, σc = 30

Iteration 1 Iteration 3 Iteration 5 Iteration 10
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Figure. 8: Processing time per iteration for the different
methods.
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