
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 3 (2011) pp. 780 -787

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Integrating Knowledge of City Entities Extracted

from DBpedia and GeoLite into the EKOSS Failure

Cases Repository to Enhance Semantic Search

Capabilities
*

Weisen Guo
1
 and Steven B. Kraines

1

1 Science Integration Program (Human), Department of Frontier Science and Science Integration, Division of Project Coordination, the

University of Tokyo, Kashiwa, Japan

{gws, sk}@scint.dpc.u-tokyo.ac.jp

Abstract: Domain-specific repositories of manually created

semantic descriptors usually contain detailed knowledge with

“heavy-weight” semantics about particular aspects of the

domain, but they often lack common knowledge about the

concepts and entities that are described. Integrating some of this

common knowledge into the repository can enhance the

capabilities of semantic search in the repository. We use

common knowledge about city entities from DBpedia knowledge

base and GeoLite city database to enhance the EKOSS failure

cases repository, which contains knowledge about failures in

engineering. Custom parsers are used to extract common

knowledge from the two open data sources, and special semantic

descriptors, which we call standard entity statements, are

generated from the extracted knowledge. We link the city

instances in failure case semantic statements with the standard

city entity semantic statements, and we demonstrate the new

types of semantic search capabilities that are made possible by

the integration of the three semantic resources. *

Keywords: EKOSS, DBpedia, GeoLite, Semantic Search, Logic

Inference, Semantic Integration

I. Introduction

The Web is becoming one of main ways that human share

knowledge. On the conventional Web, data have only

human-readable semantics. However, more and more data

sources are adding structure to their data, including semantic

tags that are computer-readable. Structured data with

semantics can be utilized by computers more intelligently

than data having only human-readable semantics [2].

For example, in order to obtain more accurate results for

some types of complex search queries [3], the EKOSS system

uses Description Logics (DLs) [2] to create semantic

statements in the form of DL ABoxes, each of which

describes a knowledge resource, e.g. an abstract of a scientific

article. The semantic statements are then loaded into a

knowledge base for reasoning. Due to current limitations of

natural language processing technologies, the semantic

statements need to be created manually [2] or

* A preliminary version of this paper was presented at NWeSP 2010 [1].

semi-automatically [4] in order to guarantee that they describe

the domain-specific knowledge with rich and accurate

semantics. However, even though DLs enable inference of

implied relationships between entities to get more interesting

results [5], the EKOSS knowledge base still can only answer a

limited range of search queries.

One reason is that while a semantic statement always

contains detailed domain-specific knowledge, it often omits

common knowledge about related concepts and entities. This

occurs because 1) the authors of the semantic statements leave

out common knowledge that is known to most human readers

and 2) the authors of semantic statements often cannot input

all of the related information due to limitations of time and

personal knowledge. For example, third-party curators

entering data based on some text authored by another person,

such as an abstract of scientific article, are generally limited to

the specific content of the source text.

Human readers can associate expressions of

domain-specific knowledge with related common knowledge

that is already in their heads. But computers do not have this

ability. Therefore, it is necessary to directly provide the

computers with the related common knowledge that is needed

to understand the whole idea conveyed by the knowledge

resource.

Many data sources contain common sense knowledge.

Some of them have broad domain coverage, such as DBpedia

[6], [7], Freebase [8], and YAGO [9]. Some of them are more

domain-specific, such as the DOAP dataset [10] that is used to

describe software projects, the GeoNames [11] geographic

database that is available and accessible through various Web

services, the FOAF dataset [12] that is used to describe basic

attributes of people and relationships among them, and the

DBLP database [13] that provides bibliographic information

on major computer science journals and conference

proceedings. Several of these data sources have been linked

with each other, and many more are planned to be linked in

the future. These linked data sources contribute to a web of

Linked Open Data (LOD) [14].

We can obtain common knowledge related to a particular

Guo and Kraines

781

repository of domain-specific semantic statements from the

available LOD or other open structured data sources. First, we

must decide which kind of common knowledge should be

added to the repository. Second, we need to find available data

sources containing the required common knowledge. Third,

we extract the common knowledge and convert it into the

representation of the repository. Fourth, we enrich semantic

statements with the related common knowledge.

The basic procedure is simple. If each step can be finished

successfully, then the enriched repository should be able to

answer more complex and interesting search queries.

However, there are several concrete problems that must be

addressed; we will discuss these in the following sections.

First, we explain the basic approach we have used to enrich

the EKOSS failure cases repository with common knowledge

of city entities extracted from DBpedia knowledge base, one

of the main LOD data sources containing structured

information extracted from Wikipedia [15], and GeoLite City

database [16], which is another open structured data source

containing geographic information.

EKOSS (Expert Knowledge Ontology-based Semantic

Search) [2] is a web-based knowledge sharing system that

enables users to create one or more computer-understandable

descriptors, called semantic statements, that describe their

knowledge resources, such as scientific articles, using

OWL-DL [17] ontologies. EKOSS then uses a reasoner based

on the RacerPro DL inference engine [18] to match a semantic

query against the semantic statements. The EKOSS system

has been used to create semantic statements for 291 failure

cases selected from the failure knowledge database created by

the Japan Science and Technology Agency (JST) [19]. These

291 semantic statements, hereafter “failure case statements”,

were created using the SCINTENG ontology [20], which

provides a formal knowledge representation language and

background knowledge in engineering.

We can do semantic searches of the EKOSS failure cases

repository using both logical and rule-based inference [3],

[20]. However, the EKOSS failure cases repository lacks

common knowledge about the different entities. In particular,

almost all of the failure cases occur in specific cities, but the

common knowledge about the city where the failure occurred,

such as population and location, is generally not specified. If

such common knowledge about cities were made available,

more useful searches would be possible.

We first attempted to extract the information about city

entities from the DBpedia knowledge base only. However,

upon inspection of the DBpedia data, we discovered that the

accuracy of geographic information is somewhat low.

Therefore, we use information from the GeoLite City database

to replace the geographic information for the corresponding

entity from DBpedia (Section II). Next, we use a set of

templates to automatically generate a special semantic

statement in the EKOSS system, called a standard entity

statement, for each city entity extracted from DBpedia and

GeoLite (Section III). The third step is to match each instance

of the class city (we show class names in bold type) in the

failure case statements with the standard entity statement that

describes the equivalent city (Section IV). In Section V, we

enhance the original EKOSS reasoner to support searches of

the enriched repository. Our experiments show that we can get

informative search results from the enriched repository for

some complex search queries that did not obtain any results

from the original repository. Finally, we conclude this paper

with a discussion of related work and a summary.

II. Extracting Common Knowledge about City

Entities from DBpeida and GeoLite

The aim of the work presented here is to add some common

knowledge to the EKOSS failure cases repository. The

SCINTENG ontology class city is used often in the

repository, appearing 181 times. Therefore, we decided to

extract information about city entities from the DBpedia

knowledge base. We have used the DBpedia 3.4 datasets [7],

which contain 41,062 city entities. The DBpedia 3.4 ontology

has 166 properties whose domain can be an instance of the

class city. However, considering the hierarchy of the property

subsumption tree and the semantic meanings of the properties,

we determined that just half (83) of the properties are

semantically unique. Furthermore, we found that 14

properties were not used with any entities in the DBpedia

knowledge base. The remaining 69 properties that are used to

describe attributes of specific city entities in the DBpedia

knowledge base are listed in Table 1 together with the number

of times that they are used. The property counts in Table 1

include usages of the properties with entities other than city.

For example, the property count for “areaTotal” includes

usages for country entities as well as city entities.

Our goal is to add common knowledge about cities that

could be useful for conducting semantic searches.

Considering the meanings and content of the 69 properties, we

selected 19 properties that are most likely to be useful for

semantic searches of the EKOSS failure cases repository. The

selected properties are marked with “Y” in the “Use” column

in Table 1.

Population density is a property that is particularly relevant

to the failure cases. Upon inspection of the data from

DBpedia, we found that some cities do not have population

density values even though they have an area value and a

population value. Furthermore, even when a city has a

population density value, that value does not always agree

with the corresponding area value and population value. In

order to keep the data consistent, we discarded the population

density values extracted from the DBpedia knowledge base

and recalculated them using the corresponding area value and

population value whenever both values were available.

Name Count Use
Properties whose domain is http://dbpedia.org/ontology/City

Day 1709 N

distanceToEdinburgh 5 N

scottishName 118 N

irishName 175 N

cornishName 108 N

federalState 9 N

associationOfLocalGovernment 2 N

administrativeCollectivity 65 N

Province 6611 N

Saint 1271 N

Frazioni 541 N

crownDependency 32 N

distanceToCardiff 21 N

distanceToLondon 16 N

Integrating Knowledge of City Entities into the EKOSS Repository 782

gaelicName 582 N

welshName 272 N

manxName 23 N

Meaning 84 N

Department 17 N

administrativeDistrict 96 N

jointCommunity 7 N

Region 6481 N

Properties whose domain is

http://dbpedia.org/ontology/PopulatedPlace

areaMetro 910 Y

populationMetro 1,408 Y

populationTotal 146,216 Y

populationMetroDensity 157 Y

populationAsOf 104,147 Y

foundingDate 16,935 Y

areaUrban 245 Y

populationUrban 1,803 Y

populationDensity 91,741 Y

populationUrbanDensity 66 Y

foundingYear 82 Y

leaderTitle 26568 N

postalCode 75363 N

motto 2120 N

areaMagnitude 16 N

areaCode 62151 N

establishedTitle 20003 N

demonym 5035 N

censusYear 190 N

leaderParty 389 N

largestSettlement 10 N

language 1076 N

languageType 64 N

capital 4891 N

leaderName 13920 N

largestCity 424 N

regionalLanguage 225 N

ethnicGroup 1022 N

foundingPerson 47 N

Properties whose domain is http://dbpedia.org/ontology/Place

areaTotal 136,042 Y

areaWater 71,851 Y

maximumElevation 921 Y

coordinates 202,766 Y

areaLand 72,886 Y

elevation 139,621 Y

minimumElevation 839 Y

location 66784 Y

nativeName 8112 N

nickname 2522 N

length 6892 N

width 2128 N

nearestCity 7107 N

otherName 6270 N

percentageOfAreaWater 4631 N

height 1071 N

depth 1822 N

type 61247 N

Table 1. The 69 properties that can be used with the class city

in the DBpedia 3.4 knowledge base together with the number

of usages and whether the property was used in our work.

The locations of cities are another useful form of

information. The property “location” is used 66,784 times in

DBpedia; however, it is used with city entities as domain

entities only 20 times (most usages are with other place

entities). Therefore, we looked for other open structured data

sources with city location information. The GeoLite database

[16] contains accurate information for cities, including the

latitude, longitude, country code, city name, state/region, and

population. Therefore, by mapping the city name of a GeoLite

record to the name of a city entity in DBpedia, we can get its

latitude and longitude coordinates as well as the country and

state or region where it is located. Mapping cities that have

unique matching names in each data set is trivial. For cities

having non-unique names, we utilized the state/region

information in GeoLite to disambiguate them. Most city

entities in the DBpedia knowledge base have labels that

include the state, prefecture, or province name as a suffix. For

example, DBpedia contains a city entity labeled

“Paris,_Texas”. There are six cities with the name “Paris” in

GeoLite. One of them has state/region “TX”, which we can

identify as “Texas” by using US and Canada ISO 3166-2

Subcountry codes [21] (for other countries we used the FIPS

10-4 code [22]). Therefore, we mapped the city named “Paris”

with state/region “TX” in GeoLite to the city entity in

DBpedia labeled “Paris,_Texas”. We then used the country

code to identify the country where the city is located. Also, the

coordinates of cities in GeoLite are more comprehensive and

accurate than in DBpedia, so even when DBpedia contained

coordinates data for a particular city, we replaced that with the

GeoLite coordinates data.

III. Generating Standard Entity Statements

through Templates

The rationale for generating standard entity statements for

each of the city entities is as follows.

A semantic search on the EKOSS system begins when the

EKOSS reasoner, which has loaded the DL ontology TBox

into its knowledge base, receives a search query. First, it loads

one of the available semantic statements into its knowledge

base as the ABox. The reasoner checks whether or not the

search query can find a set of matching instances in the ABox.

If a set of matching instances is found, those results are

recorded. The reasoner then removes the ABox from the

knowledge base and loads another semantic statement. This

process is repeated until all available semantic statements are

checked.

For each specific entity that has some common knowledge

we would like to use, such as a city entity having location and

population properties, we need to load that information into

the knowledge base. If the common knowledge was added to

each semantic statement, the knowledge would be duplicated

many times, leading to problems in scalability and data

maintenance. By just creating one standard entity statement

containing all of the common knowledge for that specific

entity, we avoid duplicating common knowledge imported

into the system.

There is no direct mapping between the properties of the

SCINTENG ontology and the properties of city entities in

DBpedia. Therefore, we created several templates for

converting the properties of city entities extracted from

DBpedia to the properties of SCINTENG ontology, as shown

in Table 2.

 Property

extracted

Property

of SCINTENG

1 city location

country

city (city) has location

nation (country)

2 city coordinates city (city) has location

Guo and Kraines

783

[double1,

double2]

point in space (latlong)

point in space (latlong)

has latitude coordinate (lat)

coordinate (lat) has value double1

point in space (latlong)

has longitude coordinate (long)

coordinate (long) has value double2

3 city foundingDate

string

city (city) has start time

point in time (string)

4 city foundingYear

string

city (city) has start time

point in time (string)

5 city population*

double

city

populationAsOf

string

city (city)

has single property dimension with unit

number of persons value (population*)

number of persons value (population*)

has value double

number of persons value (population*)

has possible individual

point in time (string)

6 city area** double city (city) has area

area value (area**)

area value (area**) has value double

area value (area**)

has specific type of unit

square kilometer (square kilometer)

7 city

population*Den

sity double

city (city)

has single property dimension with unit

density value (population*Density)

density value (population*Density)

has value double

density value (population*Density)

has specific type of unit

density unit (persons per square

kilometer)

8 city elevation

double

city (city) has length

altitude (elevation)

altitude (elevation) has value double

9 city
minimumElevat

ion double

city (city) has length

altitude (minimum elevation)

altitude (minimum elevation)

has min value double

10 city
maximumElevat

ion double

city (city) has length

altitude (maximum elevation)

altitude (maximum elevation)

has max value double

* indicates Urban, Metro, or Total.

** indicates Urban, Metro, Total, Land, or Water.

Table 2. The templates for converting the properties extracted

from DBpedia and GeoLite into expressions in the

SCINTENG ontology.

Each entry in the second column is in the form “domain

instance label propertyName range instance label or range

value”. Each entry in the third column is in the form “domain

class name (instance label) property name range class name

(instance label)” for object properties, and “domain class

name (instance label) property name range value” for

datatype properties. The instances with bold labels in the

second and third columns having the same names are

equivalent. The other instances in the third column are local:

they have unique URI’s that distinguish them from other

instances having the same label but that are created by

applications of the template to other cities.

If a city entity has both a population value and an area value

for urban, metro, and/or total, we calculated the corresponding

population density (population density = population / area)

and then applied template 7 in Table 2.

The DBpedia 3.4 knowledge base has 7,107 entries of

property “nearestCity” for place entities. However, we only

found 6 entries whose domain and range are both city entities.

To get more information about proximity of cities, for each

city entity city1, we calculated the distances to all other cities

by using the Haversine formula [23]. Then, for each city city2

having a distance of less than 100 kilometers to city1, we

created the following two properties:

city (city1) has proximity proximity (“within 100 km”).

city (city2) has proximity proximity (“within 100 km”).

Using the above methods, we generated standard entity

statements for 9,993 cities. Figure 1 shows a graph

representation of the standard entity statement for Shanghai

city. Boxes show instances of classes from the domain

ontology, colored according to the major upper class: spatial

locations are blue, events are pink, physical objects (not

shown) are gray, activities (not shown) are yellow, and values

are white. The text in each box above the line is the instance

label and below the line is the class name of that instance.

Arrows show properties expressing the asserted relationships

between instances.

Figure 1. The standard entity statement for Shanghai city

shown as a graph.

IV. Linking Failure Case Statements and

Standard Entity Statements through Instances

of City

Each failure case statement is populated by instances whose

classes are known. Therefore, it is straightforward to find

instances of the class city. However, the actual city that an

instance of the class city represents is indicated by the label of

the instance, and the instance labels are in free text. So we

need to map each instance of city to a standard entity

statement via the instance label. This is a problem of term

normalization, which is usually solved by creating a lexicon.

We created a lexicon of city names based on the YAGO

ontology [9]. There are two kinds of facts in YAGO that give

Integrating Knowledge of City Entities into the EKOSS Repository 784

name information: “isCalled” and “means”. For each city

entity in DBpedia, we extracted these two kinds of facts from

YAGO and created a set of synonyms for the city. These two

kinds of facts are multilingual, which is useful for supporting

cross-language knowledge sharing [24]. The YAGO facts

contain other useful information, for example the fact that

“CN-31” means the city of Shanghai, and “Chinese capital”

means the city of Beijing. String matching [25] would be

inadequate to link instances of city having such labels.

Using the lexicon of city names, we could link most of the

instances of the class city in the failure case statements to the

standard entity statements correctly. However, for some city

instances in the failure case statements, no matching standard

entity statements could be found. Some of those instances

have complex labels that did not match the lexicon. Other

instances are actually small towns or villages that are not in

the lexicon. And of course even DBpedia does not include all

cities in the world. Finally, there were some city instances in

the failure case statements that matched with more than one

standard entity statement and could not be resolved with state

or region information using the technique described in the

“Paris” example in Section II.

We used the following semi-automatic method to create the

links. First, we created the links for all of the one-to-one

matches that were identified unambiguously by the lexicon.

This resulted in 111 links. We then manually checked the

other 70 instances of the class city in the failure case

statements to investigate why they did not match using the

lexicon. We found that 45 instances are not actually real cities,

12 instances are cities but are not in DBpedia, 4 instances are

cities that are in DBpedia but not in GeoLite, 2 instances had

misspelled labels, and 7 instances had labels that matched

with more than one city in DBpedia. Of the 9 instances that

were misspelled or that did not have one-to-one matches, we

were able to match 5 instances manually. We have integrated

this linking method in the EKOSS semantic statement

authoring tool so that the tool will suggest links for the user to

create from instances of city to standard entity statements

during the process of authoring a new failure case statement in

the enriched repository.

V. Enhanced Semantic Search in Enriched

EKOSS Failure Cases Repository

By linking the instances of the class city in the failure case

statements to the standard entity statements, we obtain an

enriched repository. We hypothesize that we can find more

useful information from the enriched repository than from the

original repository. However, supporting semantic search in

the enriched repository required that we modify the EKOSS

reasoner. In this section, we describe the modifications to the

EKOSS reasoner and present a scenario to demonstrate the

kind of complex semantic search results that are made

possible by the enriched repository.

We described the semantic search procedure of the regular

EKOSS reasoner in Section III. In order to support semantic

searches in the enriched repository, we added a function so

that when the reasoner loads one failure case statement into

the knowledge base as the ABox, it also loads all of the

standard entity statements that are linked to the failure case

statement. However, because we include proximity

information between cities, it is possible that one standard

entity statement will link to another standard entity statement

ad infinitum, causing the ABox to become large. This could

cause the reasoner to stop working because description logics

systems often cannot handle large amounts of instances [26].

Therefore, we added a parameter for the maximum length of a

chain of linked standard entity statements, md, to limit the size

of the ABox. If this parameter is set too low, it could limit the

ability of the EKOSS reasoner to find results for some special

search queries. Therefore, the md parameter provides us with

a means to tune the size of ABox in order to speed up the

semantic search as well as to avoid causing the reasoner to

stop working due to an excessively large ABox.

The standard entity statements for cities contain many

datatype properties, many of which we would like to use for

query matching. Therefore, we added a function for numerical

comparison to the EKOSS reasoner. The SCINTENG

ontology contains a class single property dimension with

unit that has some sub-classes for specific types of value, e.g.

area value, speed value, and length value. The SCINTENG

ontology also provides a datatype property “has value” with

eight sub properties, such as “has max value”, “has average

value”, “has exact value”. Each instance of the class single

property dimension with unit can have a “has value”

property (or sub-property) pointing to a number as well as a

“has specific type of unit” property that points to an instance

describing the units of the value.

The EKOSS reasoner uses RacerPro [18] as the inference

engine, which uses the new Racer Query Language (nRQL)

that supports constraint checking. For example, RacerPro can

answer queries like “find all cities with the area value greater

than 1000 square kilometers”. However, while the separation

of the value and unit of SCINTENG ontology increases the

expressiveness, it makes direct numerical comparison

impossible. We created a function to normalize each value

with a non-standard unit to a standard unit before sending the

value to the RacerPro inference engine. For example, there are

several sub-classes of area unit class, such as square meter,

square foot, and square kilometer. We set square meter as

the standard area unit. Each time the EKOSS reasoner finds

an instance of square foot or square kilometer class in a

semantic statement or a search query, it will convert that

instance into the standard square meter class and update the

corresponding value. This makes it possible for the RacerPro

inference engine to compare the numerical values correctly.

Using these functions, the EKOSS reasoner can support a

wide range of complex semantic searches in the enriched

repository. In the following, we use a scenario about a

researcher looking for information related to her research in

order to demonstrate the kind of semantic searches that can be

made.

Lucy is a researcher studying indirect impacts of disasters

on large cities. She wants to search the failure cases

knowledge base using the query “find all pairs of cities where

one city, with a population density less than 3000 people per

square kilometer, is the location of some disaster, and the

other city, with a population density more than 8000 people

per square kilometer, is in proximity to the first city”. Figure 2

shows her search query as a graph. Boxes show query

variables from the domain ontology, colored according to the

Guo and Kraines

785

major upper class as in Figure 1. The text in each box above

the line is the matching expression and below the line is the

class name of that variable. Arrows show properties

expressing the asserted relationships between variables.

Figure 2. Lucy’s search query shown as a graph.

The original EKOSS reasoner can evaluate matches of a

search query with a semantic statement at five levels of

complexity [3]. As described above, we have added functions

to support searching in the linked standard entity statements

and to support numerical comparison. We also added an

auxiliary function to support text matching using simple

matching expressions of the form “*XYZ*”, where the

symbol “*” indicates any text. For example, in Figure 2, the

labels of two variables of the class density value are “*Total*”,

which indicates they can match with instances of density

value that have labels containing the string “Total”.

The EKOSS reasoner checks Lucy’s query against the 291

failure case statements in the enriched repository and finds

one matching failure case entitled “Leakage of toxic

substances at chemical plant”. The matching results are shown

in Figure 3. Boxes show instances of classes from the domain

ontology, colored according the major upper class as

described in Figure 1. The text in a box shows the instance

label or matching expression, followed by a colon, followed

by the class name. Arrows with blue labels show properties

between instances in the enriched failure case statement.

Arrows with red labels show properties between class

variables in the search query. Red boxes show the instances

from the failure case statement that match with the class

variables of the search query.

Figure 3. The matching results graph of the enriched failure case statement entitled “Leakage of toxic substances at chemical

plant” and the search query shown in Figure 1.

The instances from the failure case statement that match

with the query variables satisfy both the class membership

and the property connections specified by the query. For

example, the relationship between “human suffering :

disaster event” and “Seveso : city” is inferred from the rule

that “if A is location of B, and C has changed event participant

B, then A is location of C”, which matches with the

specification of “city is location of some disaster event” in

the query. The city of Seveso matches with the query

specification of a city with population density less than 3000

people per square kilometer, and the city of Bresso matches

with the query specification of a city with population density

greater than 8000 people per square kilometer.

The original EKOSS failure cases repository and reasoner

cannot find any matches with Lucy’s query because the

information about population density and city proximity is

absent. Lucy could search in the repository with a simple

query “find a city that is location of some disaster event” first,

and then check DBpedia and GeoLite by hand to find which

matching cities meet the population density and city

proximity conditions. But it will take more time and effort. By

using the enriched EKOSS failure case repository and the

Integrating Knowledge of City Entities into the EKOSS Repository 786

enhanced EKOSS reasoner, Lucy can find the matching

failure case easily.

VI. Related Work

Choudhury et al. [27] integrated the YouTube tag space with

the LOD cloud. After getting a cleaned and ranked tag space,

they created a mapping mechanism from user tags to

ontological resources by using WordNet, a similarity module,

and the semantic indexing engine Sindice [28]. Therefore,

they created links between user tags and LOD. Our work is

different in that the EKOSS failure cases repository is

ontological resource, not a free text tag space.

Passant and Laublet [29] developed the MOAT model to

capture the semantics of tagging systems using a lightweight

ontology. MOAT provides a collaborative way for Web 2.0

content producers to give meanings to their tags in a

machine-readable format. Their approach used Linked Data

principles, such as defining the meanings by using URIs from

existing data resources. Therefore, by using MOAT, users can

create semantic tags for their contents, some of which contain

existing URIs from LOD. However, because their work is

based on a lightweight ontology, it does not support complex

reasoning.

Kobilarov et al. [30] used DBpedia as a controlled

vocabulary to connect identical entities in different domains

of the British Broadcasting Corporation (BBC). They

developed a system to automatically interlink existing BBC

concepts with DBpedia. They also developed a named entity

extraction system called Muddy Boots to extract entities in

BBC News articles, and then they used the DBpedia identifier

for those entities to link the News articles with documents in

other BBC domains. Consequently, they used LOD to

interlink the BBC domains but not to import common

knowledge into the BBC domains for logical reasoning.

Konyk et al. [31] created an OWL ontology to represent

chemical knowledge. They also created a new drug repository

extracted from PubChem, DrugBank and DBpedia. Their

system supports simple DL queries. They mapped the

Wikipedia link found in some of the DrugBank records to the

corresponding DBpedia entities. They then imported the

DBpedia entities into their knowledge base as individuals of

the corresponding drug class from the DrugBank ontology,

together with the RDF graphs that provide some common

knowledge about those entities. However, they did not

develop any means for integrating DrugBank records that did

not contain Wikipedia links with DBpedia entities. And their

system does not appear to support complex DL queries such

as the one we have described in the previous section.

We imported the common knowledge about cities extracted

from DBpedia knowledge base and GeoLite City database

into the EKOSS failure cases repository by creating a set of

standard entity statements. This resulted in an enriched

repository that made it possible to do more complex logical

reasoning.

VII. Conclusion

Detailed domain-specific “heavy-weight” semantic

statements that are manually authored often lack common

knowledge about the concepts and entities that are described.

Enriching such semantic statements with more common

knowledge can enhance their ability to answer complex

search queries. We presented a simple procedure to enrich the

EKOSS failure cases repository with common knowledge

about city entities extracted from DBpedia knowledge base

and GeoLite City database. We first extracted information

about city entities from the two data sources, and then used

that information to generate standard entity statements for

each city entity. We created links between the instances of

class city in failure case statements and the standard entity

statements using a lexicon built from the YAGO ontology,

and we added several functions to the EKOSS reasoner to

support a wide range of searches in the enriched repository.

Finally, we described a search scenario demonstrating that we

can get informative search results from the enriched

repository for some complex search queries that do not get

any results from the original repository.

In addition to the enrichment procedure, the original

contributions of this paper are: 1) extracting and augmenting

the DBpedia information on cities, including development of

a mapping function to GeoLite that uses a lexicon created

from YAGO together with region data for city

disambiguation; 2) a set of templates for translating DBpedia

and GeoLite information into the SCINTENG ontology

framework; and 3) enhancements to the EKOSS reasoner to

enable semantic searches in the enriched repository.

In future work, we will investigate methods for enriching

the failure cases repository with LOD “on the fly” by

importing the information about city entities and other

standard entities from LOD dynamically. To do this, we will

implement web services that provide linking APIs for

semantic data, map instances in the failure case repository to

other types of entities in the DBpedia knowledge base, and

represent the common knowledge of those types of DBpedia

entities using the SCINTENG ontology.

Acknowledgment

Funding for this research was provided by the Knowledge

Failure Database project at the Japan Science and Technology

Agency and the Office of the President of the University of

Tokyo. This article uses DBpedia knowledge base created in

DBpedia project, available from http://dbpedia.org/. This

article uses GeoLite data created by MaxMind, available from

http://www.maxmind.com/.

References

[1] W. Guo, S.B. Kraines. “Enriching City Entities in the

EKOSS Failure Cases Knowledge Base with Linked

Open Data”, In Proceedings of the 6th International

Conference on Next Generation Web Services Practices

(NWeSP2010), November 23-35, Gwalior, India, pp:

58-63.

[2] S. Kraines, W. Guo, B. Kemper, Y. Nakamura. “EKOSS:

a knowledge-user centered approach to knowledge

sharing, discovery, and integration on the Semantic

Web”, In ISWC 2006, pp. 833–846.

http://dbpedia.org/

Guo and Kraines

787

[3] W. Guo, S.B. Kraines. “Mining relationship associations

from knowledge about failures using ontology and

inference”, In LNAI, vol 6171, ICDM 2010, pp. 617-631.

[4] W. Guo, S. Kraines. “Generating Semantic Statements

related to Energy and Sustainability

Semi-automatically”, The Alliance for Global

Sustainability (AGS) Annual Meeting 2010, 16-19

March 2010, Tokyo, Japan, poster.

[5] W. Guo, S. Kraines. “Explicit Scientific Knowledge

Comparison Based on Semantic Description Matching,

American Society for Information Science and

Technology Annual Meeting”, In ASIS&T 2008,

Columbus, Ohio, 2008, DOI:

10.1002/meet.2008.1450450210.

[6] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,

R. Cyganiak, S. Hellmann. “DBpedia - a crystallization

point for the Web of Data”, Journal of Web Semantics:

Science, Services and Agents on the World Wide Web,

Issue 7, Pages 154–165, 2009.

[7] DBpedia 3.4,

http://wiki.dbpedia.org/Downloads34?v=hmc

[8] Freebase - A wealth of free data,

http://www.freebase.com

[9] F.M. Suchanek, G. Kasneci, G. Weikum. “Yago: a large

ontology from Wikipedia and WordNet”, Journal of

Web Semantics, vol. 6, no. 3, 2008, pp. 203–217.

[10] Doapstore, http://doapstore.org/

[11] GeoNames, geographical database,

http://www.geonames.org/

[12] FOAF dataset,

http://ebiquity.umbc.edu/resource/html/id/82/

[13] DBLP Bibliography,

http://www4.wiwiss.fu-berlin.de/dblp/

[14] T. Berners-Lee, “Linked Data - design issues,” date:

2006-07-27,

http://www.w3.org/DesignIssues/LinkedData.html

[15] Wikipedia, the Free Encyclopedia,

http://en.wikipedia.org/wiki/Main_Page.

[16] GeoLite City Database,

http://www.maxmind.com/app/geolitecity

[17] OWL, http://www.w3.org/TR/owl-guide/

[18] RacerPro, http://www.racer.systems.com

[19] JST Failure Knowledge Database,

http://shippai.jst.go.jp/en/Search

[20] S.B. Kraines, W. Guo. “Supporting Reuse of Knowledge

of Failures through Ontology-based Semantic Search”,

In KMIS 2010, Valencia, Spain.

[21] ISO 3166-2, http://www.maxmind.com/app/iso3166_2

[22] FIPS 10-4 Subcountry codes,

http://www.maxmind.com/app/fips10_4

[23] R.W. Sinnott. “Virtues of the haversine”, Sky and

Telescope, vol. 68, no. 2, 1984, pp. 159.

[24] W. Guo, S.B. Kraines. “SEMCL: A Cross-Language

Semantic Model for Knowledge Sharing”, International

Journal of Knowledge and Systems Science, vol. 1, no. 3,

2010, pp. 1-19.

[25] W.W. Cohen, P. Ravikumar, S.E. Fienberg. “A

comparison of string distance metrics for

name-matching tasks”, In Proc. of the ACM Workshop

on Data Cleaning, Record Linkage and Object

Identification 2003.

[26] A. Ankolekar, M. Krotzsch, T. Tran, D. Vrandecic. “The

two cultures: Mashing up Web 2.0 and the Semantic

Web”, Journal of Web Semantics, vol. 6, 2008, pp.

70-75.

[27] S. Choudhury, J.G. Breslin, A. Passant. “Enrichment and

ranking of the YouTube tag space and integration with

the Linked Data Cloud”, In LNCS, vol 5823, ISWC 2009,

pp. 747-762.

[28] Semantic Indexing Engine - Sindice, http://sindice.com/

[29] A. Passant, P. Laublet. “Meaning of a tag: a collaborative

approach to bridge the gap between tagging and Linked

Data”, In LDOW 2008 at WWW 2008, Beijing, China.

[30] G. Kobilarov et al.. “Media meets Semantic Web - how

the BBC uses DBpedia and Linked Data to make

connections”, In LNCS, vol. 5554, ESWC 2009, pp.

723-737.

[31] M. Konyk, A. De Leon, M. Dumontier. “Chemical

knowledge for the Semantic Web,” In LNBI, vol. 5109,

DILS 2008, pp. 169-176.

Author Biographies

Weisen Guo is a project researcher in the Science

Integration Program (Human) in the Department of

Frontier Sciences and Science Integration in the

Division of Project Coordination at the University

of Tokyo. He holds a PhD in Management Science

and Technology from the Dalian University of

Technology, China. He has served as a lecturer of

the Institute of Systems Engineering in the

Management School at the Dalian University of

Technology, and as an adjunct project manager of

the Projects and Results Management Office in the

Planning Bureau at the National Natural Science

Foundation of China. His research interests include

Semantic Web technology, graph mining,

knowledge science and technology, information

system engineering.

Steven Kraines is an associate professor in the

Division of Project Coordination at the University

of Tokyo. He obtained his PhD in Chemical

Engineering from the University of Tokyo. His

research interests include applications of knowledge

representation languages, ontologies, and

inference-based semantic matching to problems in

urban sustainability and health science.

