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Abstract: Domain-specific repositories of manually created 

semantic descriptors usually contain detailed knowledge with 

“heavy-weight” semantics about particular aspects of the 

domain, but they often lack common knowledge about the 

concepts and entities that are described. Integrating some of this 

common knowledge into the repository can enhance the 

capabilities of semantic search in the repository. We use 

common knowledge about city entities from DBpedia knowledge 

base and GeoLite city database to enhance the EKOSS failure 

cases repository, which contains knowledge about failures in 

engineering. Custom parsers are used to extract common 

knowledge from the two open data sources, and special semantic 

descriptors, which we call standard entity statements, are 

generated from the extracted knowledge. We link the city 

instances in failure case semantic statements with the standard 

city entity semantic statements, and we demonstrate the new 

types of semantic search capabilities that are made possible by 

the integration of the three semantic resources. * 
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I. Introduction 

The Web is becoming one of main ways that human share 

knowledge. On the conventional Web, data have only 

human-readable semantics. However, more and more data 

sources are adding structure to their data, including semantic 

tags that are computer-readable. Structured data with 

semantics can be utilized by computers more intelligently 

than data having only human-readable semantics [2].  

For example, in order to obtain more accurate results for 

some types of complex search queries [3], the EKOSS system 

uses Description Logics (DLs) [2] to create semantic 

statements in the form of DL ABoxes, each of which 

describes a knowledge resource, e.g. an abstract of a scientific 

article. The semantic statements are then loaded into a 

knowledge base for reasoning. Due to current limitations of 

natural language processing technologies, the semantic 

statements need to be created manually [2] or 

 
* A preliminary version of this paper was presented at NWeSP 2010 [1]. 

semi-automatically [4] in order to guarantee that they describe 

the domain-specific knowledge with rich and accurate 

semantics. However, even though DLs enable inference of 

implied relationships between entities to get more interesting 

results [5], the EKOSS knowledge base still can only answer a 

limited range of search queries. 

One reason is that while a semantic statement always 

contains detailed domain-specific knowledge, it often omits 

common knowledge about related concepts and entities. This 

occurs because 1) the authors of the semantic statements leave 

out common knowledge that is known to most human readers 

and 2) the authors of semantic statements often cannot input 

all of the related information due to limitations of time and 

personal knowledge. For example, third-party curators 

entering data based on some text authored by another person, 

such as an abstract of scientific article, are generally limited to 

the specific content of the source text.  

Human readers can associate expressions of 

domain-specific knowledge with related common knowledge 

that is already in their heads. But computers do not have this 

ability. Therefore, it is necessary to directly provide the 

computers with the related common knowledge that is needed 

to understand the whole idea conveyed by the knowledge 

resource. 

Many data sources contain common sense knowledge. 

Some of them have broad domain coverage, such as DBpedia 

[6], [7], Freebase [8], and YAGO [9]. Some of them are more 

domain-specific, such as the DOAP dataset [10] that is used to 

describe software projects, the GeoNames [11] geographic 

database that is available and accessible through various Web 

services, the FOAF dataset [12] that is used to describe basic 

attributes of people and relationships among them, and the 

DBLP database [13] that provides bibliographic information 

on major computer science journals and conference 

proceedings. Several of these data sources have been linked 

with each other, and many more are planned to be linked in 

the future. These linked data sources contribute to a web of 

Linked Open Data (LOD) [14]. 

We can obtain common knowledge related to a particular 
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repository of domain-specific semantic statements from the 

available LOD or other open structured data sources. First, we 

must decide which kind of common knowledge should be 

added to the repository. Second, we need to find available data 

sources containing the required common knowledge. Third, 

we extract the common knowledge and convert it into the 

representation of the repository. Fourth, we enrich semantic 

statements with the related common knowledge.  

The basic procedure is simple. If each step can be finished 

successfully, then the enriched repository should be able to 

answer more complex and interesting search queries. 

However, there are several concrete problems that must be 

addressed; we will discuss these in the following sections. 

First, we explain the basic approach we have used to enrich 

the EKOSS failure cases repository with common knowledge 

of city entities extracted from DBpedia knowledge base, one 

of the main LOD data sources containing structured 

information extracted from Wikipedia [15], and GeoLite City 

database [16], which is another open structured data source 

containing geographic information. 

EKOSS (Expert Knowledge Ontology-based Semantic 

Search) [2] is a web-based knowledge sharing system that 

enables users to create one or more computer-understandable 

descriptors, called semantic statements, that describe their 

knowledge resources, such as scientific articles, using 

OWL-DL [17] ontologies. EKOSS then uses a reasoner based 

on the RacerPro DL inference engine [18] to match a semantic 

query against the semantic statements. The EKOSS system 

has been used to create semantic statements for 291 failure 

cases selected from the failure knowledge database created by 

the Japan Science and Technology Agency (JST) [19]. These 

291 semantic statements, hereafter “failure case statements”, 

were created using the SCINTENG ontology [20], which 

provides a formal knowledge representation language and 

background knowledge in engineering.  

We can do semantic searches of the EKOSS failure cases 

repository using both logical and rule-based inference [3], 

[20]. However, the EKOSS failure cases repository lacks 

common knowledge about the different entities. In particular, 

almost all of the failure cases occur in specific cities, but the 

common knowledge about the city where the failure occurred, 

such as population and location, is generally not specified. If 

such common knowledge about cities were made available, 

more useful searches would be possible. 

We first attempted to extract the information about city 

entities from the DBpedia knowledge base only. However, 

upon inspection of the DBpedia data, we discovered that the 

accuracy of geographic information is somewhat low. 

Therefore, we use information from the GeoLite City database 

to replace the geographic information for the corresponding 

entity from DBpedia (Section II). Next, we use a set of 

templates to automatically generate a special semantic 

statement in the EKOSS system, called a standard entity 

statement, for each city entity extracted from DBpedia and 

GeoLite (Section III). The third step is to match each instance 

of the class city (we show class names in bold type) in the 

failure case statements with the standard entity statement that 

describes the equivalent city (Section IV). In Section V, we 

enhance the original EKOSS reasoner to support searches of 

the enriched repository. Our experiments show that we can get 

informative search results from the enriched repository for 

some complex search queries that did not obtain any results 

from the original repository. Finally, we conclude this paper 

with a discussion of related work and a summary. 

II. Extracting Common Knowledge about City 

Entities from DBpeida and GeoLite 

The aim of the work presented here is to add some common 

knowledge to the EKOSS failure cases repository. The 

SCINTENG ontology class city is used often in the 

repository, appearing 181 times. Therefore, we decided to 

extract information about city entities from the DBpedia 

knowledge base. We have used the DBpedia 3.4 datasets [7], 

which contain 41,062 city entities. The DBpedia 3.4 ontology 

has 166 properties whose domain can be an instance of the 

class city. However, considering the hierarchy of the property 

subsumption tree and the semantic meanings of the properties, 

we determined that just half (83) of the properties are 

semantically unique. Furthermore, we found that 14 

properties were not used with any entities in the DBpedia 

knowledge base. The remaining 69 properties that are used to 

describe attributes of specific city entities in the DBpedia 

knowledge base are listed in Table 1 together with the number 

of times that they are used. The property counts in Table 1 

include usages of the properties with entities other than city. 

For example, the property count for “areaTotal” includes 

usages for country entities as well as city entities. 

Our goal is to add common knowledge about cities that 

could be useful for conducting semantic searches. 

Considering the meanings and content of the 69 properties, we 

selected 19 properties that are most likely to be useful for 

semantic searches of the EKOSS failure cases repository. The 

selected properties are marked with “Y” in the “Use” column 

in Table 1. 

Population density is a property that is particularly relevant 

to the failure cases. Upon inspection of the data from 

DBpedia, we found that some cities do not have population 

density values even though they have an area value and a 

population value. Furthermore, even when a city has a 

population density value, that value does not always agree 

with the corresponding area value and population value. In 

order to keep the data consistent, we discarded the population 

density values extracted from the DBpedia knowledge base 

and recalculated them using the corresponding area value and 

population value whenever both values were available. 

 

Name Count Use 
Properties whose domain is http://dbpedia.org/ontology/City 

Day 1709 N 

distanceToEdinburgh 5 N 

scottishName 118 N 

irishName 175 N 

cornishName 108 N 

federalState 9 N 

associationOfLocalGovernment 2 N 

administrativeCollectivity 65 N 

Province 6611 N 

Saint 1271 N 

Frazioni 541 N 

crownDependency 32 N 

distanceToCardiff 21 N 

distanceToLondon 16 N 
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gaelicName 582 N 

welshName 272 N 

manxName 23 N 

Meaning 84 N 

Department 17 N 

administrativeDistrict 96 N 

jointCommunity 7 N 

Region 6481 N 

Properties whose domain is 

http://dbpedia.org/ontology/PopulatedPlace 

areaMetro 910 Y 

populationMetro 1,408 Y 

populationTotal 146,216 Y 

populationMetroDensity 157 Y 

populationAsOf 104,147 Y 

foundingDate 16,935 Y 

areaUrban 245 Y 

populationUrban 1,803 Y 

populationDensity 91,741 Y 

populationUrbanDensity 66 Y 

foundingYear 82 Y 

leaderTitle 26568 N 

postalCode 75363 N 

motto 2120 N 

areaMagnitude 16 N 

areaCode 62151 N 

establishedTitle 20003 N 

demonym 5035 N 

censusYear 190 N 

leaderParty 389 N 

largestSettlement 10 N 

language 1076 N 

languageType 64 N 

capital 4891 N 

leaderName 13920 N 

largestCity 424 N 

regionalLanguage 225 N 

ethnicGroup 1022 N 

foundingPerson 47 N 

Properties whose domain is http://dbpedia.org/ontology/Place 

areaTotal 136,042 Y 

areaWater 71,851 Y 

maximumElevation 921 Y 

coordinates 202,766 Y 

areaLand 72,886 Y 

elevation 139,621 Y 

minimumElevation 839 Y 

location 66784 Y 

nativeName 8112 N 

nickname 2522 N 

length 6892 N 

width 2128 N 

nearestCity 7107 N 

otherName 6270 N 

percentageOfAreaWater 4631 N 

height 1071 N 

depth 1822 N 

type 61247 N 

Table 1. The 69 properties that can be used with the class city 

in the DBpedia 3.4 knowledge base together with the number 

of usages and whether the property was used in our work. 

The locations of cities are another useful form of 

information. The property “location” is used 66,784 times in 

DBpedia; however, it is used with city entities as domain 

entities only 20 times (most usages are with other place 

entities). Therefore, we looked for other open structured data 

sources with city location information. The GeoLite database 

[16] contains accurate information for cities, including the 

latitude, longitude, country code, city name, state/region, and 

population. Therefore, by mapping the city name of a GeoLite 

record to the name of a city entity in DBpedia, we can get its 

latitude and longitude coordinates as well as the country and 

state or region where it is located. Mapping cities that have 

unique matching names in each data set is trivial. For cities 

having non-unique names, we utilized the state/region 

information in GeoLite to disambiguate them. Most city 

entities in the DBpedia knowledge base have labels that 

include the state, prefecture, or province name as a suffix. For 

example, DBpedia contains a city entity labeled 

“Paris,_Texas”. There are six cities with the name “Paris” in 

GeoLite. One of them has state/region “TX”, which we can 

identify as “Texas” by using US and Canada ISO 3166-2 

Subcountry codes [21] (for other countries we used the FIPS 

10-4 code [22]). Therefore, we mapped the city named “Paris” 

with state/region “TX” in GeoLite to the city entity in 

DBpedia labeled “Paris,_Texas”. We then used the country 

code to identify the country where the city is located. Also, the 

coordinates of cities in GeoLite are more comprehensive and 

accurate than in DBpedia, so even when DBpedia contained 

coordinates data for a particular city, we replaced that with the 

GeoLite coordinates data. 

III. Generating Standard Entity Statements 

through Templates 

The rationale for generating standard entity statements for 

each of the city entities is as follows.  

A semantic search on the EKOSS system begins when the 

EKOSS reasoner, which has loaded the DL ontology TBox 

into its knowledge base, receives a search query. First, it loads 

one of the available semantic statements into its knowledge 

base as the ABox. The reasoner checks whether or not the 

search query can find a set of matching instances in the ABox. 

If a set of matching instances is found, those results are 

recorded. The reasoner then removes the ABox from the 

knowledge base and loads another semantic statement. This 

process is repeated until all available semantic statements are 

checked.  

For each specific entity that has some common knowledge 

we would like to use, such as a city entity having location and 

population properties, we need to load that information into 

the knowledge base. If the common knowledge was added to 

each semantic statement, the knowledge would be duplicated 

many times, leading to problems in scalability and data 

maintenance. By just creating one standard entity statement 

containing all of the common knowledge for that specific 

entity, we avoid duplicating common knowledge imported 

into the system.  

There is no direct mapping between the properties of the 

SCINTENG ontology and the properties of city entities in 

DBpedia. Therefore, we created several templates for 

converting the properties of city entities extracted from 

DBpedia to the properties of SCINTENG ontology, as shown 

in Table 2.  

 Property 

extracted 

Property 

of SCINTENG 

1 city location  

country 

city (city) has location  

nation (country) 

2 city coordinates  city (city) has location  
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[double1, 

double2] 

point in space (latlong) 

point in space (latlong)  

has latitude coordinate (lat) 

coordinate (lat) has value double1 

point in space (latlong)  

has longitude coordinate (long) 

coordinate (long) has value double2 

3 city foundingDate  

string 

city (city) has start time  

point in time (string) 

4 city foundingYear 

string 

city (city) has start time  

point in time (string) 

5 city population*  

double 

 

 

city 

populationAsOf 

string 

city (city)  

has single property dimension with unit 

number of persons value (population*) 

number of persons value (population*) 

has value double 

number of persons value (population*) 

has possible individual  

point in time (string) 

6 city area** double city (city) has area  

area value (area**) 

area value (area**) has value double 

area value (area**)  

has specific type of unit  

square kilometer (square kilometer) 

7 city 

population*Den

sity double 

city (city)  

has single property dimension with unit  

density value (population*Density) 

density value (population*Density) 

has value double 

density value (population*Density) 

has specific type of unit  

density unit (persons per square 

kilometer) 

8 city elevation  

double 

city (city) has length  

altitude (elevation) 

altitude (elevation) has value double 

9 city  
minimumElevat

ion double 

city (city) has length  

altitude (minimum elevation) 

altitude (minimum elevation)  

has min value double 

10 city  
maximumElevat

ion double 

city (city) has length  

altitude (maximum elevation) 

altitude (maximum elevation)  

has max value double  

* indicates Urban, Metro, or Total. 

** indicates Urban, Metro, Total, Land, or Water. 

Table 2. The templates for converting the properties extracted 

from DBpedia and GeoLite into expressions in the 

SCINTENG ontology. 

Each entry in the second column is in the form “domain 

instance label propertyName range instance label or range 

value”. Each entry in the third column is in the form “domain 

class name (instance label) property name range class name 

(instance label)” for object properties, and “domain class 

name (instance label) property name range value” for 

datatype properties. The instances with bold labels in the 

second and third columns having the same names are 

equivalent. The other instances in the third column are local: 

they have unique URI’s that distinguish them from other 

instances having the same label but that are created by 

applications of the template to other cities. 

If a city entity has both a population value and an area value 

for urban, metro, and/or total, we calculated the corresponding 

population density (population density = population / area) 

and then applied template 7 in Table 2. 

The DBpedia 3.4 knowledge base has 7,107 entries of 

property “nearestCity” for place entities. However, we only 

found 6 entries whose domain and range are both city entities. 

To get more information about proximity of cities, for each 

city entity city1, we calculated the distances to all other cities 

by using the Haversine formula [23]. Then, for each city city2 

having a distance of less than 100 kilometers to city1, we 

created the following two properties: 

city (city1) has proximity proximity (“within 100 km”). 

city (city2) has proximity proximity (“within 100 km”). 

Using the above methods, we generated standard entity 

statements for 9,993 cities. Figure 1 shows a graph 

representation of the standard entity statement for Shanghai 

city. Boxes show instances of classes from the domain 

ontology, colored according to the major upper class: spatial 

locations are blue, events are pink, physical objects (not 

shown) are gray, activities (not shown) are yellow, and values 

are white. The text in each box above the line is the instance 

label and below the line is the class name of that instance. 

Arrows show properties expressing the asserted relationships 

between instances. 

  
Figure 1. The standard entity statement for Shanghai city 

shown as a graph. 

IV. Linking Failure Case Statements and 

Standard Entity Statements through Instances 

of City 

Each failure case statement is populated by instances whose 

classes are known. Therefore, it is straightforward to find 

instances of the class city. However, the actual city that an 

instance of the class city represents is indicated by the label of 

the instance, and the instance labels are in free text. So we 

need to map each instance of city to a standard entity 

statement via the instance label. This is a problem of term 

normalization, which is usually solved by creating a lexicon. 

We created a lexicon of city names based on the YAGO 

ontology [9]. There are two kinds of facts in YAGO that give 



 

 

Integrating Knowledge of City Entities into the EKOSS Repository                                                                                             784 

 

name information: “isCalled” and “means”. For each city 

entity in DBpedia, we extracted these two kinds of facts from 

YAGO and created a set of synonyms for the city. These two 

kinds of facts are multilingual, which is useful for supporting 

cross-language knowledge sharing [24]. The YAGO facts 

contain other useful information, for example the fact that 

“CN-31” means the city of Shanghai, and “Chinese capital” 

means the city of Beijing. String matching [25] would be 

inadequate to link instances of city having such labels.  

Using the lexicon of city names, we could link most of the 

instances of the class city in the failure case statements to the 

standard entity statements correctly. However, for some city 

instances in the failure case statements, no matching standard 

entity statements could be found. Some of those instances 

have complex labels that did not match the lexicon. Other 

instances are actually small towns or villages that are not in 

the lexicon. And of course even DBpedia does not include all 

cities in the world. Finally, there were some city instances in 

the failure case statements that matched with more than one 

standard entity statement and could not be resolved with state 

or region information using the technique described in the 

“Paris” example in Section II.  

We used the following semi-automatic method to create the 

links. First, we created the links for all of the one-to-one 

matches that were identified unambiguously by the lexicon. 

This resulted in 111 links. We then manually checked the 

other 70 instances of the class city in the failure case 

statements to investigate why they did not match using the 

lexicon. We found that 45 instances are not actually real cities, 

12 instances are cities but are not in DBpedia, 4 instances are 

cities that are in DBpedia but not in GeoLite, 2 instances had 

misspelled labels, and 7 instances had labels that matched 

with more than one city in DBpedia. Of the 9 instances that 

were misspelled or that did not have one-to-one matches, we 

were able to match 5 instances manually. We have integrated 

this linking method in the EKOSS semantic statement 

authoring tool so that the tool will suggest links for the user to 

create from instances of city to standard entity statements 

during the process of authoring a new failure case statement in 

the enriched repository. 

V. Enhanced Semantic Search in Enriched 

EKOSS Failure Cases Repository 

By linking the instances of the class city in the failure case 

statements to the standard entity statements, we obtain an 

enriched repository. We hypothesize that we can find more 

useful information from the enriched repository than from the 

original repository. However, supporting semantic search in 

the enriched repository required that we modify the EKOSS 

reasoner. In this section, we describe the modifications to the 

EKOSS reasoner and present a scenario to demonstrate the 

kind of complex semantic search results that are made 

possible by the enriched repository. 

We described the semantic search procedure of the regular 

EKOSS reasoner in Section III. In order to support semantic 

searches in the enriched repository, we added a function so 

that when the reasoner loads one failure case statement into 

the knowledge base as the ABox, it also loads all of the 

standard entity statements that are linked to the failure case 

statement. However, because we include proximity 

information between cities, it is possible that one standard 

entity statement will link to another standard entity statement 

ad infinitum, causing the ABox to become large. This could 

cause the reasoner to stop working because description logics 

systems often cannot handle large amounts of instances [26]. 

Therefore, we added a parameter for the maximum length of a 

chain of linked standard entity statements, md, to limit the size 

of the ABox. If this parameter is set too low, it could limit the 

ability of the EKOSS reasoner to find results for some special 

search queries. Therefore, the md parameter provides us with 

a means to tune the size of ABox in order to speed up the 

semantic search as well as to avoid causing the reasoner to 

stop working due to an excessively large ABox.  

The standard entity statements for cities contain many 

datatype properties, many of which we would like to use for 

query matching. Therefore, we added a function for numerical 

comparison to the EKOSS reasoner. The SCINTENG 

ontology contains a class single property dimension with 

unit that has some sub-classes for specific types of value, e.g. 

area value, speed value, and length value. The SCINTENG 

ontology also provides a datatype property “has value” with 

eight sub properties, such as “has max value”, “has average 

value”, “has exact value”. Each instance of the class single 

property dimension with unit can have a “has value” 

property (or sub-property) pointing to a number as well as a 

“has specific type of unit” property that points to an instance 

describing the units of the value.  

The EKOSS reasoner uses RacerPro [18] as the inference 

engine, which uses the new Racer Query Language (nRQL) 

that supports constraint checking. For example, RacerPro can 

answer queries like “find all cities with the area value greater 

than 1000 square kilometers”. However, while the separation 

of the value and unit of SCINTENG ontology increases the 

expressiveness, it makes direct numerical comparison 

impossible. We created a function to normalize each value 

with a non-standard unit to a standard unit before sending the 

value to the RacerPro inference engine. For example, there are 

several sub-classes of area unit class, such as square meter, 

square foot, and square kilometer. We set square meter as 

the standard area unit. Each time the EKOSS reasoner finds 

an instance of square foot or square kilometer class in a 

semantic statement or a search query, it will convert that 

instance into the standard square meter class and update the 

corresponding value. This makes it possible for the RacerPro 

inference engine to compare the numerical values correctly.  

Using these functions, the EKOSS reasoner can support a 

wide range of complex semantic searches in the enriched 

repository. In the following, we use a scenario about a 

researcher looking for information related to her research in 

order to demonstrate the kind of semantic searches that can be 

made.  

Lucy is a researcher studying indirect impacts of disasters 

on large cities. She wants to search the failure cases 

knowledge base using the query “find all pairs of cities where 

one city, with a population density less than 3000 people per 

square kilometer, is the location of some disaster, and the 

other city, with a population density more than 8000 people 

per square kilometer, is in proximity to the first city”. Figure 2 

shows her search query as a graph. Boxes show query 

variables from the domain ontology, colored according to the 
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major upper class as in Figure 1. The text in each box above 

the line is the matching expression and below the line is the 

class name of that variable. Arrows show properties 

expressing the asserted relationships between variables. 

 

 

Figure 2. Lucy’s search query shown as a graph. 

The original EKOSS reasoner can evaluate matches of a 

search query with a semantic statement at five levels of 

complexity [3]. As described above, we have added functions 

to support searching in the linked standard entity statements 

and to support numerical comparison. We also added an 

auxiliary function to support text matching using simple 

matching expressions of the form “*XYZ*”, where the 

symbol “*” indicates any text. For example, in Figure 2, the 

labels of two variables of the class density value are “*Total*”, 

which indicates they can match with instances of density 

value that have labels containing the string “Total”.  

The EKOSS reasoner checks Lucy’s query against the 291 

failure case statements in the enriched repository and finds 

one matching failure case entitled “Leakage of toxic 

substances at chemical plant”. The matching results are shown 

in Figure 3. Boxes show instances of classes from the domain 

ontology, colored according the major upper class as 

described in Figure 1. The text in a box shows the instance 

label or matching expression, followed by a colon, followed 

by the class name. Arrows with blue labels show properties 

between instances in the enriched failure case statement. 

Arrows with red labels show properties between class 

variables in the search query. Red boxes show the instances 

from the failure case statement that match with the class 

variables of the search query.  

 

 
Figure 3. The matching results graph of the enriched failure case statement entitled “Leakage of toxic substances at chemical 

plant” and the search query shown in Figure 1. 

 

 

The instances from the failure case statement that match 

with the query variables satisfy both the class membership 

and the property connections specified by the query. For 

example, the relationship between “human suffering : 

disaster event” and “Seveso : city” is inferred from the rule 

that “if A is location of B, and C has changed event participant 

B, then A is location of C”, which matches with the 

specification of “city is location of some disaster event” in 

the query. The city of Seveso matches with the query 

specification of a city with population density less than 3000 

people per square kilometer, and the city of Bresso matches 

with the query specification of a city with population density 

greater than 8000 people per square kilometer.  

The original EKOSS failure cases repository and reasoner 

cannot find any matches with Lucy’s query because the 

information about population density and city proximity is 

absent. Lucy could search in the repository with a simple 

query “find a city that is location of some disaster event” first, 

and then check DBpedia and GeoLite by hand to find which 

matching cities meet the population density and city 

proximity conditions. But it will take more time and effort. By 

using the enriched EKOSS failure case repository and the 
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enhanced EKOSS reasoner, Lucy can find the matching 

failure case easily. 

VI. Related Work 

Choudhury et al. [27] integrated the YouTube tag space with 

the LOD cloud. After getting a cleaned and ranked tag space, 

they created a mapping mechanism from user tags to 

ontological resources by using WordNet, a similarity module, 

and the semantic indexing engine Sindice [28]. Therefore, 

they created links between user tags and LOD. Our work is 

different in that the EKOSS failure cases repository is 

ontological resource, not a free text tag space.  

Passant and Laublet [29] developed the MOAT model to 

capture the semantics of tagging systems using a lightweight 

ontology. MOAT provides a collaborative way for Web 2.0 

content producers to give meanings to their tags in a 

machine-readable format. Their approach used Linked Data 

principles, such as defining the meanings by using URIs from 

existing data resources. Therefore, by using MOAT, users can 

create semantic tags for their contents, some of which contain 

existing URIs from LOD. However, because their work is 

based on a lightweight ontology, it does not support complex 

reasoning.  

Kobilarov et al. [30] used DBpedia as a controlled 

vocabulary to connect identical entities in different domains 

of the British Broadcasting Corporation (BBC). They 

developed a system to automatically interlink existing BBC 

concepts with DBpedia. They also developed a named entity 

extraction system called Muddy Boots to extract entities in 

BBC News articles, and then they used the DBpedia identifier 

for those entities to link the News articles with documents in 

other BBC domains. Consequently, they used LOD to 

interlink the BBC domains but not to import common 

knowledge into the BBC domains for logical reasoning. 

Konyk et al. [31] created an OWL ontology to represent 

chemical knowledge. They also created a new drug repository 

extracted from PubChem, DrugBank and DBpedia. Their 

system supports simple DL queries. They mapped the 

Wikipedia link found in some of the DrugBank records to the 

corresponding DBpedia entities. They then imported the 

DBpedia entities into their knowledge base as individuals of 

the corresponding drug class from the DrugBank ontology, 

together with the RDF graphs that provide some common 

knowledge about those entities. However, they did not 

develop any means for integrating DrugBank records that did 

not contain Wikipedia links with DBpedia entities. And their 

system does not appear to support complex DL queries such 

as the one we have described in the previous section.  

We imported the common knowledge about cities extracted 

from DBpedia knowledge base and GeoLite City database 

into the EKOSS failure cases repository by creating a set of 

standard entity statements. This resulted in an enriched 

repository that made it possible to do more complex logical 

reasoning. 

VII. Conclusion 

Detailed domain-specific “heavy-weight” semantic 

statements that are manually authored often lack common 

knowledge about the concepts and entities that are described. 

Enriching such semantic statements with more common 

knowledge can enhance their ability to answer complex 

search queries. We presented a simple procedure to enrich the 

EKOSS failure cases repository with common knowledge 

about city entities extracted from DBpedia knowledge base 

and GeoLite City database. We first extracted information 

about city entities from the two data sources, and then used 

that information to generate standard entity statements for 

each city entity. We created links between the instances of 

class city in failure case statements and the standard entity 

statements using a lexicon built from the YAGO ontology, 

and we added several functions to the EKOSS reasoner to 

support a wide range of searches in the enriched repository. 

Finally, we described a search scenario demonstrating that we 

can get informative search results from the enriched 

repository for some complex search queries that do not get 

any results from the original repository. 

In addition to the enrichment procedure, the original 

contributions of this paper are: 1) extracting and augmenting 

the DBpedia information on cities, including development of 

a mapping function to GeoLite that uses a lexicon created 

from YAGO together with region data for city 

disambiguation; 2) a set of templates for translating DBpedia 

and GeoLite information into the SCINTENG ontology 

framework; and 3) enhancements to the EKOSS reasoner to 

enable semantic searches in the enriched repository. 

In future work, we will investigate methods for enriching 

the failure cases repository with LOD “on the fly” by 

importing the information about city entities and other 

standard entities from LOD dynamically. To do this, we will 

implement web services that provide linking APIs for 

semantic data, map instances in the failure case repository to 

other types of entities in the DBpedia knowledge base, and 

represent the common knowledge of those types of DBpedia 

entities using the SCINTENG ontology. 
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