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Abstract: In data analysis and decision making we need fre-
quently to judge whether the observed data items are normal or
abnormal. This happens in banking, credit card use, diagnos-
ing patient health state, fault detection in an engine or device
like an off-shore oil platform or gearbox in an airplane motor.
Sometimes the normal cases are boring and only the abnormal
cases are of interest. In practice, it happens quite frequently
that the normal state has a good representation, however the
abnormal cases are rare and the abnormal class is ill-defined;
in such a case we have to judge on the abnormality using infor-
mation from the normal class only. The problem is called ’one-
class classification’ (OCC). The paper gives a survey of methods
for performing the OCC. We show also an example: how to de-
tect a masquerader (non-legitimate user) in a computer system
– when observing a sequence of commands several thousands
long.
Keywords: Anomaly detection; One-class classification; In-
trusion detection; Object classification and recognition;
Schonlau’s masquerade data.

I. Introduction

Search for anomalous observations (called outliers) is as old
as the data analysis itself. There is no need to argue that data
models deduced from data contaminated with outliers may
yield very poor image of the structure of such data. Very
early it has been noticed that the outlying values may have a
damaging effect on the summarizing indices like the mean,
the variance, the correlation coefficients, and other indices
used for global description and future inference. In the early
days the outliers were considered as anomalous, possibly
erroneous observations, which should be identified and re-
moved from the analysis, or - at least - given smaller weights,
when building the model.
However, quite early it has been noticed that the found
outliers – representing seemingly anomalous observations –
might be true and that they might be an indication of a change
of the population subjected to analysis, e.g. the appearance
of a new species. More and more frequently it has been stated
that the outliers may be of interest by themselves. Such a dis-
cussion was held during the 2003 ISI Session in Berlin [4]
where two special sessions devoted to the theme ’outliers’
were scheduled.

A not so rare attitude towards outliers is shown by Dan Pel-
leg: In his Ph.D. Thesis [23], pp. 109–111, he considers
very large astronomical data where many outliers are found.
Dan Pelleg muses upon the meaning of the found outliers:
they may represent some classes of anomalies, both useful
(true novelty) and useless (some artifacts). The human ex-
pert may flag them as ’interesting’ or ’boring’. Pelleg states
that the domain expert usually wants to find truly exotic rare
events and not become swamped with uninteresting anoma-
lies. Many researchers show similar attitude.
In the following I will consider the situation when the out-
liers constitutede factothe target of the analysis. This hap-
pens, e.g., in banking, fraud credit card use, diagnosing a pa-
tients’ health state, fault detection in an engine or device like
an off-shore oil platform or gearbox in an airplane motor, to
naming a few. We want to know when the systems’ behavior
may be judged as normal, and when it starts to be abnormal.
The essential question is then: where in the data space are
the bounds permitting to distinguish between the normal and
the novel (abnormal) items. The problem is called also one-
class discrimination, or one-class classification, denoted also
as OCC.
The different approach of the OCC method is clearly stated
in [32]. We have a target class containing instance objects in
normal state. Each objectz is characterized in a multi-variate
way and is given as a multivariate data vector. We imagine
that all the objects constitute a multivariate data cloud in
the data space. We are concerned with establishing some
bounds for the normal objects, that is to mean, objects being
in the ’normal’ state. To find the bounds, we may consider
the following two concepts:
• distanced(z) or probabilityp(z) (resemblance) of an ob-
jectz to the target class represented by a training setXtrain

• thresholdθd or θp put on the distance or probability (re-
semblance).
New objects are accepted when the distance to the target class

is smaller than the thresholdθd:

f(z) = I(d(z) < θd) (1)

or when the probability (resemblance) is larger than the
thresholdθp:

f(z) = I(p(z) > θp) (2)
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whereI(.) is the indicator function. The one-class classifi-
cation methods differ in their definition ofp(z) (or d(z)), in
their optimization ofp(z) (or d(z)) and in their thresholds
with respect to the training setXtrain.
The most important feature of one-class classifiers is the
tradeoff between the fraction of the target class that is ac-
cepted, and the fraction of outliers that is rejected. The frac-
tion of instances belonging to the target class and rejected by
the classifier is called the first kind error (err1). This error
can be evaluated using an independent test data sampled from
the same target class.
The one-class approaches should be flexible enough to pro-
vide decision boundaries which are robust against outliers
hidden in the training data. Although the one-class classifi-
cation method should accept the most probable objects from
the target class, it may happen that the hidden outliers are
not rejected. Therefore it is desirable to have a bank of spe-
cial algorithms which permit to find the delimiting boundary
in presence of known outliers. For instance, when a Gaus-
sian distribution is used as the model of the target class, the
model and training procedure may be not flexible enough to
reject a single outlier, and some robust estimates of the un-
derlying Gaussian distribution are preferable. Other models,
like the Parzen density, can easily incorporate some hidden
outliers into their probability estimators.
The schedule of the paper is the following: The present sec-
tion constitutes the introduction to the considered problem.
Next section (II) is a kind of survey of the state-of-the-art
in the theme OCC; I will give there a survey of the litera-
ture on the problem, including novel publications on banking
and telecom frauds, also on bio-surveillance, which have ap-
peared this year (2010). In section III a real problem: detect-
ing illegitimate users in a computer network is considered.
The problem will be illustrated with Schonlau’s masquer-
aders data. I will show a detailed analysis of one sequence of
system calls, 15000 calls long, issued by the user #24. It is
known that the sequence of calls numbered 10001–15000 is
contaminated with calls of an alien user being intruder to the
system. I will show a simple statistical method which is able
to detect the alien blocks of system calls. I will show also the
OCC approach using classic Gauss, robust Gauss and Parzen
density modelling ofp(z) appearing in formula (1) and point
out some difficulties appearing for that data. Section IV con-
tains short concluding remarks.

II. One-class classification: The state of the 
art

Outliers are as old as data analysis. A rich bibliography on
outliers may be found in the book by Barnett and Lewis [1];
the book had three editions. More up-to-date surveys may
be found in Hodge and Austin [16] and Bartkowiak [3]. The
early trend has considered in the first place the problems:
How to identify the outliers, how to assess their impact on
the models, how to construct robust methods (estimators) re-
sistant to outliers.
Outliers in the context of novelty detection or one-class clas-
sification are considered in recent surveys by Markou and
Singh [18] (two separate papers constituting part 1 and 2 of
the survey), also by Patcha and Park [22]. The mentioned re-

views offer a rich help in bibliographical details, e.g. [18]
part 1 and part 2 offer 64 and 91 references, and [22] as
much as 100 references. The problem of OCC was formu-
lated somewhere in the last decade of the XXth century, the
mentioned survey papers cover the period till about 2007.
Now, subsection A will introduce shortly the developments
of the OCC methodology when using statistical and neural
networks (NN) approaches. Subsection B will be devoted to
OCC in computer networks. Information on the most recent
sources and developments is presented in subsection C.

A. Statistical and NN approaches to OCC

The topic is greatly covered in the papers by Markou and
Singh [18], where both statistical and neural network (NN)
methods in OCC are reviewed.
The statistical approach attempts in first place to model
the data by some densities or probability distributions in a
parametric or a non-parametric way. Next a kind of ac-
ceptable bounds for the area of plausible observations is
sought. Parzen density estimators, mixture models, hidden
Markov models and hypothesis testing play here a great role.
Concerning non-parametric approaches, the k-NN (k near-
est neighbors) method is often used; it is preferable because
it does not require a smoothing parameter (necessary when
using Parzen windows or rbf kernels). Also clustering ap-
proaches (Bezdek’s fuzzy C-means) belong here.
The string matching approaches launched by Stephanie For-
rest and her group, also by DasGupta and collaborators, are
gaining more and more attention. This is a biology-inspired
approach, it includes also as a particular method the negative
selection process. The methods proved to be successful in
many industrial applications and analysis of sequential phe-
nomena, e.g., computer intruders.
Generally, as stated in [18] part 1, there is no single best
model which might be advised. The success depends not
only on the type of the method used but also on statistical
properties of the data.
Neural Networks (NNs) provide another methodology for
OCC. The authors [18] state in part 2 of their review that
”compared to statistical methods, some issues for novelty de-
tection are here more critical”, by which they mean the abil-
ity of the NNs to generalize and the computational expense
while training the networks. In particular, they are critical
about MLPs (Multi-Layer Perceptrons), which are the most
frequently used NNs. The authors state that ”neural networks
fail at automatic detection of novel classes because they are
discriminators rather than detectors”. The classical MLP
builds open plane boundaries, such as hyper planes, to sepa-
rate targets from each other and fail to decide when a feature
set does not represent any known class. Yet in novelty detec-
tion is is important to build bounds for the groups, to state
the novel happenings. To do this, several researchers have
tried to create new feed-forward networks for new class sam-
ples while keeping the earlier trained on previously known
classes (like the cascade-correlation network, growing neu-
ral gas and their variants).
A very nicecombination of NNs and probability theory
was elaborated by C.M. Bishop [7]. He was concerned with
monitoring of oil flow in multi-phase pipelines containing a
mixture of gas, oil and water. The problem was to deter-
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mine the magnitude of the proportions (F1, F2, F3) of these
constituents, using a non-invasive beam monitoring yielding
output on a densitometer. Bishop builds an unconditional
probability density model using a standard Parzen window
approach with kernel density estimation. For a given train-
ing sample, the parametersθ of the model (including the in-
teresting proportions F1, F2, F3) may be estimated from the
LikelihoodL of the sample. The valueL(θ̂) is viewed as a
kind of (not-normalized) index of fit of the assumed model to
the analyzed data. Bishop shows that, when taking samples
with different structure (different proportions), and comput-
ing for them the likelihood with parameters obtained from
the training sample, one finds markedly different values of
the likelihood. The task of training a MLP may be formu-
lated as an optimization problem for a Bayesian model that
usesp(x), the unconditional density of the input data. Bishop
suggests that this unconditional density (its estimatep̂(x))
can provide an appropriate quantitative measure of novelty.
If the input vector falls into a region of lowp(x), then the
input data may be considered as novel. A variance factor
of the formσy(x) = {p(x)}− 1/2 might be used to assign
x-dependent error bars to the network outputsyj(x) via the
modelp̂(x) (j denotes thejth output neuron). Bishop shows
the scheme of a RBF network performing such tasks.
Other methodologiesuse Support Vector Machines (SVM),
Adaptive Resonance Theory (ART), Radial Basis Function
(RBF) networks and a general class of auto-associators, in-
cluding various variants and modifications of self-organizing
maps, also some hybrid methods. It is impossible to mention
all the approaches which proved to be important and success-
ful in real life applications. Let me emphasize below a few
of them:
1. Outstanding results in the domain of OCC were obtained
by the Pattern Recognition (PR) Group from Delft Univer-
sity of Technology, The Netherlands – under the guidance of
R.P.W. Duin. The Group has developed special Matlab soft-
ware (PRTools [13]) for solving various difficult PR prob-
lems.
D.M.J. Tax has written his PhD Thesis entitled ”One-class
classification; Concept-learning in the absence of counter-
examples” (thesis supervisor: R.P.W. Duin); he has also de-
veloped (and is still maintaining) the Matlab ddtools [33]
software devoted to data domain description and outlier de-
tection. D.M.J. Tax and R.P.W. Duin [32] sought for a mini-
mal sphere containing almost all ’normal’ points allowing for
a few slack variables (SVM approach) and obtained in such
a way the one-class SVM algorithm.
A. Ypma and R.P.W. Duin [37] have elaborated learning
methods for machine vibration analysis and machine health
monitoring, with special emphasis on learning temporal fea-
tures with the ASSOM (Adaptive Subspace Self-Organizing
Map) and ICA (Independent Component Analysis).
A crucial concept in novelty detection is the concept of
similarity between objects. E. Pȩkalska and R.P.W. Duin
[24] have worked on ”Dissimilarity representations in pat-
tern recognition: Concepts, theory and applications”, which
resulted in the book under the same title [24]. E. Pȩkalska,
M. Skurichina and R.P.W. Duin have considered combining
dissimilarity-based one class classifiers [25], which is impor-
tant in situations, when the non-target (outlier) class is ill-

defined and under-represented and various classifiers yield
much differentiated results.

2. B. Scḧolkopf et al. (see references in part 2 of [18]) pro-
posed an alternative approach to build a one-class classifier.
Instead of the hyper-sphere with minimal radius to fit the data
(the Tax-Duin approach) they proposed to separate the sur-
face region containing the data from the region containing no
data. This is achieved ”by constructing a hyper-plane which
is maximally distant from origin with all data points lying on
the opposite side from the origin and such that the margin is
positive”. They proposed an algorithm performing this task.

3. There are very interesting approaches for constructing test
sets for deviations from normality using the biologically in-
spired method ofnegative selectionand distinguishing be-
tweenSelf andnonSelf[10, 14, 11, 31, 35].

B. Anomalies in functioning of computer networks

The topic is greatly covered in the survey paper by Patcha and
Park [22]. The authors are mainly concerned with intrusion
detecting systems. The development of networking tech-
nology increases instantaneously the treat from spammers,
attackers and criminal enterprisers. Today’s commercially
available detection systems are predominantly signature-
based intrusion detection systems and are designed to detect
known attacks by utilizing the signatures of known attacks.
The techniques aiming at anomaly detection are subdivided
into several groups:
G1. Statistical anomaly detection. Earliest examples of
systems for statistical anomaly detection are: the Haystack
and the SPADE (Statistical Packet Anomaly Detection En-
gine). The SPADE system observes the activity of sub-
jects and generates profiles to represent their behavior. An
anomaly score of a packet was proposed as the degree of
strangeness based on recent past activity. However, it was
stated that skilled attackers can train a statistical anomaly de-
tection to accept abnormal behavior as normal.

G2. Machine learning based anomaly detection. The
authors [22] have written: ”Machine learning aims to answer
many of the same questions as statistics. However, unlike
statistical approaches which tend to focus on understanding
the process that generated the data, machine learning tech-
niques focus on building a system that improves its perfor-
mance based on previous results. ... We seek for systems
that are based on the machine learning paradigm and have
the ability to change their execution strategy on the basis of
newly acquired information.” One finds in this group:
System based sequence analysis(sliding windows method)
as proposed by Stephanie Forrest and Steven Hofmeyr,
Bayesian networksdescribed as graphical models that en-
code probabilistic relationships among variables of interest;
they may encode causal relationships and be used to predict
the consequences of an action. Because Bayesian networks
have both causal and probabilistic relations, they can be used
to combine prior knowledge with data,
Principal component analysis– has many interesting aspects
of application. One of them is the ability to reduce the dimen-
sionality of the data without loos of the essential information
hidden in the data. Reduction of dimensionality is often con-
sidered in the preprocessing stage of the analyzed data. We
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obtain then new features which summarize somehow the ob-
served variables and constitute the essential message of the
signal while leaving out the background noise.
Markov models, in particular Markov chains and hidden
Markov models. They have been employed intensively for
anomaly detection, modelling normal system behavior, pro-
filing system call sequences and shell command sequences,
detecting anomalies in the usage of network protocols by in-
specting packet headers.

G3. Data mining based anomaly detection. Methods
used:classification-based intrusion detection, inductive rule
generation algorithms, fuzzy logic techniques, genetic algo-
rithms, and special kind of neural networks.

G4. Clustering and search for distance-based outliers.
This is a largely exploited domain with many references.

G5. Association rule discovery. Example: The ADAM
(Audit Data Analysis and Mining) system. It performs
anomaly detection in such a way that it firstly filters out most
of the normal traffic; then it uses some classification tech-
niques to determine the exact nature of the remainder.

G6. Hybrid systems from the above mentioned. Example:
the EMERALD system. The importance of this group seems
to be growing: see the series of theHAISconferences.

The road ahead – as viewed in [22] – looks dark and there are
many open challenges. The traditional intrusion systems are
unable to adapt adequately to new network paradigms like
wireless and mobile networks and to meet the requirements
posed by high-speed (gigabit and terabit) networks. Today’s
intrusion detection approaches will not be able to protect ad-
equately tomorrow’s networks against intrusions and attacks.
This was the opinion expressed in 2007 [22]. The paper by
Tom Rowan [26] published in 2010 confirms that opinion.

C. Very recent approaches

The interest in OCC is growing. The journalTechnomet-
rics has published this year (2010) several invited papers on
novelty/fraud detection and bio-surveillance [29, 6, 15, 30],
written a.o. by researchers from Bank of America, A.T.&T
Labs-Research, and the Dept. of Decision and Decision Sys-
tems of University of Maryland. The papers show the extent
of the problems in the context of money laundering (credit
cards, debit cards, online banking or checks, especially in
the retail banking sector), fraud in telecommunications (sub-
scription fraud, intrusion fraud, fraud based on loopholes in
technology, on new technology, on new regulation) and con-
temporary realistic treatises of terroristic bio-attacks.
Another important stream of research is concerned with de-
tecting novelty in mechanical devices, with novelty meaning
abnormality, that is to say, bad functioning due to some dam-
ages. How to describe the domain for the normal state of
a mechanical device? Let us consider a gearbox. Such a
gearbox, incorporated into a mechanical machine, emits vi-
bration signals which contain information on normal (or ab-
normal) functioning of the gearbox. The essential question
arises: is the given working gearbox still in good state (de-
scribed as ’normal’) or does it starts to be worn out and have
some damages which are not seen directly? Is it possible to
make a diagnosis of the state of the machine on the base of
vibration sounds it is emitting? The problem has appeared

frequently in specialistic journals likeJournal of Sound and
Vibration andMechanical Systems and Signals Processing,
where interesting elaborations on the topic may be found.
OCC with its decision boundaries may work only with one-
class data, however a reasonable number of samples from the
normal state is needed. The decision boundary may be also
constructed when using not only the normal data, but also
counter-examples, that is some data from the abnormal class.
Generally, it may be not possible to get an adequately repre-
sentative sample from the abnormal class; however it is al-
ways possible to generate some counter-examples at random
in the outer space of the normal data.
A recent paper [31] elaborated an algorithm inspired by the
human immune system whose task is to differentiate between
the antigens and the body itself and protect the body from in-
vasion of external microorganisms like bacteria or viruses.
The process is described asnegative selection.The authors
[31] have elaborated a similar procedure (based on the im-
mune system metaphor) to study the behavior of an offshore
structure with a steel platform and to model damages in an
aircraft wing. Both devices were working in changing en-
vironmental conditions. A novelty index was proposed to
measure the deviations in time as a result of changes of some
conditions.
Nowadays it is stated that the difficulty and specificity of
problems lies also in the growing size of observed data
streams, their heteroscedasticity and mixed-attributes con-
tent. Some simple, yet promising methods have been elab-
orated in [21, 36]. We feel also the need of constructing au-
tonomous robots working in an unknown environment and
being able to adapt to that environment, as considered in [20].

III. Real example: Search for abnormal pat-
terns in system calls

This section shows an example of detecting masqueraders in
system calls. The data were specially prepared by Schonlau
and are publicly available atwww.schonlau.net [27, 28]; at
the same URL one may find also references of papers whose
authors were trying to identify the masqueraders (illegitimate
users) in the provided data.
The data set contains 50 users; for each of them a sequence
of 15000 system calls was recorded. The entire sequence of
15000 calls for each user was subdivided into 50+100=150
blocks, each block containing 100 calls. Thus we have two
periods to analyze. They constitute part A and part B of the
data. The first 50 blocks (part A) are intact, however some
of next 100 blocks (part B) were exchanged by blocks from
20 extra users (aliens, playing the role of masqueraders). The
information on the block exchange is given separately, so one
can check whether one’s alien block identification was right
or not. The task is to recognize the alien blocks in the last
100 blocks of each of the 50 legitimate users.
Many sophisticated methods have been applied to identify
the masqueraded blocks, most of them rather unsuccessful
(see [27]).
In this paper I will analyze data for one user only – out of
50 users whose data were possibly contaminated with some
alien blocks. I will show a more detailed analysis for the
user no. 24(#24). This user has alien blocks located at
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the position 119–139 (in the original numeration of blocks
counted as 1, 2, . . . , 150). Generally, the information on the
location of the alien blocks is not given a priori – I will use it
for illustration only, to show how the OCC method works.
The following tasks will be considered:

1. A general statistical characterization of the data avail-
able for user #24, including some characteristics of the
incidence matrix (blocks× frequency of commands).

2. Reducing the dimensionality of the analyzed data by ex-
pressing it by new uncorrelated features called principal
components (PCs).

3. Analysis of part A of the data: How many PCs are suf-
ficient to reproduce the blocks from part A of the data?
Say, this happens for K PCs. The number K is called
intrinsic dimensionality(dim) of the data.

4. Say, we found that the intrinsic dimensionality is K. Are
K PCs sufficient to model the data of user #24 in a satis-
factory way? Are these PCs also sufficient to model for
that user some data recorded in a later period?

5. Building decision boundaries (DBs) for the data of user
#24 using pairs of selected PCs. The DB will be con-
structed with the aim of making the first kind error (false
positive) of orderα, whereα is a small number con-
tained in the interval [0, 1], for example,α = 0.05. Be-
cause pairs of two PCs constitute 2-dimensional data, it
is possible to illustrate the constructed DBs in a plane,
together with the training data. Moreover, it is possi-
ble to project to the same plane some other (say, test)
data, and see the efficacy of the constructed DB; it is
also possible to calculate the classification errors.

6. Constructing DBs and evaluation of classification errors
for data based on ensembles composed fromK > 2
PCs.

A. Statistical characterization of system calls by user #24

We know already that there were altogether 15000 system
calls subdivided into 150 blocks, with 100 commands each.
The 150 blocks were further subdivided into part A with 50
blocks and part B with 100 blocks. Next, part B was further
subdivided into sub-parts Bnc (non-contaminated) and Bcm

(contaminated) containing commands of the legitimate user
and of the masquerader respectively.
We found how many unique commands were used in the first
and second part of the data; also: how many unique com-
mands were used in the Bnc and Bcm subgroups.
It was stated that

• All 15000 calls have used u=119 different commands.
• First 5000 calls used u1=90 unique commands.
• Next 10000 calls used u2=111 unique commands.
• Alien blocks contained in set Bcm used u3=31 unique

commands. There were 21 alien blocks composing this
set.

The alien 21 blocks contained diffrrr=15 new commands,
which have not appeared in the remaining blocks attributed
to the legitimate users (that is: they did not appear neither in
part A nor in the subset Bnc). The new alien commands are
shown in Table 1.

Table 1: Specific commands in alien blocks
’emacs-20’ ’faces’ ’head’ ’ksh’ ’movemail’
’netscape’ ’netstat’ ’popper’ ’rsh’ ’showps’
’tail’ ’top’ ’uniq’ ’wc’ ’which’

From the sequence of the 150 blocks gathered for user #24
the incidence matrixXall of size150×119 was calculated. It
was obtained by calculating the frequencies of the 119 com-
mands in each block. After doing that, each element of the
incidence matrix was divided by 100. The data matrixXall

obtained in such a way yielded the basis for further consider-
ations. It was split into two parts: the matrix ’dat50’ obtained
from the first 50 blocks of the data and ’dat100’ obtained
from the remaining part of the data (100 blocks):

Xall = dat 50︸ ︷︷ ︸
Part A

+ dat 100︸ ︷︷ ︸
Part B

It is sure that the data matrix ’dat50’ was composed from
commands issued only by user #24. This set ’dat50’ was
used for training purposes to establish decision boundaries
for the ’normal’ commands issued by user #24. The data
matrix ’dat100’ contains, in principle, also commands issued
by user #24, however it is contaminated: some blocks are
for sure alien, which means that they were issued by an alien
unknown user. The task is to recognize, which ones are own
(those of user #24) and which ones are the aliens.
In explorative data analysis it is advised to work with
standardized or at least with with centered data. We decided
to work only with centered data. Thus the matrix ’dat50’ was
centered to 0, using the vector ’mu50’ of means calculated
from that matrix. This yielded the data matrix ’dat50C’ (with
the property that each of its column has mean equal to 0).
To center the data matrix dat100 we have used the ’mu50’
vector of means derived from the set dat50. The centered
matrix was denoted as ’dat100c’, the lower case ’c’ indicat-
ing that the centering for that matrix was carried out using
not own centers.

In the following we will find some intrinsic characteristics of
the data contained in the data matrix dat50C. Next we will
look whether the discovered intrinsic characteristics are pre-
served for all data vectors contained in the ’dat100c’ data
matrix. We hope to find in dat100c some data vectors which
are really outstanding – that is, are outliers, when compared
to the main ’dat100c’ bulk of data.

B. Reduction of dimensionality of the data

We consider the following question: Is it possible to reduce
the dimensionality of the data, that is, to construct of fewer
number of new variables (features) representing the informa-
tion (energy, inertia) contained in the data? The problem may
be solved by computing eigenvalues of the covariance matrix
calculated from the analyzed data matrix [17].
The respective eigenvalues (e-vals) were calculated from the
training set dat50C. Looking at the values of subsequent e-
vals (not shown here) one states that they are decaying fast to
zero. It is known that the subsequent e-vals are equal to the
variance of the principal components (PCs) obtained from the
eigenvectors connected with the respective e-vals([17]). The
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sum of the e-vals is equal to the sum of variances (called total
inertia) of all original variables from the data matrixXall.
The cumulative sums of the eigenvalues, normalized so that
they show how large fraction of total inertia is explained by
subsequentk e-vals (k = 1, . . . , 50), are shown in Figure 1.
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Figure. 1: Normalized cumulative sums of eigenvalues ob-
tained from the centered incidence matrix ’dat50C’ calcu-
lated from blocks 1–50 for user #24

One may notice in Figure 1 that the first three e-vals have
markedly large contributions to the total inertia, the next ones
contribute less and less. Withk = 20 e-vals a fraction 0.995
of Total inertia is explained and indeed, there is no need to
consider more features. Exact values of the (normalized) cu-
mulative sums of the first k=20 e-vals are given below (to be
read row-wise):

0.650 0.799 0.885 0.914 0.933
0.947 0.957 0.965 0.971 0.976
0.979 0.982 0.985 0.987 0.989
0.990 0.992 0.993 0.994 0.995

Each subsequent e-value permits to construct one new fea-
ture called principal component (PC). The constructed fea-
tures are mutual orthogonal and span the principal compo-
nent space (see, for example, [17] for exact formulations and
explanations).

C. Analysis of parts A and B of the data: How many PCs are
necessary? The reconstruction method

By inspecting Figure 1, one obtains an idea, how many PCs
are essential for modelling the data for the considered user.
It is seen that already k=3 PCs explain most of the inertia
(exactly: an 0.885 part) of the data. This might provide ex-
planations for the rough interrelation among the system calls
occurring during the first 5000 calls of that user. However,
probably not all specificities are accounted for. These speci-
ficities may occur more often during the next 10000 calls
constituting part B of the data.
The number of retained e-vals will be denoted as ILE. They
designate the number of essential (intrinsic) dimensions of
the data. We decided to investigate the effect when retaining
5, 10, and 16 e-vals:

ILE = 5, 10, 16.

The effectiveness of the representation will be expressed by
the correlation coefficients between the original data vectors
x and the reconstructed data vectorsx̂ILE when retaining
ILE e-vals and constructing for them ILE PCs. We call such
a correlation coefficientr-stacked. It acts as a similarity in-
dex. Exact formulae how to reconstruct the data vectors from
a fewer number of principal components may be found, for
example, in [17, 2], they are also given at the end of this sub-
section as eq. (3) and (4).
Figure 2 shows the correlation coefficients obtained for the
50 data vectors contained in part A of the data. The fi-
gure contains 3 panels, corresponding to ILE=5 (top exhibit),
ILE=10 (middle exhibit) and ILE=16 (bottom exhibit). One
may notice that with increase of the parameter ILE the simi-
larity indexr-stackedis also increasing. One does not notice
specific outliers; the increase happens more or less uniformly
for all the considered 50 data vectors. Taking ILE=10 and
next ILE=16, one obtains all values ofr-stackedgreater then
0.90 and 0.95, which means a great similarity.
An analogous figure constructed from data set B using eigen-
vectors from set A is shown in Figure 3. We show there
the behavior of the similarity indexr-stackedapplied to the
data set dat100c. Let’s say clearly: The reconstruction shown
in that figure was done using eigenvectors derived from set
dat50C. The results of the reconstruction are shown in the
form of three panels. They illustrate the reconstruction ob-
tained from ILE=5 (top), ile=10 (bottom) and ILE=16 eigen-
vectors.
The reconstructed items based on data vectors belonging to
the legitimate user are denoted as black open circles. Com-
paring these with the exhibits in previous figure, one may
notice that generally the reproduction is worse, although it
ameliorates with increase of ILE, that is, with the number of
eigenvalues used for reconstruction.
The reconstructed items based on data vectors belonging to
the masquerader are shown as big red squares. One may see
that all of them are clearly outstanding, the discrepancy be-
tween them and the bulk of the black open circles is quite
large. This means that the covariance structure in the data
set composed from data items of the legitimate user is quite
different from the covariance structure of data items pro-
duced by the masquerader. Notice also that the location of
the big red squares is barely influenced when using 5, 10, or
16 eigenvectors for reconstruction.
The reconstruction was performed using the following for-
mulae. LetX denote the centered data matrix, and letA(K)

be the matrix containing column-wise the firstK eigenvec-
tors (obtained from the covariance matrix ofX):

A(K) = (a1, . . . ,aK).

Then the new features, called PCs, are obtained as linear
combinations of the original features appearing in subse-
quent columns ofX:

Y(K) = XA(K). (3)

The matrixX̂, reconstructed fromK principal components,
is computed by the reverse formula

X̂(K) = Y(K)(A(K))T . (4)
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Figure. 2: User #24, data part A. Similarity between the
original data vectors and their reconstructions from ILE=5
(top), ILE=10 (middle), and ILE=16 (bottom) exhibit. The
black open circles indicate data vectors belonging to the le-
gitimate user #24

50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
User 24 r−stacked for blocks 51−150, ILE=5

block #

r−
st

ac
ke

d

own
contamin

50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
User 24 r−stacked for blocks 51−150, ILE=10

block #

r−
st

ac
ke

d

own
contamin

50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
User 24 r−stacked for blocks 51−150, ILE=16

block #

r−
st

ac
ke

d

own
contamin

Figure. 3: As Figure 2, however constructed from data part
B, using eigenvectors obtained from part A of the data. No-
tice that generally the reproducibility of the items of the le-
gitimate user is poorer as in Figure 2. The big red squares
indicate masqueraded blocks
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D. 2D data. Building decision boundaries using the OCC
approach

We will now illustrate the OCC approach in which the con-
cept of density modelling of the analyzed data is used. To
illustrate graphically the approach, we will use pairs of prin-
cipal components (PCs) constructed from the training set
dat50.
The very first PCs obtained from set dat50 (the training set)
summarize some general characteristics of the data vectors
contained in that set. These characteristics should be valid
also for other data vectors obtained for that user and included
into its test set (called ’dat100’). However, the test set con-
tains also a small lot of some alien data vectors belonging
to an unknown masquerader. We suppose that the alien data
vectors have a specific interdependency structure which will
manifest itself only in higher order PCs, which are destined
to illustrate some specific relations occurring in small subsets
of data.
The analyzed data (for user #24) had 21 alien blocks which
were implanted – in unknown positions – into the set dat100
after removal of the original blocks. We found some indica-
tions that the alien blocks might manifest themselves in the
PCs no. 9, 10, 11, 14, 15.
Below we show illustrations of constructed DBs when taking
as data the following pairs of principal components: (PC1,
PC2), (PC9, PC10) and (PC13, PC14). They confirm our
supposition that lower order PCs express some general re-
lations between the features, while higher order PCs may ex-
press more specific characteristics owned by few data vec-
tors.
The constructed DBs will be based on

a) classic Gaussian distributions, with parametersµ andΣ
estimated from the training data,

b) robust Gaussian distributions, with parametersµ andΣ
estimated iteratively in a robust way by an algorithm
which is down-weighting in subsequent steps the data
vectors with big distance from the centerµ,

c) Parzen-window classifier, where the respective density
distribution is estimated as the sum of Gaussian kernels
[12, 33]:

f(x) =
n∑

i=1

exp(− (x − xi)T h−2(x − xi) ) .

The free parameterh is optimized by maximizing the
likelihood on the training data using leave-one-out.

From the mentioned three classifiers the Parzen classifier is
the most flexible one, however it needs a reasonable training
sample, especially in the low density area.
For a given distribution we estimate firstly its empirical pro-
bability density. Next we find areas of low density. This
done, we are able to depict a contour delimiting areas of low
density from those of high density. We use here additional
condition that the first kind error - when discarding observa-
tions falling into the low density area - should be equal to an
assumed significance levelα, for exampleα = 0.05. The
obtained delimiting contour is calleddecision boundarywith
significanceα.
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Figure. 4: Training data dat50 and test data dat100 (green
stars) depicted in the coordinate system<PC1, PC2>, with
decision boundaries established from dat50. Red squares de-
note alien blocks

We will investigate the efficacy of the constructed deci-
sion boundary for each pair of the analyzed PCs sepa-
rately. The results are shown in Figures 4, 5, 6 – for
the pairs <PC1, PC2>, <PC9, PC10>, <PC13, PC14>
respectively.

Analysis of the pair<PC1, PC2>

This is the pair of principal components which extracts most
of the common overall structure of the data. The first PC
provides a new feature which looks often like an average of
all the analyzed variables. As shown in Figure 1, the first two
PCs explain (and are able to reproduce) 79.9% of total inertia
of the data.
The data vectors belonging to the legitimate user have similar
distribution both in the ’dat50’ and the ’dat100’ data set. This
sounds optimistic. However the masqueraded blocks fall into
the same area. Thus the conclusion: the first two PCs cannot
identify the masqueraded blocks.

Analysis of pairs<PC9, PC10> and<PC13, PC14>

These pairs of PCs are responsible only for an 0.08 and an
0.05 part of total inertia. This means that they explain only
some specificities of the data. The masqueraded blocks have
moved to the border of the data cluster containing data vec-
tors coming from the legitimate user; however they are not
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Figure. 5: The same representation as in Figure 4, however
in the coordinate system<PC9, PC10>. There are two big
outliers marked as stars

outstanding and we are not allowed to point them out as alien
data vectors.
On the opposite, some data vectors coming from the legiti-
mate user, appear located outside the decision boundary (two
big outliers) and may be pointed out as aliens.
Thus the general conclusion from this part of analysis is:
working only with pairs of PCs we are not able to recognize
the alien blocks coming from a masquerader.

E. Investigating first kind errors when working with ensem-
bles of PCs

It was found in previous subsection that pairs of PCs are not
able to discriminate the contaminated blocks. May this be
possible when working not with pairs but with ensembles of
PCs, composed from first K PCs? We have investigated the
problem for K=2, 3, 4, 5, 10, 16 and 20. The value K denotes
also dimension (dim) of the data. The DBs were constructed
under the assumption that the first kind errorα is set equal
to 0.05. The methods for construction of the DBs were the
same as in previous subsection.
The results of the investigation are shown in Table 2.
For each K (denoted in Table 2 as ’dim’) the following ac-
tions were performed:

1. The 3 classifiers based on the 3 chosen methods were
trained using the first K PCs obtained from the training
data set dat50. This resulted in three functions desig-
nating the respective DBs. Only a fractionα = 0.05
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Figure. 6: The same representation as in Figure 4, however
in the coordinate system<PC13, PC14>

of all the legitimate data was allowed to be outside the
decision boundary. For some discretization reasons the
nominal level0.05 could not be kept exactly by the con-
structed DBs: both Gaussians allowed a fraction 0.04
to be outside the DB; the Parzen method did that for a
fraction equal to 0.06. This happened for all sizes of the
investigated ensembles.

2. The performance of the obtained DBs was tested on
the set called ’dat100nc’ (’nc’ stands fornon contami-
nated). It is expected here that the proportions of data
points outside the respective DBs will be similar (may
be a little worse) than the respective proportions shown
for dat50. Table 2 shows that – generally – the DB from
robust Gauss performs well for the dat100nc data. Ordi-
nary Gauss methods starts to be worse for higher dimen-
sions, especially for dim=16 and dim=20. The Parzen
method performs badly: it yields a high percentage of im-
properly recognized target data.

3. Performing the test on the dat100cm data, containing
only contaminated blocks, one may notice that both
Gaussian methods fail for dimensions lower than 20:
they do not recognize these data as alien. On the op-
posite, the Parzen method (except dim=2) works well
for these data and recognizes them properly.

Let us say that the decision boundaries were obtained from
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Table 2: Proportions of data sets located outside the deci-
sion boundary obtained when using three densities: ordi-
nary Gauss (oG), robust Gauss (rG) and Parzen Kernels (Pz).
’dim’ means dimensionality of the data

dim=2 dim=5 dim=10 dim=16 dim=20
dat50
oG 0.0400 0.0400 0.0400 0.0400 0.0400
rG 0.0400 0.0400 0.0400 0.0400 0.0400
Pz 0.0600 0.0600 0.0600 0.0600 0.0600
dat100nc
oG 0.0253 0.0127 0.0633 0.1013 0.1519
rG 0.0253 0 0.0253 0.0253 0.0380
Pz 0.0633 0.2405 0.4430 0.5316 0.5443
dat100cm
oG 0 0 0 0.0476 1.0000
rG 0 0 0 0 0.6190
Pz 0 0.9524 1 1.0000 1.0000

training data given by an incidence matrix of size
50 × 119, thus the number of observed variables is more
then twice as large as the number of rows constituting the
data matrix, which means enormous over-fitting. Therefore
it was absolutely necessary to preprocess the data and reduce
them to a much smaller number of new features, called PCs.
The new features were obtained by a spectral decomposition
of the data matrix; moreover the features were extracted se-
quentially. With growing number of features the instability
of the classifiers is expected to rise.
The essence of the performed OCC method is to find areas of
low probability. However, to find these, we need large sam-
ples of data, which can not be done for the analyzed exam-
ple. Despite this, we got results which are reasonable. The
applied Gaussians need estimates of the their parametersµ
andΣ, thus for larger dimensions (> 10) there are no free
parameters left, and we should not expect any generalization
abilities of the derived boundaries. To our surprise, we got
coherent results. The problem may be elaborated in another
way [34], but this is beyond the scope of this paper.

IV. Concluding remarks

The specificity of finding and identifying novel unexpected
abnormal phenomena was reviewed. We have explained,
what is specific in the one-class-classification named OCC.
In the last decade it became obvious that one-class classifiers
are needed in many important domains of our life environ-
ment. We need monitoring systems using non-invasive mea-
surements able to signalize that something abnormal starts to
happen. Abnormal events to be prevented include: an unex-
pected eruption of a volcano, a leakage of an off-shore plat-
form in the Mexican Gulf, an outbreak of an atypical flue
decimating the population, a plane crash. There is also the
need of designing autonomous robots working in an vision-
based environment, being able to detect novelty and concen-
trate to explore further this novelty.
Which is the preferable method for designing the one-class
classifier and finding the unusual observations? It depends
on the data. There is no single omnibus method for all data.
As an example, we have analyzed the data for user #24 from
Schonlau’s data, where the main task is to recognize the
blocks implanted by an intruder. The reconstruction method

proved to work fine: it has recognized all the implanted
blocks as not belonging to the legitimate user. An analo-
gous analysis for a different user (# 26, not shown here) did
not work so good: the reconstruction method has discovered
only half of the implanted blocks. This is quite plausible:
the intruder must not for the entire time behave differently:
partially he may use similar commands as the legitimate user.
The OCC approach needs an assumption on the data distri-
bution or density. Three models were considered: Ordinary
Gauss, Robust Gauss, SVM. It appeared that our data (50 or
100 blocks of data vectors with 119 variables), even after a
transformation to 50 PCs, are not suitable to obtain reliable
results.
We did not consider the problem, how accurate are the de-
cision boundaries constructed from relative small samples
compared to relative large number of features. Some indi-
cation how to find instability of classifiers may be found in a
paper by Tax and Duin [34].
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