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Abstract:  'We present a hybrid GPU rendering pipeline for
high-resolution textured terrain fields that reduces polygon
throughput limitations on the GPU. This pipeline uses raster-
ization and ray-casting in every frame simultaneously to deter-
mine eye ray/triangle intersections. It allows shifting workloads
flexibly between the triangle setup stage and the parallel exe-
cution units, depending on the GPU capacities. We employ a
hierarchical tiling of the domain and generate for each tile an
error-conirolled adaptive tessellation of the terrain. In each
rendering frame, for each tile the number of triangles repre-
senting this tile as well as the number of pixels covered by the
tile are determined, and this information is used to select the
fastest rendering method on the executing GPU. Compared to
pure rasierization or ray-casting, performance gains of a factor
between 2 and 4 are demonstrated for high-resolution fields.
Keywords: Terrain rendering, graphics hardware, hybrid render-
ing, ray-casting, rasterization.

I. Introduction and Contribution

Especially in terrain rendering one is confronted with mod-
els at a resolution that vastly exceeds the maximum interac-
tive triangle setup rate on current rasterization hardware. In
recent work it has been shown that available terrain fields
can require more than 30 million triangles to be rendered
per frame to achieve a screen-space error below one pixel on
high-resolution display systems [3]. Considering the evolu-
tion of GPU performance over the last years, fill rate and op-
erational throughput have been substantially increasing, but
the growth of polygon throughput has been rather moderate
due to the serial implementation of triangle setup in the ras-
terization stage. For high-resolution terrains, many triangles
have to be rendered that are only one pixel in size or less. Tri-
angle setup thus cannot be amortized over many fragments,
leading to a severe performance bottleneck.

For such models it was demonstrated that GPU-based ray-
casting can speed up the rendering process significantly. The
regular grid structure underlying terrain fields enables imple-
menting efficient ray traversal and intersection algorithms,
and since ray-casting is realized in the fragment shader, it can
effectively exploit the massive parallelism available on recent
GPUs. For lower resolution terrains, however, triangle setup
is amortized over many fragments, such that rasterization—

which immediately vields eve ray/triangle intersections—is
faster.

Since typical terrain fields consist of regions exhibiting high-
resolution geometric details and others showing rather coarse
geometric structures, in this work we introduce a hybrid GPU
pipeline for terrain rendering that selects the most efficient
rendering method for each region. The pipeline uses ras-
terization and ray-casting simultaneously in every frame to
generate eye ray/triangle intersections. This is in contrast to
previous hybrid rendering approaches, where ray-tracing is
solely employed for the simulation of secondary effects like
shadows and reflections [2, 8, 12].

Our hybrid GPU rendering pipeline is built upon a tile-based
visually continuous terrain rendering approach [4] which hi-
erarchically partitions the terrain field and renders each tile
separately at the required resolution. The decision which ren-
dering algorithm to use is made on a per-tile basis, by trading
the triangle setup rate against the expected performance of
the ray-caster. The respectively fastest method is determined
by using an oracle which estimates the rendering time of the
tile for each method. Since both rendering methods use the
same input data and write to the same output buffers, they
can work on the same data structures in an interleaved way.
We show that the hybrid GPU rendering pipeline always per-
forms at least as good as the fastest known rasterization or
ray-casting methods. Furthermore, we demonstrate that our
approach outperforms these methods for high-resolution ter-
rains by up to a factor of 4. Our experiments are performed
on recent GPUs, such as the NVIDIA GT200 and GF100
{(“Fermi”) architectures, and the ATI RV870 architecture.
Notably we show that the hybrid rendering pipeline scales
effectively in both the triangle setup rate and the number of
processing cores.

II. Related Work

Terrain rendering approaches using rasterization have been
studied extensively over the last years. They employ the
GPU to render large sets of polygonal primitives, and they
differ mainly in the used hierarchical height field representa-
tion. There is a vast body of literature related to this field and
a comprehensive review is beyond the scope of this paper.
However, Pajarola and Gobbetti [9] discuss the basic prin-
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Figure. 1. A 56km x 85 km digital terrain field is rendered on a 1920 x 1080 view port using rasterization {green boxes) and
ray-casting ({red boxes) simultaneously in every frame. The spatial resolution of the terrain and the texture is 1m and 12.5cm,
respectively. Our hybrid rendering pipeline achieves speed-ups between a factor of 2 and 4 compared to pure rasterization or

ray-casting.

ciples underlying such techniques and provide many useful
algorithmic and implementation-specific details.

GPU-based ray-casting of height fields given on uvniform
grids has been reported by Qu et al. [11], Oliveira and Poli-
carpo [7], and Policarpo and Oliveira [10]. Recently, Oh et
al. [6], Tevs et al. [13], and Dick et al. [3] performed ray-
casting in the regular grid underlying terrain fields vsing a
maximum quadtree on the GPU to speed up the traversal.
Ammann et al. [1] proposed the first hybrid height field ren-
dering scheme which uses ray-casting and rasterization si-
multaneously to enable height field editing.

ITI. The Hybrid GPU Rendering Pipeline

The hybrid GPU rendering pipeline is built upon the tile-
based terrain rendering approach proposed by Dick et al. [4].
This approach employs a tile-based multiresolution represen-
tation of the terrain model to achieve visually continuous
LOD rendering. FEach tile consists of an adaptive triangle
mesh and an accompanying photo texture.

In each frame, the tiles inside the view frustum that match
a given screen-space emor are determined. Our hybrid
pipeline then decides for each tile which rendering method—
rasterization or ray-casting—is to be used.

For rasterization, the tile’s mesh is stored on the GPU as tri-
angle list. Ray-casting a tile is performed as described by
Dick et al. [3]. The method operates on a height field repre-
sentation of the terrain, which is built by rasterizing the tile’s
mesh into a texture. To efficiently find the ray/height field in-
tersection points, a maximum mipmap acceleration structure
is used.

The integration of our hybrid rendering pipeline into a ter-
rain rendering system for very large out-of-core data sets is
outlined in Section ITI-B.

A, The Rendering Method Oracle

The hybrid renderer needs to decide whether to use rasteriza-
tion or ray-casting, depending on which method can render
a tile fastest at the current view. Therefore, for each ren-
dering method an estimator function that predicts the ren-
dering time for a particular tile in milliseconds {ms) is used.
These estimator functions are parameterized by tile and view
dependent properties, and are adjusted to the used GPU by
hardware-specific constants. These constants can either be
determined directly based on throughput specifications of
the architecture and knowledge of the underlying rendering
method, or they can be learned in a training phase. In the
training phase, the hybrid renderer picks a sct of representa-
tive terrain tiles and views of the scene, and it renders these
tiles vsing both rasterization and ray-casting. The measured
rendering times are then used to determine the GPU-specific
constants of the estimator functions.

The estimator functions are designed to be evaluated entirely
on the CPU, i.e., we do not use any GPU counters (like the
number of fragments passing the depth test) to avoid reading
back values from the GPU and thus decreasing the perfor-
mance due to CPU-GPU synchronization issues.

To predict the time required to render a tile using rasteriza-
tion we use the following estimator function:

tRasterize(T> F) e O(T) + O(F)

1
ey 4oy F4es. &
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Figure. 2: Ray-casting step counts until ray/surface intersection (left) and the corresponding view (right). The step counts

are color-coded from black (O steps) to white (50 steps).

Here, T' denotes the tile’s number of triangles and F' the
number of generated fragments. ¢y, ¢ and ¢z are GPU-
gpecific constants (in ms). Since ¢, depends on the complex-
ity of the fragment program—which is negligible in terrain
rendering—we set this parameter to zero, reducing the esti-
mator function to

tRasterize(T) /Gy T + Cg. (2)
The performance of terrain ray-casting is estimated by

tRayCast(P, S) o2 O(P ; S) 3)
e

P denotes the number of rays that are spawned to ray-cast
the tile. S is the tile’s average number of traversal steps of
the maximum mipmap pyramid per ray. Again, ¢4 and cg
are GPU-specific constants. To estimate P the back faces
of the tile’s bounding box are clipped at the view frustam
and the screen-space coverage of the resulting polygons un-
der the current projection is computed. To consider occlu-
sions between tiles, which reduce the number of rays to be
spawned, we multiply P by a visibility factor that is obtained
from a horizon occlusion algorithm [5]. This algorithm uses
a binary free to maintain a conservative approximation of the
horizon based on the tiles® bounding boxes during front-fo-
back rendering. The visibility factor of a tile is the fraction
of the tile’s bounding box lying above the current horizon.
Due to the maximum mipmap acceleration structure used for
ray traversal, the number of traversal steps of aray is virtually
independent of the distance between the ray’s entry point into
the tile’s bounding box and the ray’s intersection point with
the terrain surface. Based on a number of experiments we
have made on real data sets, we set S to be constant for all
tiles, reducing the estimator function to

1LE].:ia,j.«'Ca,st(lD) = Cil P+ s (4)

This approximation is confirmed by Figure 2 (left), which
ghows the number of ray-casting steps per pixel for the view
ghown in Figure 2 (right). As can be seen, the average inten-
gity per tile is roughly constant.

The constants used in the rendering time estimator functions
are determined experimentally at the startup of the appli-
cation by measuring the tiles’ rasterization and ray-casting
times for a number of randomly selected view positions and
directions. The measurements for an ATT Radeon HD 5870
araphics card are presented in Figure 3, which shows the ras-
terization time vs. the number of triangles (top), and the ray-
casting time vs. the (estimated) number of covered pixels
(bottom}. To obtain the constants, a line is fitted through the
measurements, and the constants are derived from the line
parameters. Figure 4 shows the resulting rendering time es-
timator functions for three different graphics cards.

Since the rendering method used to render a specific tile can
vary during movement over the terrain, both the triangle list
representation as well as the height field representation of
the tile’s terrain surface may alternately be required. One
approach to cope with this issue is to always keep both the
tile’s triangle list and the corresponding height field in GPU
memory. While this reduces CPU-GPU traffic, it drastically
increases GPU memory consumption. In our implementa-
tion we therefore pursue a different strategy, in that we keep
only the currently used representation in GPU memory and
re-create the respectively other representation whenever the
rendering method is switched. In this way, CPU-GPU bus
transfer is slightly increased (see Figure 3), but GPU mem-
ory consumption is considerably reduced.

B. System Integration

We have integrated the proposed hybrid terrain rendering
pipeline into the out-of-core terrain rendering system de-
scribed by Dick et al. [4]. This system uses a tile-based mul-
tiresolution representation of the terrain model that is built in
a preprocess from a height field and a photo texture. First, an
average pyramid of the height field and the photo texture is
created. This pyramid consists of a hierarchy of successively
coarser levels which are constructed from fine to coarse by
averaging blocks of 2 x 2 samples into a sample on the next
coarser level, i.e., with each coarser level, the number of sam-
ples in each dimension is reduced by a factor of 2. Second, a
tile quadtree is built by dividing each level into equally sized,
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Figure. 3; Top: Measurement of the rasterization time vs.

the number of triangles for 75000 tiles. Bottom: Measure-

ment of the ray-casting time vs. the (estimated) number of

covered pixels for 75000 tiles.
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Figure. 4: Rendering time estimator functions for three dif-
ferent graphics cards.

square tiles {using atile size 0f 512 x 512 samples) such that
each tile covers 2 x 2 tiles on the next finer level. For each
tile, a restricted quadtree triangle mesh is generated, which
approximates the tile’s height field within a world-space er-
ror tolerance coinciding with the level’s grid spacing, i.e.,
with each coarser level, the world-space error tolerance is in-
creased by a factor of 2. The tiles” meshes and photo textures
are stored on disk.

To reduce memory and bandwidth requirements, data com-
pression schemes that can be decoded directly on the GPU
are employed. For the restricted quadtree triangle meshes, a
compression rate of 8-9 is achieved by vsing a generalized
triangle strip representation to incrementally encode vertex
positions. The photo textures are stored using S3TC com-
pression, which offers a fixed compression rate of 6 com-
pared to RGB textures with 24 bits per texel. S3TC is cur-
rently the method of choice for terrain photo textures as the
GPU supports rendering directly from the compressed repre-
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Figure. 5: CPU-GPU bus transfer over the course of a flight
over the Vorarlberg data set. Switching between rendering
methods requires tore-upload atile’s {compressed) geometry
data, which causes additional bus traffic (red). Considering
the total bus traffic (blue), this overhead is negligible.

sentation, including anisotropic filtering.

During runtime, the tile tree is partially held in main mem-
ory, dependent on the movements of the viewer. A separate
IO thread dynamically loads the tiles that are located inside
a sphere-shaped prefetching region around the viewer from
disk into main memory. Tiles that have left the prefetching
region are removed from the tile tree and inserted into an
LRU tile cache.

In each frame, the part of the tile tree which is currently avail-
able in main memory is traversed in preorder, and the tiles
representing the terrain at the current view with a screen-
space error of at most 0.7 pixels are determined vsing view
frustum culling and level of detail computation. Our hybrid
GPU rendering pipeline then determines for each tile which
rendering method is to be used. We then vpload all required
data into GPU memory that is not already available on the
GPU from the previous frames. For each newly visible tile,
we upload a mipmap pyramid of its photo texture, assem-
bled from the ancestor tiles in the tile quadtree. In addition,
we upload for each newly visible tile as well as for each tile
for which the rendering method has changed its compressed
mesh. The compressed mesh is instantaneously decoded and
stored as a triangle list using 3 x 32 bits per triangle, or
rasterized into a 16 bit UNORM texture to obtain a height
field, dependent on whether the tile is to be rendered via
rasterization or ray-casting. The compressed mesh is then
deleted from GPU memory. Textures and uncompressed ge-
ometry data of tiles that are not visible any more are not re-
moved from GPU memory immediately, but are inserted into
an LRU cache. The tiles then are rendered in front-to-back
order using either rasterization or ray-casting, as determined
by our hybrid pipeline.

IV. Results and Discussion

In this section, we give a detailed analysis of the perfor-
mance of the proposed hybrid rendering pipeline in com-
parison to pure rasterization or ray-casting. All benchmarks
were run on a standard deslktop PC, equipped with an In-
tel Xeon E5506 2.13 GHz processor and 8GB of RAM.
For our tests we used three different graphics cards, an
NVIDIA GeForce GTX 280, an ATI Radeon HD 5870, and
an NVIDIA GeForce GTX 480 graphics card. For all tests,
the far plane was set to 600 km, and the screen-space error
tolerance was set to 0.7 pixels.
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Figure. 6: Screenshots of the Utah (top) and the Vorarlberg (bottom) data set, rendered on a 2560 x 1600 view port. The tile
bounding boxes indicate the used rendering method (green: rasterization, red: ray-casting).
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Figure. 7. Comparison of the speed (in frames per second) and GPU memory requirements for geometry (in megabytes) of
the hybrid pipeline (red) in comparison to the ray-caster {green) and the rasterizer (blue) over the course of a flight over the
Vorarlberg and the Utah data sets using different graphics cards. The view port size was 1920 x 1080 pixels.

A, Data Sets

For our tests, we used two different data sets. The first data
set is a digital elevation model of the State of Utah at a reso-
lution of 5 m, accompanied by an orthographic photo texture
of 1m resolution (see Figure 6 (top)). With a spatial extent
of 460km x 600km, this data set has a size of 790GB. Con-
trary to the second data set, its height field does not contain
vegetation and buildings, which have been removed by the
provider during data processing.

The second data set is a digital model of Vorarlberg, Austria,
consisting of a digital surface model at a resolution of 1m and
an orthographic photo texture at a resolution of 12.5 ecm for
a region of 56km x 85km, resulting in a total of 860 GB of
data (see Figure 1, Figure 2 (right) and Figure 6 (bottom)).
Compared to the Utah data set, the height field of this data
set is extremely detailed and clearly exhibits vegetation and
buildings.

B. Performance Analysis and Discussion

In the following, we first demonstrate the performance of the
hybrid rendering pipeline before we present a detailed anal-
ysis.

As can be seen in Figure 7, which compares the performance
of hybrid terrain rendering to the performance of pure ras-
terization or ray-casting for different data sets and graphics
cards, the hybrid approach is never slower than either al-
ternative, and it usually outperforms both alternatives sig-
nificantly. While in some situations the speed-up is only
marginal, i.e., for low resolution terrain like the Utah data set
which is almost solely rendered via rasterization (see Figure

7 (bottom, right)), our new method works extremely well for
typical terrain fields exhibiting both low and high resolution
regions like the Vorarlberg data set. In these situations the
hybrid renderer can speed up the performance about a factor
ofupto 4.

Figure 7 also shows the GPU memory requirements for ge-
ometry (friangle lists and/or height fields) of the three ren-
dering approaches. The hybrid renderer almost always re-
guires the least amount of memory of all alternatives. This
looks surprising at first, as we never optimized the hybrid
pipeline for memory efficiency, but from the way the decider
is designed it becomes clear that the memory requirements
are minimized automatically. Since those tiles that are rep-
resented by many triangles are ray-cast, these tiles are stored
in GPU memory as regular 2D scalar fields and the corre-
sponding triangle data is deleted. Thus, at run-time the most
space-efficient representation is automatically selected.
With respect to scalability, Figure § shows that with increas-
ing display resolution the hybrid pipeline scales significantly
better than pure rasterization or ray-casting. Note that even
though the highest display resolution is most likely beyond
most of today’s typical display capabilities, it plays an impor-
tant role for supersampling implementations to avoid aliasing
on lower resolution screens.

In general it can be said that the performance gain to any
method is maximized if the terrain resolution compared to
the screen resolution is inhomogeneous, i.e., if some tiles are
rather flat—thus containing relatively few triangles—while
other tiles exhibit geometric details in the size of a pixel or
below.

To verify the prediction accuracy of the rendering method
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Figure. 8: Rendering performance and memory consump-
tion of the hybrid pipeline (red) in comparison to the ray-
caster (green) and the rasterizer (blue) over the course of a
flight over the Vorarlberg data set at different screen resolu-
tions. As can be seen the hybrid pipeline not only always
performs best, but its advantage grows with higher resolu-
tions. Note that the graphs are scaled differently.

oracle, we experimentally determined the fastest rendering
methed for 1 million tiles using randomly selected views,
and compared the results to the oracle’s predictions. For
more than 93% of the tiles the oracle correctly predicted the
fastest method. Moreover, we observed that by using a per-
fect oracle, frame rates are increased by only further 2%-
5%, showing that the few wrong predictions are insignificant
to the overall performance of our hybrid rendering method.
The reason is that a wrong prediction typically only occurs
when the rasterization and ray-casting times of a tile are al-
most equal, which means that for those tiles rendering per-
formance is virtually independent of the rendering method.

Y. Conclusion and Future Work

In this paper, we have presented a hybrid GPU accelera-
tion pipeline for the interactive rendering of high-resolution
terrain fields. We have demonstrated the effectiveness of
our approach by comparing it to previous terrain rendering
approaches that were based solely on rasterization or ray-
casting, respectively. Our comparison showed that for all ter-
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rains our hybrid approach not only always performs at least
as good as the previously published systems, but often also
outperforms them by up to a factor of 4.

To further improve the scalability of the proposed terrain ren-
dering pipeline we will investigate the possibility to use dif-
ferently sized tiles in this approach. In this way we can adapt
more flexibly to the rendering load that is imposed by re-
gions with different height characteristics. In particular, such
a tiling has to be based on a precise analysis of the shape
of the terrain, resulting in clusters with almost homogeneous
resolution.

In the future we will also investigate the applicability of our
method to the rendering of arbitrary polvgonal models. As
our rendering method oracle does not depend on terrain data,
we are convinced that it should be applicable to any scene
that can be subdivided into separate entities; the only change
in the pipeline would be an object-specific ray-casting strat-

egy.
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