
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 3 (2011) pp. 796-803

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Hong Qing Yu, Stefan Dietze, Carlos Pedrinaci and Dong Liu

1 Knowledge Media Institute

The Open University

Milton Keynes, United Kingdom

{h.q.yu, s.dietze, c.pedrinaci and d.liu@open.ac.uk}@Open.ac.uk

Abstract: The While Semantic Web Services (SWS) research

aims at automating Web service tasks such as discovery,

orchestration and execution, its take-up is very limited so far. This

is due to several reasons, such as inherent complexity of existing

SWS frameworks and the considerable costs involved in creating

correct SWS descriptions. In addition, while semantics are in use

to enable tasks such as discovery, interaction between service

consumers, providers and brokering environments is still not

supported by semantic message descriptions. On the other hand,

the Linked Data approach has produced a set of established

principles for sharing and describing data, such as RDF as

representation language and the integral use of dereferencable

URIs. In this paper we propose to apply those principles to expose

Web services and Web APIs and introduce a framework in which

service registries as well as services contribute to the automation

of service discovery, and hence, workload is distributed more

efficiently. This is achieved by developing a Linked Data

compliant Web services framework with that communicate with

semi-centralised registries but compute their suitability for a

given request themselves. All communications among different

framework components are using RDF-based message protocols

including service input and output. This framework aims at

optimizing load balance and performance by dynamically

assembling services at run time in a massively distributed Web

environment.

Keywords: Linked Data, Web Services, Semantic Web.

I. Introduction

When These Dynamically assembling services at run-time for

developing massively distributed and interoperable systems [1]

is an ultimate goal of Web services. Using XML via HTTP as

the communication standard to exchange data between client

applications and remote functionalities is the current standard

of Web services, which is built around WSDL, SOAP and

UDDI for completing the lifecycle of service description,

publication and invocation. In the past decade, many research

efforts have been made to realize the ultimate goal by adding

value to the current standards. However, most of today’s Web

service applications are still developed in static and

RPC/Document style [2].

These standards only represent the functional data structure

and the syntax of a service [3], which ask service requesters to

do most of the work manually. As a result, the automation level

of communications among service requesters, broker and

services is low. For example, clients find it difficult to

automatically invoke services at run time because they need to

manually build invocation SOAP messages based on the

parameter specifications described in the WSDL file although

the invocation skeleton, although the skeleton can be generated

on the fly. Moreover, clients require prerequisite knowledge of

each parameter’s meaning by reading the service release

document in order to correctly assign the parameters.

Communication between broker and service requesters is even

worse as no service request protocol has been defined yet,

which makes dynamic service discovery impossible.

Furthermore, UDDI has nearly disappeared from industry

usage, although UDDI used to be defined as discovery center in

the literature of Web service lifecycle. In real world, most

application developers directly use Web services based on their

own knowledge. In order to solve these issues, Semantic Web

technologies have been deployed to equip Web services.

However, can Semantic Web Service (SWS) technology alone

solve the dynamic problem?

The most recent SWS technologies can be divided into two

different processes: (1) top-down process is defined by using

domain ontologies, such as WSMO [4] and OWL-S [5]; (2)

bottom-up process uses light-weight service annotations, such

as WSMO-lite [7] and SAWSDL [3]. Both processes just move

the hard discovery work from requester’s side to the broker’s

side. In SWS environments, services need to publish either

semantic description files or annotations into brokers in order to

be discovered and invoked by requesters. Thus, brokers have to

take a very heavy workload acting as a central point.

In spite of all these research efforts, the automation level has

not dramatically increased. One main reason is the dissevered

description layers of syntax and semantics. Syntactic

descriptions such as WSDL and SOAP are still important for

service invocation. Meanwhile, semantic descriptions or

annotations only represent the syntax with semantics but they

are nothing to do with services themselves to affect service

behavior and invocation. In other words, current SWS

A Linked Data compliant Framework for

Dynamic and Web-scale Consumption of Web

Services

Yu et al. 797

approaches merely focus on enriching semantics for syntax

without considering the actual data structure definitions that are

very important for applications at run-time. Thus, semantic

brokers can facilitate automatic service discovery, but run-time

service invocation is still a big issue to prevent achieving the

initial goal of Web services.

When the idea of Web services was born, the Semantic Web

concept was not there yet. Why can we not go back to see

whether we could re-think about Web services standards from

the perspective of Semantic Web at the start? Most recent

development of Linked Open Data (LOD) [6] gives us a new

opportunity to link services together and specify services in a

global unified semantics. In this paper, we view Web services

with semantics from a different angle and introduce a Linked

Data Compliant Framework (LDCF) based on RDF and Linked

Open Data. In LDCF, all the communication protocols in the

lifecycle are RDF messages. Most importantly, Web services,

requesters and registry share equal workload, which makes

dynamically discovering, assembling and invoking more

efficient and realistic to be achievable.

The following summarizes the roles of Web services,

requesters and registry in LDCF:

The requester needs to semantically describe the desired

requirements about the requested Web services and send these

requirements to the registry.

The registry needs to pre-filter services only based on

categorization of the Web services and pass the semantic

requirements to all Web services that are registered within the

required category. Finally, the registry selects or orchestrates

Web services based on Web services’ semantic responses about

whether they are qualified to the requirements.

Web services need to publish its categorization information

to the registry and be aware the semantic requirements to notify

the registry whether they satisfy the requirements.

The key contribution of this paper is to start use Semantic

Web technologies throughout the whole Web services

development, brokerage and consumption lifecycle and all

three parts of Web services, service requester and service

broker are semantic-aware.

The remainder of this paper is organized into three sections.

Section 2 discusses the background and related work. Section 3

introduces the motivations. Section 4 explains the LDCF in all

details. Section 5 discusses the current Linked Services

technologies that can be used as the first step towards the

proposed LDCF. Section 6 finally draws the conclusion and

outlines the future work.

II. Background and Related Work

A. Big Web Services vs. RestFul Services

W3C defines Web services
1
 as "a software system designed to

support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-processable

format (specifically Web Services Description Language

WSDL). Other systems interact with the Web services in a

manner prescribed by its description using SOAP messages,

typically conveyed using HTTP with an XML serialization in

conjunction with other web-related standards." The Web

services implemented in this definition are usually called Big

1 http://en.wikipedia.org/wiki/Web_service

Web services. Critics argue that Big Web services are too

complex and based upon large software vendors or integrators,

rather than typical open source implementation. Moreover, with

an XML-based language it is difficult to identify the right

construct to express a data model in a way that is fully

supported by all SOAP/WSDL implementations [10].

With the popularity of Web 2.0, software functionalities

accessible via HTTP (i.e. "Web services") are becoming the

main underlying feature, which facilitates easy data exchange

across the Web. Therefore, in contrast to Big Web Services,

RestFul services implemented by using the PUT, GET and

DELETE HTTP methods alongside POST become more

popular. RestFul services are often better integrated with HTTP

and web browsers than SOAP-based services. They do not

require XML messages or WSDL-like service definitions.

However, the major limitation of RestFul services is lacking of

basic standards to support service discovery and dynamic

output parsing.

B. Light-weight Service Annotations and LOD

The main conceptual frameworks and specifications for

semantically describing services (e.g. WSMO, OWL-S and

SAWSDL which derive from WSDL-S [11]) are very

comprehensive. Most SWS initiatives were built upon the

enrichment of WSDL Web services with semantics. Moreover,

these comprehensive semantic standards are too heavy to show

the usability to the industry. It is only most recently that

lightweight services (e.g. Web APIs and RESTful services) and

service annotations have been researched. The main results of

these recent studies are SA-REST [11], WSMO-Lite and

MicroWSMO. However, these changes are still focusing on

service annotations for implementing a big middle broker layer

rather than thinking of adding semantic values inside services.

Over the last few years, a significant portion of research on

the Semantic Web has been devoted to create what is referred as

LOD. LOD is a way to publish data on the Web in order for

machines to understand the explicit meaning of the data. The

data is linked to other external data sets, and can in turn be

linked from external data sets. Meanwhile, LOD is based upon a

set of principles, including the usage of HTTP URIs to provide

information and allowing access based on RDF and SPARQL.

Since these principles were outlined, there has been a large

uptake, most notably through DBpedia
2
 to produce a vast

amount of linked datasets on the Web.

With the potential of LOD, service-oriented architecture can

use the dataset directly to develop semantic services rather than

to add semantic value later. In fact, LOD has been proposed as

an approach for publishing and describing services, namely

linked services [13] and Linked Open Services
3
. As a result, the

service annotations are part of the LOD cloud.

C. Context-aware Web services

Service’s performance adapting to dynamic changes influenced

by meaningful inputs is a new Web services movement

introduced in [16] and [17]. The basic principle is to enable

services to understand the context of a service request, (e.g.

input parameters and non-functional properties) and to provide

2 http://dbpedia.org/About
3 http://www.linkedopenservices.org/

 A Linked Data compliant Framework for Dynamic and Web-scale Consumption of Web Services 798

the corresponded results. However, this process is only suitable

for a limited scale of applications because the context-aware

ontology is only specified at the domain level. Moreover, it is

very unrealistic to match all possible performance to all

possible contexts in one service and specific domain, excepting

a manually negotiate process is required before the service

invocation. For example, the different inputs will affect the

speed of the service responding. However, the idea of

Context-aware Web services gives an illumination of

meaningful inputs can enhance the understandability between

services and requesters at run-time.

III. Motivation

In this section, we give two scenarios that have two basic

requirements of dynamic service discovery and runtime service

invocations.

A. Context-aware applications in a ubiquitous environment

Context is defined as ―meta-information to characterize the

specific situation of an entity, to describe a group of conceptual

entities, and to partition a knowledge base into manageable sets

or as a logical construct to facilitate reasoning services‖ [8].

Based on this context definition, we introduced a typical

context-aware application scenario [9] for Personalized

Semantic News in the EU-funded NoTube project
4
 as follows:

A NoTube platform user acquires news items from generic

broadcast streams and obtains additional enriched news

information by using a set of personalized news related services

(see Figure 1). The platform should enable the use of user

profile information and preferences to match the available news

services. For example a user demands interesting news when

he/she is using an iPhone and travelling by bus. His/Her profile

describes that he/she prefers to use English and is generally

interested in sports. The application should enable the user to

get the interesting news data by discovering, selecting and

invoking the suitable news services that match the user’s

context.

4 http://www.notube.tv/

Figure 1. Context-aware personalised news scenario

B. E-Learning applications for learning content sharing

and exchanging

In most e-Learning applications, sharing and exchanging

learning objects in a multiplicity of distributed environment are

the important requirements. In the EU-funded mEducator

project
5
, there is a scenario about searching, publishing and

creating learning contents for different topics and languages

from/to multiple and different medical Learning Content

Management Services (LCMSs). In the meantime, each LCMS

has its own input and output specifications. Moreover, the

LCMSs can be added into the environment at any time when

more education institutes joined. The application should enable

dynamically invoking the suitable services to perform the

functions.

IV. The Linked Data Compliant Framework

(LDCF) for Dynamic and Web-scale

Consumption of Web Services

The implementation and consumption of Autonomous

Matchmaking Web services must follow four basic principles

and the overall run-time lifecycle is represented in Figure 2.

A. The principles

One service includes two layers, namely the autonomous

matchmaking layer and the functionality layer, and two

invocation endpoints for each layer respectively. The

autonomous matchmaking layer receives service searching

message (SSM) from the registry and sends back “yes” or “no”

confirmation response message (CRM) to the SSM sender. The

functionality layer receives service invocation input message

(SIIM) and sends back a matched output message (MOM),

which was defined inside the previous SSM.

The service registers a service semantic annotations (SSA) as

RDF into service registry and has the ability of identifying the

5 http://www.meducator.net/

Yu et al. 799

function capability. The SSA includes at least the ground

information about the two invocation endpoints and

non-functional properties. The most important non-functional

property is category that describes the general purpose of the

service. The other properties are optional such as response

time, license type and fees. Since the service itself will identify

the function capability when receiving SSM, then publishing

the functional semantic is not necessary.

The service registry is able to indentify the right service(s)

and send back the Invocation Endpoint Message (IEM) to the

service requester. When a service request is received, service

registry firstly pre-filters services only based the categorization

property. Then the request message is sent to the services that

are grouped in the required category.

All messages are RDF with semantic annotations on each

entity and the semantics are referenced by LOD. For example, a

FOAF ID defined in LOD Cloud can be used to annotate a

userId entity that is one parameter of an input message (a

clearer example will be illustrated later).

Figure 2. Run-time lifecycle of Smantic-aware Web services

B. Message definition

 Service Searching Message (SSM)

SSM is designed to specify the requirement of the desired

service(s) from the service requester’s point of view. The

ultimate goal of SSM is to allow the service autonomous

matchmaking layer to understand what the requester needs.

There are two major advantages: (1) SSM is a message (not

service annotation) protocol that is purely defined by the

needs of application developments at design time and is

searching the desired service at run time when

communicating to services through Registry via the message.

(2) SSM aims to use global understandable semantic

references of LOD, although a domain specific ontology is

also allowed. In this way, the service autonomous

matchmaking layer can decide whether the service

functionality is suitable according to the SSM. The RDF

schema of SSM is defined in Figure 3.

Each SSM includes at least functional requirements of the

desired service and the brokerage mode attribute. The

specification of non-functional requirements is an optional

part to enhance the brokerage process for selecting

service(s).

The hasMode property is an enum data type defining two

elements: ―single‖ and ―set‖. The ―single‖ indicates only one

best suitable service is requested and the ―set‖ means that all

suitable services are required. Because hasMode is only

useful for the registry, it will not pass to Web services and

SSM’s (in Figure 3) are the SSM messages without hasMode

property.

The FunctionalRequirement class consists of

InputMessage, OutputMessage and ServiceCategory.

InputMessage and OutputMessage include Parameters what

are composed by one Element or more. ServiceCategory

indicates service domain. The most important part of the

SSM schema is to use global recognizable RDF entities to

semantically reference the Element and ServiceCategory.

Based on current semantic web standards, LOD is most

suitable resource to be applied. For example, the Service

Finder RDFs
6
 can be one of the ServiceCategory references.

The NonFunctionalRequirement class includes

nonfunctional parameters that can be semantically

referenced to specify the properties like response-time, fee

and language.

Figure 3. SSM RDF schema

 Confirmation Response Message (CRM)

CRM is a simple message to confirm whether the service is

suitable by sending to the SSM sender. The first-draft RDF

schema of CRM is defined in Figure 4.

The hasRegistrationID property is a unique identifier that

is registered and links to other service information in the

service registry, for instance, non-functional properties and

request endpoint.

Figure 4. CRM RDF schema

 Invocation Endpoint Message (IEM)

6 http://www.service-finder.eu/ontologies/ServiceCategories

 A Linked Data compliant Framework for Dynamic and Web-scale Consumption of Web Services 800

An instant message of IEM is sent from the service registry to

service requester for supporting the invocation endpoint(s).

Based on the service requested hasMode property defined in

SSM, the registry will decide whether a set of service

endpoints or single service endpoint should be included in

the message. The first-draft of the IEM RDF schema shows

in Figure 5.

Figure 5. IEM RDF schema

 Service Invocation Input Message (SIIM)

When the service requester gets the invocation endpoint(s),

(an) instant SIIM(s) will be sent to these endpoint(s) for

service invocation. The first-draft of SIIM RDF schema is

illustrated in Figure 6.

As defined in SSM, the Element included in Parameter of

InputMessage is semantically referenced to enable service

side to correctly retrieve the input data.

Figure 6. SIIM RDF schema

 Matched Output Message (MOM)

All response messages from invoked services follow MOM

RDF schema. MOM is very similar to SIIM but change the

Element input value to the Element output value as displayed

in Figure 7. This time, the semantics of Element is used by

the service requester to finally pickup the correct response

data.

Figure 7. MOM RDF schema

C. Benefits

There are two major benefits of applying the LDCF.

All information and communication messages are

semantically understandable by using unified RDF data

structure and LOD semantics. As result, all three parts can

know the data structure and semantics at the same time, which is

a fundamental requirement to enable services to be dynamically

assembled and invoked.

The workload among Web services, Service registry and

service requester to achieve dynamically assembling and

invoking services are trade-off. Each part of the three takes their

own responsibilities to efficiently finish the service

consumption life-cycle. Therefore, LDCF is suitable for

large-scale distributed applications.

D. Service development suggestions for the scenarios

To implement the LDCF in both context-aware and e-Learning

scenarios requires four steps:

Step 1. Describing and storing service properties with

semantics

For example, the news service from the context-aware

scenario takes topic and keywords as input parameters and

produces title description and stream URIs as output

parameters. The service providers should have their own

service specification to enable comparing it to the SSM. The

document in Listing 1 shows an example of storing the input

message specification as RDF.

The hasSemanticReference properties being highlighted is

the key elements in the document. In the similar way, the output

message can be specified as a RDF document as well. When

receiving SSM, the service first responds to the registry whether

it is suitable. When the service is invoked, it retrieves the

semantic matched input parameters to produce the semantic

matched outputs.

<rdf:RDF>

<rdfs:Class rdf:about=

"http://.../semanticWS/InputMessage"/>

<rdfs:Class rdf:about=

"http://.../semanticWS/SParameter"/>

<rdfs:Class rdf:about=

"http://.../semanticWS//Element"/>

<rdfs:ObjectProperty rdf:about=

"http://.../semanticWS/hasPart">

 <rdfs:range rdf:resource=

 "http://.../semanticWS/Element"/>

 <rdfs:domain rdf:resource=

 "http://.../semanticWS/Parameter"/>

</rdfs:ObjectProperty>

<rdfs:ObjectProperty rdf:about=

"http://.../semanticWS//hasParameterPart">…

<rdfs:DatatypeProperty rdf:about=

"http://.../semanticWS//hasName">…

<rdfs:DatatypeProperty rdf:about=

Yu et al. 801

"http://.../semanticWS//hasSemanticRefence">

 <rdfs:domain rdf:resource=

 "http://.../semanticWS//Element"/>

 <rdfs:range rdf:resource=

 ".../XMLSchema#string"/>

</rdfs:DatatypeProperty>

<Element rdf:about=

"...#InputMessage_keywords_element">

 <hasName rdf:datatype=

 ".../XMLSchema#string">

 keywords</hasName>

 <hasSemanticRefence rdf:datatype=

 ".../XMLSchema#string">

<hasSemanticRefence rdf:datatype=

"… /XMLSchema#string">

http://www.talkdigger.com/

conversations/web.mit.edu/newsoffice/keywords

</hasSemanticRefence>

</Element>

 <Parameter rdf:about=

 "...#InputMessage_keywords"/>

 <InputMessage rdf:about=

 "...#InputMessage_news">

 <hasParameterPart>

 <Parameter rdf:about=

 "...#InputMessage_topic">

 <hasPart>

 <Element rdf:about=

 "...#InputMessage_topic_element">

 <hasSemanticRefence rdf:datatype=

 ".../XMLSchema#string">

http://www.talkdigger.com/conversations/

web.mit.edu/newsoffice/topic

</hasSemanticRefence>

 <hasName rdf:datatype=

 ".../XMLSchema#string"

 >topic</j.0:hasName>…

Listing 1. An example of a RDF document provided by service

providers for describing service properties.

Step 2. Implementing services.

Services should be implemented according to the described

service properties (in our case, the RDF descriptions) and

grounded with an invocation endpoint.

Step 3. Developing SSM comparing mechanism with a

Autonomous Matchmaking endpoint.

The comparing mechanism should define the rules of

acceptable SSMs. For example, if the input_service 

input_requirement and output_service  output_requirement,

then the SSM is acceptable and the service will send a ―yes‖

response to the registry. Otherwise, a ―no‖ response is sent. If

the SSM includes non-functional properties, then the

non-functional property comparing mechanism should be

defined or leave it to the registry to decide.

Step 4. Publishing endpoints to the registry.

The two endpoints of Autonomous Matchmaking and

invocation should be published into the registry. The

non-functional properties are optional to be published based on

whether services desire to be brokered.

V. Linked Services Towards LDCF

The more recent Linked Services [14] stream of SWS research

partially addresses principles proposed in this paper. Here we

introduce the Linked Services approach and its potential to

contribute towards the vision of this paper.

A. Linked Services: overview

In order to support annotation of a variety of services, such as

WSDL services as well as REST APIs, the EC-funded project

SOA4ALL
7
, has developed iServe

8
 a novel and open platform

for publishing semantic annotations of services based on a

direct application of linked data principles [14]. iServe supports

publishing service annotations as linked data—Linked

Services—expressed in terms of a simple conceptual model that

is suitable for both human and machine consumption and

abstracts from existing heterogeneity around service kinds and

annotation formalisms. In particular iServe provides:

 Import of service annotations in a range of formalisms

(e.g., SAWSDL, WSMO-Lite, MicroWSMO, OWL-S)

covering both WSDL services and Web APIs;

 Means for publishing semantic annotations of services

which are automatically assigned a resolvable HTTP

URI;

 Support for content negotiation so that service

annotations can be returned in plain HTML or in RDF

for direct machine consumption;

 SPARQL endpoint allowing querying over the services

annotations;

 REST API to allow remote applications to consume and

provide annotations;

 Support for linking service annotations to existing

vocabularies on the Web.

7 http://www.soa4all.eu/
8 http://iserve.kmi.open.ac.uk

 A Linked Data compliant Framework for Dynamic and Web-scale Consumption of Web Services 802

In order to cater for interoperability, iServe uses what can be

considered the maximum common denominator between

existing SWS formalisms which we refer to as the Minimal

Service Model (MSM). The MSM, first introduced together

with WSMO-Lite and hRESTS [15], is thus a simple RDF(S)

ontology able to capture (part of) the semantics of both Web

services and Web APIs in a common model. MSM is extensible

to benefit from the added expressivity of other formalisms. The

MSM, denoted with the 'msm' namespace in Figure 8, defines

Services as having a number of Operations each of which have

an Input, Output MessageContent, and Faults. In turn, a

MessageContent may be composed of MessageParts which

may be mandatory or optional. iServe additionally uses the

SAWSDL, WSMO-Lite and hRESTS vocabularies. The

SAWSDL vocabulary captures in RDF the three main kinds of

annotations over WSDL and XML Schema, including

modelReference, liftingSchemaMapping and

loweringSchemaMapping that SAWSDL supports.

WSMO-Lite builds upon SAWSDL by extending it with a

model specifying the semantics of the particular service

annotations. It provides a simple RDFS ontology together with

a methodology for expressing functional and non-functional

semantics, and an information model for WSDL services based

on SAWSDL’s modelReference hooks. The hRESTS

vocabulary extends the MSM with specific attributes for

operations so as to allow modeling additional details necessary

for Web APIs.

Figure 8. iServe conceptual model for services – The Minimal

Service Model and WSMO-Lite

In order to support users in creating semantic annotations for

services three editors have been developed: SWEET [12]

(SemanticWeb sErvices Editing Tool), SOWER (SWEET is

nOt a Wsdl EditoR), and SmartLink [16] which support users in

annotating Web APIs and WSDL services respectively.

B. Towards Linked Services as implementation of LDCF

We perceive Linked Services as a very useful step towards our

vision proposed in this paper. The MSM shows a strong overlap

with our SSM schema and hence, the schema and tool support

provided to facilitate the Linked Services vision show

considerable potential towards LDCF.

While the iServe approach enables uptake of SWS

technology by a wider audience, the automation and

matchmaking scenarios, which it facilitates, are still limited.

The reason for that being that the MSM so far does not consider

execution aspects only in a very limited way, to ensure

simplicity and low costs for producing MSM-based service

annotations. Future work has to be invested in a detailed

evaluation of the two proposed schemas and the possibilities to

extend the Linked Services approach in a way that fully

facilitates the autonomous matchmaking mechanisms proposed

in this paper.

VI. Conclusion and Further Discussions

In this paper we introduced a new Web services framework

namely LDCF: Linked Data Compliant Framework. The LDCF

is based on the most recent Semantic Web and Web services

research results aiming to achieve dynamic service discovery,

assembling and invocation in a large-scale, distributed

environment. The main ideas are (1) the LDCF uses RDF

messages as a communication protocol among services,

requesters and the registry; (2) the RDF entities are referenced

by LOD dataset for giving the semantics and for filling the

knowledge gap between requesters and services; (3) the LDCF

uses Autonomous Matchmaking to notify the suitableness to the

registry, which better fits into the distributed environment than

typical WS standards and SWS frameworks.

The LDCF is a first attempt to refine the WS or SWS

discovery, assembling and invocation lifecycle by just using

Semantic Web technology to develop services rather than

adding semantic layers to the syntax based WS blocks.

However, the LDCF approach is still at the very early stage and

it has many open questions that need to be answered. For

instance, is autonomous matchmaking necessary when a broker

is there? One answer could be ―yes‖, because it distributes the

discovery workloads from the centralized broker. Moreover,

Autonomous matchmaking can reduce the fault rates at runtime

if a service changes its behavior or takes different service

requirements to modify its own behavior like context-aware

services. The other answer could be ―no‖, if the centralized

broker is allocated in a powerful machine or has powerful

distributed calculation mechanism such as Grid computing and

services are very stable. The other issue may be related to using

RDF not OWL or other semantic standards. We have to say that

this is just based on current industry practice on RESTFul Web

services that produce mainly RDF results and one reason could

be RDF is easier to be grounded than OWL and other standards.

This paper aims to start to reconsider Web services using

Semantic Web eyes in order to resolve current Web services

and SWS problems when dynamically discovering, assembling

and invocating services. Our future work will involve industry

partners to investigate the Autonomous Matchmaking

mechanism, usability and practicability to improve the LDCF.

Furthermore, a more comprehensive Autonomous

Matchmaking mechanism will be studied.

Acknowledgment

The work is supported in part by the European Commission

under Grant ECP2008EDU418006 for mEducator poject and

FP7-ICT-231761 for NoTube project.

References

[1] Papazoglou, M. P., Traverso, P., Dustdar, S. and Leymann,
F., Service-Oriented Computing: A Research Roadmap,
International Journal of Cooperative Information
Systems, Vol. 17, No. 02. (2008), 223.

[2] Gunzer, H and Engineer, S., Introduction to Web Services,
Borland Developer Network (2002),

Yu et al. 803

DOI=http://bdn.borland.com/article/images/28818/webser
vices.pdf.

[3] Kopecký, J., Vitvar, T., Bournez, C. and Farrell, J.,
"SAWSDL: Semantic Annotations for WSDL and XML
Schema," IEEE Internet Computing, vol. 11, no. 6, pp.
60-67, Nov./Dec. 2007, doi:10.1109/MIC.2007.134

[4] WSMO Working Group (2004), D2v1.0: Web service
Modeling Ontology (WSMO). WSMO Working Draft,
(2004). (http://www.wsmo.org/2004/d2/v1.0/).

[5] Martin, D., Burstein, M., Hobbs, J., Lassila, O.,
McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M.,
Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara,
K. (2004). OWL-S: Semantic Markup for Web Services.
Member submission, W3C. W3C Member Submission 22
November 2004.

[6] Bizer, C., Heath, T, Berners-Lee, T., Linked data - The
Story So Far, Special Issue on Linked data, International
Journal on Semantic Web and Information Systems
(IJSWIS), 2009.

[7] WSMO-lite, DOI= http://cms-wg.sti2.org/TR/d11/v0.2/.

[8] Boukadi, K., et al. CWSC4EC: How to Employ Context,
Web Service, and Community in Enterprise Collaboration.
NOTERE '08: Proceedings of the 8th int conference on
New technologies in distributed systems, 2008.

[9] Yu, H. Q., Benn, N., Dietze, S., Siebes, R., Pedrinaci, C.,
Liu, D., Lambert, D., and Domingue, J., (2010)
Two-staged approach for semantically annotating and
brokering TV-related services, The IEEE International
Conference on Web Services (ICWS), Miami, Florida.

[10] Pautasso, C., Zimmermann, O., and Leymann, F., 2008.
Restful web services vs. "big"' web services: making the
right architectural decision. In Proceeding of the 17th
international Conference on World Wide Web (Beijing,
China, April 21 - 25, 2008). WWW '08. ACM, New York,
NY, 805-814. DOI=
http://doi.acm.org/10.1145/1367497.1367606.

[11] Sheth, A. P., Gomadam, K., and Ranabahu, A., 2008.
Semantics enhanced services: Meteor-s, SAWSDL and
SA-REST. IEEE Data Eng. Bul l., 31(3):8–12.

[12] Maleshkova, M., Pedrinaci, C., and Domingue, J. 2009.
Supporting the creation of semantic restful service
descriptions. In Workshop: Service Matchmaking and
Resource Retrieval in the Semantic Web (SMR2) at 8th
International Semantic Web Conference.

[13] Pedrinaci, C., Domingue, J., and Krummenacher, R. 2010
Services and the Web of Data: An Unexploited Symbiosis,
Workshop: Linked AI: AAAI Spring Symposium "Linked
data Meets Artificial Intelligence".

[14] Pedrinaci, C. and Domingue, J. (2010) Toward the Next
Wave of Services: Linked Services for the Web of Data,
Journal of Universal Computer Science

[15] Kopecky, J.; Vitvar, T.; and Gomadam, K. 2008.
MicroWSMO. Deliverable, Conceptual Models for
Services Working Group, URL:
http://cms-wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20
090310.pdf.

[16] Dietze, S., Benn, N., Yu, H., Pedrinaci, C., Makni, B., Liu,
D., Lambert, D., and Domingue, J. (2010) Comprehensive
service semantics and light-weight Linked Services:
towards an integrated approach, Workshop: Fourth
International Workshop SMR2 2010 on Service
Matchmaking and Resource Retrieval in the Semantic Web
at 9th International Semantic Web Conference (ISWC),
Shanghai, China

[17] Yu, H. Q., Reiff-Marganiec, S., "A Method for Automated
Web Service Selection", services, pp. 513-520, 2008 IEEE
Congress on Services - Part I, 2008.

[18] Truong, H. and Dustdar, S., A Survey on Context-aware
Web Service Systems, International Journal of Web
Information Systems, 5(1):5 - 31, (c) Emerald, 2009.

Author Biographies

Dr. Hong Qing Yu is a Research associate at the

Knowledge Media Institute and a member of Semantic

Media Group in the Open University. His research area

includes next generation Service Oriented Architecture,

Semantic Web, context-aware systems, e-learning and

multi-media technologies. He holds a PhD in Computer

Science from the University of Leicester. He has been

involved in several EU founded research projects such as

NoTube, mEducator, SOA4ALL, SENSORIA and

inContext.

Dr. Stefan Dietze is a research fellow at the Knowledge

Media Institute of The Open University and holds a Ph.D.

(Dr. rer. nat.) in Applied Computer Science from Potsdam

University. His main research interests are in

Knowledge-based Systems, Semantic Web and

Service-oriented Architectures and their application to

various domains. Stefan has been involved in leading roles

in numerous EU research projects, such as LUISA, NoTube

or mEducator. Stefan's work has been published throughout

major conferences, journals and workshops in the area of

Semantic Web, Web Services and SOA. He is also chair of

several scientific events and regular reviewer and

board/committee member for a large number of scientific

conferences and publications.

Dr. Carlos Pedrinaci is a research fellow of the Knowledge

Media Institute at the Open University. He holds an MSc in

Computer Science and a PhD in Artificial Intelligence from

the University of the Basque Country (Spain). His research

interests include Semantic Web Services,

Knowledge-Based Systems, Knowledge Engineering and

Business Process Analysis. Carlos has worked in several

research projects in the area of services such as OBELIX

(EU FP5 STREP), DIP (EU FP6 IP), SUPER (EU FP6 IP),

SOA4All (EU FP7 IP) where he serves as leader of the

Fundamental and Integration Activity, and VPHShare (EU

FP7). He is actively involved in the standardization of

Semantic Web Services technologies. He is member of the

OASIS SEE TC and the Conceptual Models for Services

Working Group, and was previously member of the WSMO

Working Group and the W3C SAWSDL Working Group.

Carlos has published over 60 papers in major conferences

and international journals. Dr. Pedrinaci has co-organized a

number of conferences, workshops, and summer schools

such as ESWC 2010, Beyond SAWSDL, and the Service

and Software Architectures, Infrastructures and

Engineering (SSAIE).

Dr. Dong Liu received his Ph.D. in computer science from

Beijing university of Posts and Telecommunications,

Beijing, China. His thesis was on context-aware computing

technology and its application in semantic Web services. In

2008, he joined the Knowledge Media Institute of The Open

University, UK, and participated in several EU research

project: SUPER, SOA4All and NoTube. He is currently

interested in semantic technology and Web services.

http://bdn.borland.com/article/images/28818/webservices.pdf
http://bdn.borland.com/article/images/28818/webservices.pdf
http://bdn.borland.com/article/images/28818/webservices.pdf
http://www.wsmo.org/2004/d2/v1.0/
http://cms-wg.sti2.org/TR/d11/v0.2/
http://doi.acm.org/10.1145/1367497.1367606
http://cms-wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20090310.pdf
http://cms-wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20090310.pdf

