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Abstract: In a picture of a bright scene, camera sensor
readings may be saturated to a maximal value. This results in
loss of variation and color distortion of bright regions in the
image. We present an algorithm that exploits data from uncor-
rupted channels to recover image details and color information.
The correction is based on the Color Lines model for image rep-
resentation in RGB color space. Given an image we identify
regions of color clipping, and expand each of them to a color
cluster called a Color Line. Then we restore the clipped pixel
values of each Color Line according to its unique properties.
Our method is suitable for both raw and processed color im-
ages, including those with large clipped regions. We also present
results of correcting color clipping in video sequences.

Keywords: color correction, color clipping, sensor saturation,
computational photography.

I. Introduction

Color clipping decreases the quality of pictures and movies.
Pixel values are clipped at a maximal value, and the variation
in bright regions is lost, as can be seen in Figure 1. The
color of these image regions is also distorted, because of the
change in the RGB pixel values. In the extreme case, when
all of the color channels become are clipped, a bright colorful
region becomes white.

There are two main reasons for color clipping. First,
camera sensors have a finite dynamic range that may become
saturated. In this case the sensor reading only constitutes
a lower bound on the desired true value, which would have
been measured if the sensor had a larger capacity.

Second, in the image processing pipeline, non-linear
color enhancement functions reduce the differences between
high color levels in comparison to middle color levels that re-
main more distinguishable. This effect is incorporated along
with other processing steps that change the pixel values and
make it harder to determine which image pixels are saturated.
Actually, in many cases a range of the high levels in the out-
put image (e.g. 240–255) should be treated as saturated. Fig-
ure 2 illustrates the effect of such distortions in RGB space.

In many cases, however, the clipped region itself con-

tains useful information to help recover color and pixel vari-
ation. Figure 3 presents an example in which the details were
eliminated from the Green channel, whereas the Blue chan-
nel preserves them completely. It is natural to make use of
the information of the Blue channel in order to recover the
pixel variation in the Green channel.

Different approaches have been suggested to recover the
clipped information. Wang et al. [9] transfer details from an
under-exposed region to a corresponding over-exposed one
by user annotations. This method is appropriate for the com-
pletion of texture regions and is based on the assumption
that the image contains patches similar to the clipped region.
Didyk et al. [10] enhance the clipped region using clues from
neighboring pixels. This method is specific for highlights
and does not work with diffuse surfaces.

Regincos-Isern and Batlle [1] captured a series of images
with different light intensities, and assigned the hue and sat-
uration values of saturated (r,g,b) triplets according to the
non-saturated ones. This method was useful for their goal,
training a system for segmentation of a specific color from an
image but it cannot be used as a general framework without
knowing which colors have been distorted. Nayar et al. [3]
also use varying exposures to construct a high dynamic range
image that contains no clipped values. This method depends
on a special hardware filter incorporated in the camera.

Zhang and Brainard [7] suggested a method for raw im-
ages that is based on the correlation of the RGB color chan-
nels. They model the joint distribution of the RGB values
as a Gaussian and estimate its parameters (mean and covari-
ance matrix) from the unclipped image pixels. The unclipped
channels of a pixel are used as an observation in order to ef-
ficiently compute the expected value of its clipped channel.
However, in the common case of different color regions in an
image, a global model is not suitable. In practice, the real-
world examples in their paper show only reconstructions of
the variation in gray/white image regions.

Masood et al. [11] proposed a method to correct saturated
images based on propagation of R:G:B ratio from unclipped
pixels to their clipped neighbors. The authors show that their
results are better than applying the colorization technique of
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(a) Clipped (b) Clipped (c) Clipped

(d) Corrected (e) Corrected (f) Corrected

Figure. 1: Examples of clipped images and their correction. The most relevant regions are surrounded by ellipses. The first
row contains clipped images, compared to those in the second row that are corrected by our algorithm. The original images
were scaled linearly to the range of the corrected images. Note the appearance of details in (e,g) and the correction of Blue in
(f). (d,h) illustrate the correction of Color Lines in the RGB space, by presenting the R:G histogram of (b,f) respectively.

Levin et al. [5] on the clipped pixels. They focused almost
completely on face images and present results only on raw
images (except a single non-raw example). In Section IV-B
we compare our results with this work.

Recently, two papers proposed correcting processed
(non-raw) images of general objects using a similar approach
to [11]. Xu et al. [14] first correct the chroma of clipped pix-
els in YCbCr space, and then return to the RGB space to
recover intensity. Their color correction is based on prop-
agation of one of the Cb or Cr channels of the unclipped
neighboring pixels. In the second step the image is converted
back into RGB for the recovery of intensity. In another paper,
Guo et al. [13] recover the intensity and the color information
separately in La∗b∗ space. Their color correction is based on
probabilistic propagation of the a∗, b∗ values of neighboring
pixels. Both [14] and [13] presented only results of correct-
ing color distortions in smooth and diffuse regions. They did
not show results of recovering details and did not treat spec-
ularity.

A preliminary version of this paper appeared in [12]. It
is based on a model suggested by Omer and Werman [6] for
representing a color image in the RGB space, called Color
Lines. This model makes it possible to handle each color
region separately according to the physical properties of its
representing Color Line. Although the authors proposed to
use Color Lines for correction of clipped regions, they did

not present a method that performs such correction. (Figure
14 in their paper shows a single example for concept demon-
stration. By personal communication, the input is a raw im-
age that was manually corrected.)

This paper presents a practical automatic algorithm
which recovers color information and intensity variation of
clipped image regions. The proposed method works with raw
images, processed images and video.

We do not deal with the visualization of the recovered
high dynamic range image. Our results are presented using
simple linear scaling. For more sophisticated methods see
e.g. [4].

The remainder of this paper is organized as follows. In
Section II we review the Color Lines model and its advan-
tages for color clipping correction. Section III describes our
algorithm in detail. Section IV presents our results for raw
image data, processed images and video sequences. Sec-
tion V summarizes our work.

II. The Color Lines Model

It is common to separate color from intensity to decide if two
image pixels share the same color. This separation can be
linear as in YCrCb, YUV, YIQ color spaces, or non-linear as
in HSV, HSI, CIE-LAB, CIE-LUV color spaces; see e.g. [8].
All these color models can be referred to as generic, i.e. they
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(a) Blue (unclipped) (b) Green (clipped) (c) Green (corrected)

Figure. 3: An example of the RGB correlation. The unclipped Blue channel (a) preserves details that are eliminated in the
clipped Green channel (b). This information was used for the correction shown in (c).

(a) R:G, clipped (b) R:G, corrected

Figure. 2: R:G histogram of the clipped image 1(b) and the
corrected image 1(f).

(a) Input image (b) Saturated blobs (ini-
tial seeds)

(c) Color Lines (seg-
ments)

Figure. 4: Illustration of the first two steps of the algorithm
(Sections III-B, III-C). Given a clipped image (a), we iden-
tify saturated blobs (b) and expand them to Color Lines (c).

do not consider specific image properties.
In practice, however, most images undergo several types

of color distortion caused by reflection, noise, sensor satura-
tion, color enhancement functions etc. Thus, it is reasonable
to develop image specific color models, since each image is
changed differently.

Although distorted, the RGB histogram of real world im-
ages remains very sparse and more importantly, it is struc-
tured; i.e., most of its non-empty histogram bins have non-
empty histogram neighbors.

Omer and Werman [6] combine this observation with an-
other assumption on the histogram structure - that the norm
of the RGB color coordinates of a given real world color in-
creases with an increase of the illumination. Therefore they

suggest representing the color distribution of a specific image
by a set of elongated clusters called Color Lines. An example
is shown in Figure 2(a).

In the context of the problem of color clipping, the Color
Lines representation is powerful since it makes it possible
to attribute saturated pixels to the appropriate color clus-
ter. Moreover, since the increase in the RGB channels are
correlated with the increase in illumination, the data from a
non-saturated part of a color cluster provide useful informa-
tion that can help to correct its saturated part. Considering
a clipped channel as a monotonic increasing function of the
unclipped channels, we can recover the pixel intensity and
chromaticity.

III. Correction of Color Clipping

Our algorithm includes three main steps: (1) identification
of color clipping; (2) expansion of clipped regions to Color
Lines; (3) correction of the clipped channels of a Color Line
(one or more), using information from its other channels. We
add a post-processing step to fix artifacts that occur in white
image regions. This step is optional and is especially suitable
for specularities.

The process is carried out in RGB color space. This is
natural since the camera sensors capture the visual informa-
tion in RGB and the clipping occurs in the separate RGB
channels.

A. Identifying color clipping

The first step identifies regions of color clipping in the im-
age. The purpose of this step is to roughly localize clipped
color regions that should be corrected, therefore missing part
of the saturated pixels is allowed. It also separates clipped
pixels from different color regions and forms saturated blobs
that constitute a beginning point for the identification of the
relevant image Color Lines.

Simple thresholding is not sufficient, however, because
of the distortion in the high intensity levels. As described
in Section I, it is difficult to determine an exact threshold.
Therefore we operate as follows.
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(a) ’Clean’ correction (b) Noisy case (c) Noisy case (d) No unclipped part

Figure. 5: Correction of clipped Color Lines. After identifying the saturation point (marked in red), the original pixel values
(black points) are replaced by new values (green points) according to 3D line equation, as described in Section III-C. For
visualization we show a 2D plot of one unclipped channel against the corrected channel. Note that the green points between
the clipped values are the same as the original points.

(a) Clipped image (b) Before white correction (c) After white correction

Figure. 6: Treating artifacts in white pixels (Section III-D). The clipped image (a) was corrected in (b). This recovered the
blue color of the car (red ellipses) but colored white and metallic regions (black ellipses). The post processing step fixed this
artifact, without damaging true correction of colorful regions.

Initially we only take into account pixels whose maxi-
mum RGB value is greater than t (∼230). Then we apply
several iterations (∼5) of bilateral filtering [2] to those pix-
els in order to denoise them. After filtering, we compute the
gradient and remove the pixels with the 10% highest gradient
norms (edges). This results in connected components that we
call saturated blobs, as can be seen in Figure 4(b). In order to
be efficient we remove small blobs (smaller than 50 pixels).
Typically, this leaves us with around 0–30 different blobs.

B. Color Lines expansion

After finding the saturated blobs, we find the Color Lines
associated with them, as shown in Figure 4(c). We consider
each blob from the previous step and iteratively expand it
to neighboring image pixels. The color clusters are smooth,
elongated, and positively correlated. We iteratively expand
them by joining neighboring pixels in XY-RGB (i.e. spatial
image coordinates and RGB values) until no new pixels are
added.

We fuse the clusters with significant overlap (more than
50% of each cluster). A pixel can be in more than one cluster,
in such case it is corrected to the average of the values derived
from the correction of each cluster.

C. Color Lines correction

The last step in our algorithm corrects the clipped part of
each color cluster according to its unclipped part. Actually,
color clusters in processed images are noisy and nonlinear
(see Figures 1(d,e) and 5); thus we consider only pixels that

are close to the clipped region in the RGB histogram, and
compute their R:G:B ratio to get a first-order approximation
of the true values of the corrected channel.

As mentioned, the RGB channels of a color cluster are
highly correlated. Thus we can treat each one of them
roughly as a monotonic increasing function of any combina-
tion of the others. When a channel reaches the maximal value
and is clipped, the increase in the other channels continues.
Therefore, for each saturated channel there is a point that we
call the saturation point, which separates the unclipped part
of the color cluster from its clipped part, as shown in Fig-
ure 5. We find the saturation point as follows.

We threshold pixel values of a channel, for example R, by
a high value (∼250) and take only the pixels that are greater
than it. Then we sort their values in the other channels (G,B)
separately and take the values of a small percentile (∼1%) in
each of them as the (g, b) coordinates of the saturation point.
The r coordinate is defined as the median R value of the pix-
els that are in a small radius of the (g, b) coordinates in RGB.
Note that this value may be smaller than the initial threshold.
In cases where the color cluster has more than one clipped
channel, each clipped channel has a different breaking point
and is corrected separately.

Pixels with a value greater than that of the saturation
point are considered clipped in this channel and the others
as non-clipped. This exempts us from determining an exact
threshold, which may cause undesired discontinuity artifacts
in the image.

In order to reconstruct the values of the clipped part of the
Color Line, we need to estimate the slope of the unclipped
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(a) Clipped (b) Clipped (c) Clipped

(d) Corrected (e) Corrected (f) Corrected

Figure. 7: More results of our method on processed images.

part in the RGB space near the saturation point. We approxi-
mate it using the first eigenvector of the scatter matrix of the
unclipped pixels near the saturation point.

Combining the estimated slope a with the saturation point
(sr, sg, sb) we can compute the corrected r value of a pixel
by its (g, b) values:

rcorrected = sr + a · ‖g − sg, b− sb‖ (1)

However, in this way all of the pixels with the same (G,B)
values are attributed the same R value unlike the situation in
the original image (note that the original r may be smaller
than the maximum value). Thus, we replace the above equa-
tion with

rcorrected = sr + ρ(r) · a · ‖g − sg, b− sb‖ (2)

where ρ is 1 when r is greater than an upper value, and de-
creases linearly to 0 when r is smaller than a lower value. In
order to compute a robust solution we limit the angle of the
line slope to be between an upper and lower value. Addition-
ally, we limit the maximal intensity of the corrected pixel, to
restrict the resulting dynamic range of the image.

Figure 5 shows typical examples of Color Lines correc-
tion. Figure 5(d) presents a case in which no unclipped part
exists; namely, all of the pixels in the color cluster are clipped
in some channel. In this case we cannot correct the color by
restoring the original pixel values; however, we can still re-
cover some of the variation between pixels by using the sat-
uration point and a small arbitrary angle.

D. Treating pixels clipped in all RGB channels

There are two scenarios in which a pixel is clipped in all
RGB channels. In case of a diffuse surface the true color
is recovered by the above correction (Section III-C), even
though the details cannot be restored. However, when the
pixel is clipped due to specularity (e.g. as in Figures 1(a,c)
and 7(a)), the correct color is often white, the typical ambi-
ent light. We add an optional post processing step to correct
specular clipping. This step is relevant also for white dif-
fuse regions, whose correction might be unbalanced, as color
channels are corrected separately. This might result in a red-
dish or bluish hue. Figure 6(b) shows an example of coloring
white regions incorrectly.

We solve this problem by modifying the additions to the
RGB channels, as demonstrated in Figure 6. The output of
the correction process is an image with a greater dynamic
range than that of the input image. Thus, by subtracting the
original pixel values from the corrected image, we can get an
addition map and modify it in sensitive regions.

In order to handle white pixels we measure the L2 dis-
tance from each pixel in the input image to the gray line
R = G = B to determine its whiteness 0 ≤ w ≤ 1 (distance
greater than 100 equals 0; zero distance equals 1). Then we
project the addition toward the gray line, depending on rela-
tive whiteness:

∆rgb =
w

3
· I(∆rgb) + (1− w) ·∆rgb (3)

where ∆rgb is the addition map and I(x) the intensity of x.
As shown in Figure 6, the projection toward the gray line
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(a) improvement: 87%

(b) improvement: 78%

(c) improvement: 46%

(d) improvement: 36%

Figure. 8: Examples of the experimental results (Section IV-
A). The original images (left) were clipped to 200 (middle
column) and restored by our method (right). We selected
to show pictures with middle scores (from 87% to 36%), to
demonstrate the improvement of such correction levels.

Table 1: Experimental results (Section IV-A).
saturation #images mean median

threshold (t) improvement improvement
180 551 44.89% 47.18%
200 849 43.72% 50.58%
230 357 46.33% 46.94%
245 301 54.09% 61.46%

returns white regions to their original color, without damag-
ing the true correction of colorful regions. Since the intensity
of the addition is not changed, white regions also become
brighter, and some of their variation is emphasized.

IV. Results

A. Correction of processed images

Due to the huge amount of media captured by cameras with
low dynamic range, correcting processed (non-raw) images
is crucial. Our results are demonstrated in Figures 1, 3, 6,
7 and 8. As can be seen, there is a significant improvement
both in the intensity variation within the clipped regions, as
well as recovering the correct color.

Note that the corrected images have an expanded dy-
namic range. The images were linearly scaled to [0..255] for
display. This slightly darkens the images. However, one can
choose other scaling functions depending on the importance
of the high intensity levels, e.g. [4].

In order to provide a quantitative measure of this im-

(a) Input image (b) Guo et al. [13]

(c) Our result (linear scale) (d) Our result (displayed using Fat-
tal et al. [4])

Figure. 9: Comparison with Guo et al. [13] (Section IV-A).

provement, and demonstrate the generality of our method,
we ran several experiments on a collection of images ran-
domly picked from Flickr. The results of these experiments
are presented in Table 1. In each experiment we clipped the
images to a different threshold, and examined the correction
of images meeting two conditions: (a) at least 15% of the
pixel values in the image are clipped, and (b) at most 5% of
the image pixels are clipped in all of the RGB channels. The
first condition sifts out images without significant clipping,
which are irrelevant for this experiment. The second elimi-
nates cases where our method has no information to correct
with.

For each image we measure the improvement of the cor-
rection by D01−D02

D01
, where D01 is the sum of squared dif-

ferences (SSD) between the original image and the clipped
one, and D02 is the SSD between the original image and the
corrected one. Thus, the improvement is positive if the cor-
rected image is closer to the original image than the clipped
one. A value of 1 is reached when the correction exactly re-
stores all of the pixel values. In most cases, such an exact
restoration is unattainable; however, as can be seen from the
examples in Figure 8, values around 80% also reflect satis-
factory correction, and even a value of 30% recovers at least
some eliminated details.

Figure 9 compares our method to Guo et al. [13] using
an image from their paper. It can be seen that Guo et al. do
not recover the clipped details, which results in low contrast.
Figure 9(c) presents our result using linear scale. Different
rescaling methods change the perception of color as demon-
strated in Figure 9(d) using the method of Fattal et al. [4].

B. Correction of raw images

The main reason for color clipping is sensor saturation.
Therefore, raw image data may also be clipped. The correc-
tion should be done at the beginning of the image processing
pipeline, immediately after the first step of image demosaic-
ing, which fills the RGB values of all of the image pixels.
This avoids color artifacts that may be caused by later steps
(e.g. white balancing). We apply our method as in processed
images. Here the situation is even simpler than in processed
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(a) Input image (b) Correction (Masood
et al. [11])

(c) Correction (ours)

(d) Visualization (Ma-
sood et al. [11])

(e) Visualization (ours)

Figure. 10: Correction of raw face image. (b) shows the cor-
rection of Masood et al. [11], and (c) presents our correction.
(b), (c) are both linearly scaled. (d), (e) show visual results
accepted by non-linear scaling of (b), (c) respectively, as was
done in [11].

images, since there are fewer steps that modify the pixel val-
ues and add noise.

Our results are presented in comparison with the method
of Masood et al. [11] that was described in Section I. Fig-
ure 10 shows that ours performs as well as Masood et al. for
face images, which are the focus of their work. (Our correc-
tion is slightly more accurate, e.g. in the region of the cheek).
In other cases it seems that our method provides better re-
sults, as shown in Figure 11 for a clipped sky image. We
made no comparison with Masood et al. on processed im-
ages, since they present only a single example of a linearized
image.

C. Color clipping in video sequences

When treating video sequences, the main challenge is to
achieve a stable correction. Here, a negative effect may be
caused not only by a wrong correction but also from per-
forming no action in some frames, while other frames are
corrected. This results in flickering in the output sequence.

We applied our method to several video sequences, each
one some tens of frames in length that contained mov-
ing bright colorful objects. Each frame was corrected in-
dependently. The results are available in the following
link: http://www.cs.huji.ac.il/˜elhanane/
clipping/index.html.

The quality of the corrected sequences improved both
in variation and color information. In general the correc-
tion was stable, except for a few cases of missing correction.
However, in some movies two types of problems arose: (1) a
missing correction because of erroneous segmentation (i.e.,
unsuccessful Color Lines expansion); (2) unstable correction
of subsequent frames, i.e., adding different color levels to

(a) Input image (b) Correction (ours)

(c) Correction (Masood et al. [11]) (d) Visualization (Masood et
al. [11])

Figure. 11: Correction of raw sky image. The clipped image
(a) was corrected by our method (b) and by Masood et al. [11]
(c). (d) was accepted by non-linear scaling of (c), as was
done in [11].

the clipped region (see Section III-C). The first difficulty
requires the use of methods such as blob tracking and 3D
segmentation. By contrast, the second problem is inherently
caused by the Color Lines correction.

We overcome this difficulty by utilizing the information
from a few sequential frames, so that the Color Lines repre-
sentation becomes more stable. For each Color Line in the
current frame we look to see which Color Lines from the few
previous frames (5–10) have a significant overlap with it, and
include their pixel values in the correction step. This has an
influence on both the saturation point and the line slope that
are used for the correction (see Section III-C). This makes
the correction more stable both in its color and its intensity.

D. Failures

Wrong corrections can be caused be number of reasons, such
as such as incorrect segmentation that fuse different color
clusters, or misses clipped pixels. Figure 12 shows failure
examples.

V. Conclusions

We presented a method that corrects the values of clipped
pixels in bright image regions, and thus, restores both the
variation and the color information that were distorted by
color clipping. For the first time, our method automatically
corrects not only raw data but also processed images, and is
also applicable to video sequences.
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(a) (b) (c)

Figure. 12: Failure examples. Fusing two different color clusters in (a) results in wrong correction (b). (c) Problem caused
by the connectivity constraint (Section III-B).
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