
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 3 (2011) pp. 836-845  

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 
 

 

Dynamic Publishers, Inc., USA 

Effective Hyper-Spectral Image Segmentation Using 

Multi-scale Geometric Analysis 
 

Ofer Levi
1
, Shaul Cohen

1 
and Ziv Mhabary

1 

  

 
1
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, 

 P.O.B 653, Beer-Sheva 84105, Israel 

levio@bgu.ac.il, shaulco@bgu.ac.il, zivmha@bgu.ac.il  

  

 
Abstract: The wide availability of multispectral images has 

fostered the development of new algorithms for remote sensing 

applications. These applications range from agricultural and 

environmental to military use. Nevertheless, the analysis of 

such voluminous data requires advanced analysis and 

computational methodologies as well as advanced hardware 

and computational methods. In this paper we introduce a new 

state-of-the-art method for segmentation of Hyperspectral 

images which uses both spectral and spatial information 

simultaneously. The proposed methodology is based on a multi-

scale geometric transformation, called the Beamlet Transform, 

and the Beamlet Decorated Recursive Dyadic Partitioning (BD-

RDP). The method is applicable for both mono-spectral and 

multispectral images where each pixel has its corresponding 

spectral profile vector. 

The proposed segmentation method is especially effective 

when the underlying image consists of relatively large segments 

with smooth boundaries. In this case, it performs exceptionally 

well even when the Signal to Noise Ratio (SNR) is extremely 

low. The method is unsupervised and assumes no prior 

knowledge of the image characteristics or features. 

Furthermore, it involves a free sensitivity parameter which 

allows fine tuning for a specific application, and thus improving 

segmentation results. Despite of being relatively complex and 

sophisticated, the proposed segmentation algorithm has a low 

computational complexity of         . This is achieved by 

implicit computations through the Pseudo-Polar Fast Fourier 

transform (PPFFT). In order to validate the efficiency of our 

method, we have used the Lark algorithm which also combines 

spectral and spatial analysis but lacks the multi-scale property, 

for segmentation of multi-spectral images and compared its 

performance to the method proposed in this paper. These 

comparisons showed that our new proposed method out-

performs the Lark algorithm and emphasized the effectiveness 

of multi-scale analysis. The proposed method was successfully 

applied to real aerial multi-spectral imagery for the application 

of estimating nitrogen levels in agricultural areas.  

 

Keywords: Segmentation, Hyper-spectral images, Multi-

scale geometric analysis, Beamlet transform, Radon 

Transform. 

 

I. Introduction 

Accurate image segmentation is one of the key problems in 

computer vision. Before high-level reasoning can be applied 

to an image, it must be broken down into its major structural 

components. With The advent of remote imaging 

spectroscopy [1], it is now possible to classify objects in a 

scene based on their spectral properties [2]. There are 

different approaches for HS image segmentation, such as 

hierarchical segmentation [3], thresholding techniques [4], 

end-member extraction [5] and Lark (modified Fuzzy c-

mean) [6][7]. All of them have shown good results. 

However, these types of algorithms are limited with their 

ability of deal with big amount of data [8]. Supervised 

methods are almost irrelevant when dealing with such a 

voluminous data, since the required training set causes 

problems related to the curse of dimensionality. 

Unsupervised methods like end-member and convex cone 

analysis suffers from high computational complexity and for 

large images the long computation time makes these 

methods impractical. Furthermore, hyperspectral images 

have two routes of information: spectral and spatial. Most 

available Hyperspectral data analysis techniques do not treat 

the data as a spatial image and focus only on the spectral 

point of view [9][10]. In the last years, there were several 

attempts to handle both spectral and spatial information. For 

instance, several possibilities are discussed in [11], where at 

the first stage spectral analysis is applied along the spectral 

dimension and at the second stage the image is spatially 

analyzed. Despite of combining both spectral and spatial 

analysis, it is not done simultaneously   

The main goal of this paper is to present an effective, 

unsupervised method for segmentation of HS images which 

uses both the spectral and spatial information 

simultaneously. The proposed methodology is based on a 

multi-scale geometric transformation called the Beamlet 

Transform, first introduced in [12]. Despite of seeming 

complex and sophisticated, the proposed segmentation 

algorithm has a low computational complexity of 

        , Where N is the input image total size. This is 

achieved by implicit computations through the Pseudo-Polar 

Fourier transform (PPFFT) [13]. 

II. Background 

A. Hyper/Multi-spectral segmentation 

Classically, image segmentation is defined as the 

partitioning of an image into none overlapping, constituent 

regions which are homogeneous with respect to some 

characteristic, such as intensity or texture. If the image 

domain is denoted by   then the segmentation problem is to 

determine the sets          whose union is the entire 
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image  .Thus, the sets that make up the segmentation 

must satisfy: 

       

 

          

Where 

                       

Ideally, a segmentation method finds those sets that 

correspond to distinct anatomical structures or regions of 

interest in the image. In typical two dimensional images, the 

segments are usually visible for the human eye and the 

purpose of the segmentation is to automate the segmentation 

procedure. In hyper/multi-spectral images it is not the case. 

Hyper-spectral images are three dimensional and therefore, 

contain many layers. Segmentation of this kind of images 

identifies objects based on the spectral profile and spatial 

information. By using the Hyper-spectral segmentation, one 

can identify objects which don‟t appear in any single layer. 

Therefore, the segmentation can reveal objects which are not 

visible to the human eye when viewing one slice at a time. 

B. Multi-Scale geometric analyzes 

Multi-scale geometric analysis (MGA) is a very effective 

approach for the analysis and segmentation of digital 

images. MGA methods are best suited for data containing 

geometric features such as line segments and filaments 

buried in high level of noise. The Beamlet algorithm, 

evaluates a collection of line integrals along a strategic multi 

scale set of line segments running through the image at 

different orientations, positions, and lengths. It has been 

shown [12] that Beamlets are highly relevant to various 

image processing problems ranging from curve detection to 

image segmentation. 

C. Multi-Scale Geometric Decomposition – Beamlet 

analysis 

In the past fifteen years, multi-scale thinking has become 

very popular. The main advantage of Multiscale analysis is 

the ability of detecting objects of different sizes in a single 

data set. 

Beamlet analysis is a multiscale geometric 

decomposition based on dyadically-organized line segments 

[14]. The Beamlet framework is based on three main 

components: 

1. The Beamlet dictionary – a dyadically-organized set 

of line segments in different locations, scales and 

orientations which give a multiscale approximation 

of all line segments. 

2. The Beamlet transform – a collection of line 

integrals along the line segments set defined in the 

Beamlet dictionary. 

3. Tree structure Beamlet algorithms – high level 

algorithms that rely on the beamlet graphs and on 

connectivity and good continuation properties in 

such graphs.  

Beamlet analysis is an effective tool that can be used for 

a wide range of applications, such as approximating an 

image using line segments. Our discussion will focus on 

using Beamlet analysis for segmentation purposes. 

1) Beamlet dictionary 

Before defining the beamlet dictionary, we will start with 

some terminology and notations. We assume a square image 

that consists of n by n pixels. As in [10], we will represent 

the image as a square [0,1]
2
 and the pixels are defined by 

 
    

   size cells arranged in the [0,1]
2
 domain. A dyadic 

square S is a collection of points 

                                              
where            for an integer      and      . 

For             . A Beam              is a line segment 

connecting these two vertices. If we only consider line 

segments that connect vertices at pixel corners, we get O(N
2
) 

beams from an image with N=n
2
 pixels. Typical fast image 

processing algorithms complexity is O(N) and at most 

O(NlogN). Therefore, it is strongly desired to reduce the 

number of beams. Beamlets are a strategic efficient subset of 

beams that includes only O(NlogN) elements. The beamlets 

are a multi-scale set which is defined using the hierarchical 

structure of dyadic squares within a digital image. 

The dyadic square at scales       has a side length of 

         for each dyadic square there are          

boundary vertices , and therefore if we will consider only 

beams that connects a pair of such boundary vertices we will 

get only   
  

 
  for the given dyadic square, such beams are 

called beamlets. In Figure 1 we have an example of beamlets 

at different scales 

 

 
We note that beamlets only connect vertices on the 

boundary of each square, so the number of beamlets is much 

smaller than O(N
2
). In fact, the order of the total number of 

beamlets is O(NlogN). This fact is essential in order to 

produce fast algorithms using Beamlet analysis. 

Despite of the reduced cardinally of the beamlets set, the 

beamlet dictionary is still expressive, we can represent any 

line segment as well as any smooth curve using a chain of 

connected beamlets, as shown in Figure 2. 

 

 
Figure 2. Smooth curve (red lines) approximate by a chain 

of beamlets (green lines). 

2) The Beamlet Transform  

Let          be a continuous function on [0,1]
2
. The 

beamlet transform of   is a collection of all line integrals 

                              

 

 

           

Where  

                                 

Thus, the beamlet transform evaluates a set of line integrals 

over all       , where      is the group of beamlets 

defined by  . 

Figure 1.  Beamlets at different scales 
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3) Tree structure Beamlet algorithm 

There is a variety of different beamlet algorithms [8]. In 

this work we focus on a tree structure algorithm which relies 

on a recursive dyadic partitioning (RDP). A recursive dyadic 

partition is based on combining the following two rules: 

            is an RDP 

 If                            is an RDP and    

can be decomposed into four dyadic squares 

                         then the new partition 

                                                  is 

an RDP. 

In Figure 3 and Figure 4 we can see examples of a balanced 

RDP tree structure (meaning that all of  the tree leaves are 

the smallest possible dyadic squares) and an imbalanced 

RDP. 

 

 
Figure 3. A balanced RDP tree structure 

 
Figure 4. An Incomplete imbalanced RDP and the 

corresponding tree structure 

Now, the stage is set for introducing the Beamlet 

decorated RDP (BD-RDP). This is an RDP which some of 

its squares (optionally) are decorated by a beamlet. In Figure 

5 we can see an example of a BD-RDP. The motivation for 

adding a BD option is to make it possible to approximate a 

smooth curve boundaries in a much more efficient way 

compare with the ordinary RDP. 

Our main goal is to represent an image that consists if a 

union of homogenous regions (segments). We can get an 

approximation by finding the optimal BD-RDP 

representation of the image.  This is done by minimizing a 

complexity-penalized residual sum of squares and 

approximating the image using a piecewise constant 

representation. In order to find such an optimal BD-RDP, we 

use the data collected in the Beamlet Dictionary, which maps 

all the possible beamlet splits, and the Beamlet Transform, 

which helps us in choosing the best splits.  

 

 
Figure 5. A BD-RDP (right) and its associated tree structure 

(left) 

D. Lark’s Algorithm 

Lark„s segmentation algorithm is based on two 

fundamental parts. The first one is the fuzzy c-means 

algorithm (FCM) [15], and the second one is spatial 

smoothing [6]. In this algorithm both spectral and spatial 

information is being used in a sequential manner. In the first 

step (FCM) segmentation is made according to the spectral 

information, where in the second step a smoothing is applied 

according to the spatial knowledge.   

FCM algorithms are very common in hyperspectral 

analysis. This is the reason for choosing Lark‟s algorithm as 

a reference for this work. 

Methodology 

The main goal of this work is the development of a new 

segmentation tool that can efficiently and effectively analyze 

Multispectral images. The new proposed algorithm is based 

on the BD-RDP algorithm, which was developed by Donoho 

and Hue [8]. The innovation in our work is applying the BD-

RDP based algorithm to Multi/Hyper-spectral data and 

adding a new Merge phase which significantly improves the 

segmentation results. Another significant contribution is the 

superfast implementation of the algorithm, the complexity of 

a straight forward naive implementation is      . In order 

to decrease the complexity and make real time analysis 

possible, we have integrated fast methods such as Fast Slant 

Stack [14], the PPFFT [13] and Radon Transforms [16] 

which reduced the algorithm overall complexity to 

        . 

In order to validate and evaluate our segmentation results 

a reference method was needed. Since one of our major 

applications of interest is segmentation of agricultural 

remote sensing HS images, we looked for an algorithm, 

which is commonly used for these kinds of applications. 

Lark‟s algorithm, which is based on FCM, is a natural 

choice. 

We will next define our improved BD-RDP method and 

its Hyperspectral implementation, afterwards, we will 

describing the nature of the agricultural application and data. 

E. The proposed Beamlet algorithm  

In this section, we describe the conflicts and solutions 

that arose during the implementation of the beamlet 

algorithm. Furthermore, we introduce the improvements 

made to the basic BP-RDP algorithm. Our discussion 

focuses on analysis of three dimensional data. Therefore, all 

the calculation ahead will be vectorial ones.  

The implementation of the algorithm can be divided into 

three main stages: 

1. Splitting phase – in this phase, a tree structure is 

built out of the multispectral image. The image 

is partitioned to its smallest parts according to a 

quad tree structure. While doing so, the best 

beamlet split of each part is saved. 

2. Folding phase – in this phase, we fold up the 

tree that was built in the first phase. In each 

folding junction, we need to decide between 

three options: prune, not prune or prune with a 

beamlet. 

3. Neighbors Merge –. In this phase, we look for 

segments pairs whose merge was never 

examined. 
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These three stages are described in details in the 

following subsections. 

1) Splitting phase 

In this phase, we split the image and produce a quad tree 

structure using an iterative step. In each iteration, we divide 

a dyadic square (node) into four smaller dyadic squares 

nodes (Figure 3). For each new node, we look for the best 

beamlet split. 

The question ay hand is: what is the best beamlet split? 

Before answering, let us keep in mind that a beamlet split 

divides a square   into two regions         by a linear 

(beamlet) split. For each square  , there are many possible 

beamlet splits. These splits depend on the orientation and 

location of the separating line (as shown in Figure 6). 

 

 
Figure 6. Beamlets at different locations and orientations 

The optimal split is determined by minimizing of sum of 

squared error (SSE). 

 

                   
 
 
           

 
 

          

  

    
 

        
  

         
 
 

    

 
         

 
 

    

       (3) 

 

Where      
is the vector of averages of the spectral 

intensities in the region    and       
 is defined similarly for   

   . 

At the end of this phase, we get a tree structure (RDP) of 

the multispectral image with the best beamlet split for each 

node. In order to reduce the calculation time of examining 

all of the beamlet splits, we use the Radon transform 

(implemented in O(Nlog(N)) complexity using the  PPFFT 

[10]). Additionally, in order to further reduce the 

computational complexity, we apply simple updates of the 

sums and sums of squares in the computation of SSE above 

by successively computing sums of parallel splits. An 

additional data, such as average value, sum of pixels squares, 

number of pixel and etc. is saved for each node of the tree. 

This data will serve us on the next phase, where parts of the 

three are folded. 

2) Folding phase 

In this phase, we act bottom-up; starting with the leaves 

(end-nodes) of the tree and pruning them, until we get an 

optimal tree structure. The folding phase is iterative. At each 

step, we have a three way decision to make (Figure 7): 

 No Pruning – represent the given area as four 

squares                 resulted from the 

previous iteration. Note, that these squares can 

be Beamlet Decorated from previous iterations. 

 Pruning– merge four squares:                

to one uniform square  . This merge is done, by 

setting all of the square‟s pixels as the average 

value of the square.  

 Beamlet Decoration – merge four squares: 

                to one Beamlet Decorated 

square. 

The decision between these three options is made 

according to the target function, which is defined in section 

II.F 

 

 
Figure 7.  3-way decision 

At the end of this phase, we have a final BD-RDP, which 

is built according to the tree structure based Beamlet 

algorithm (defined in section II.C.3). This structure defines a 

segmentation of the multispectral image. In the next section 

we show how we can further improve the segmentation 

result by adding a Neighbors Merge phase. 

3) Neighbors Merge 

In this section we introduce an additional phase which 

significantly improves the segmentation results of the BD-

RDP. The algorithm as described in the previous sections is 

based on building a complete quad tree at a first phase. At 

the second phase, the possibility of merging each four 

squares into one uniform (prune) or Beamlet decorated 

square is evaluated. One can note that in the second phase 

we only examine the merge of children of the same father in 

the tree structure. Therefore, there are many segment pairs 

that their merge is not feasible, even if it could improve 

significantly the segmentation representation (as shown in 

Figure 8). 

 

 

 
Figure 8. Top: Original 128x128x3 image; Down-Left: 

segmentation representation; Down-Right: quad tree beamlet 

decorated representation 

Figure 8 illustrates a segmentation representation of an 

image using BD-RDP. In the left image, according to the 

algorithm, merge of squares 1 and 2 or 2 and 3 wasn‟t 

considered even though it is clear that the right choice is to 

merge them. 

The first option for neighbors merge that can come to mind 

is a serial check of all the possible mergers between a pair of 

2 

4 

1 

3 

Not to prune Prune Beamlet 

Decorated 

1 2 

3 
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spatially neighbors segments. The complexity of such a 

procedure can be as high as       , where   is the number 

of segments and in an extreme situation of a complex 

segmentation it can even get to the order of      , where   

is the total number of pixels in the  image. Therefore, a 

different more economical approach was called for. Our 

main application of interest involves identifying 

homogenous areas in agricultural images, where our objects 

of interest are relatively large. This assumption led us to start 

the neighbors merge from the biggest identified segments. 

We look the largest segment and evaluate all the merge 

options with its neighbors. After dealing with the largest 

segment, we move to the second largest segment and so on.  

The complete algorithm is as follows: 

1. Chose the largest segment which was not chosen yet  

1.1. Find all of its neighbors 

1.2. For each neighbor: 

1.2.1. Evaluate the target function after merging the 

pair of segments. 

1.2.2. If the new target function value is better than 

the best target function value so far – update 

the best target function value and keep the 

chosen neighbor index.   

1.3. Merge with the last best valued neighbor. 

1.4. The merged block is now considered to be a new 

block which was not chosen yet.  

2. If a merge was applied go to 1 otherwise stop   

 Different stopping criteria can be defined such as the 

number of iterations or biggest block size. 

 

 
Figure 9. Result of the above example after the Neighbors 

Merge phase 

In Figure 9 we can see an example of executing the 

Neighbors Merge on the example above (Figure 8). The 

result is a merge of blocks 1,2 and 3. 

F. Target Function 

As mentioned above, the goal of our algorithm is to produce 

segmentation representation of an image. We are 

approximating the original image using segments. In order to 

produce an accurate segmentation, we need to look at the 

error resulting by this approximation and try to minimize it. 

If our target function was based only on minimization of the 

error, the best resulted segmentation representation was the 

image itself.  

In order to prevent such representation, an addition of 

another ingredient is needed. As commonly done in data 

analysis procedures, we have added to our penalty function a 

complexity factor. In our terminology, complexity is 

measured by the number of blocks in our BD-RDP 

representation, where complex image is one built from many 

blocks. 

There are many different target functions that could be 

defined, according to these two contradicting principles 

(SSE and complexity). One of them is Akaike Information 

Criterion (AIC) [17].  

 

            
   

 
                  

 

Where   is the number of blocks (segments),   is the 

number of pixels and     is defined as:  

 

                
 

 

   

                

 

   

 

 

  represent the complexity penalty and     represent the 

error factor. 

Another example for a target function that can be used is the 

Bayesian Information Criterion (BIC) [18]. 

 

                 
   

 
              

 

One can note that those target functions differ only on by the 

weight given to the complexity penalty, where in the BIC 

criterion the penalty weight,       , is larger (for image with 

more than 7 pixels). 

In our algorithm, we generalize these target function and set 

the Penalty weight      as a smoothing parameter.  

 

            
   

 
                    

 

The bigger    is, the smoother  the image is. 

 

 
Figure 10. Example of segmentations using different 

Penalty Weight values. 

As we can see in Figure 10, the smoothness of the image is 

increasing respectively with the increase of the Penalty 

Weight (PW). We can note that with the BIC criterion the 

Pw is the largest and therefore it is the smoothest one. On 

the other hand, as shown on the right bottom image, 

identification of relatively small objects, such as the small 

square, is problematic. When using the target function and 

setting the PW value, we need to take into account the noise 

level and the objects size 

 

Original image 

128x128x3 

Penalty weight 

(Pw) = 6 

BIC criterion, 

Pw = ln(N) =9.7 

With Gaussian 

N(0,1) Noise 

 

AIC criterion, 

Pw = 2 

Penalty weight 

(Pw) = 4 
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Results 

In this section we introduce various segmentation results, 

which will show the advantages of the new BD-RDP over 

Lark‟s algorithm and the improvement of the BD-RDP. The 

analysis will start with synthetic data, examples that we 

produced, in order to examine the efficiency of the 

algorithm. Later on we continue to real agricultural images. 

G. Synthetic data 

In this section, synthetic images were produced in order to 

examine the efficiency of the new BD-RDP algorithm. As a 

first step, its performance was examined on different noise 

levels and different object size. As a second step, it was 

compared to Lark‟s algorithm. 

1) Different noise level 

Images of 128x128x3 pixels with round and square objects 

were produced. In order to examine the effect of a different 

noise level, Gaussian noise with zero mean value and 

different variance was added. 

For each image the results are gathered in two phases. First, 

the results of the BD-RDP – marked as Beamlet. Second, the 

results of the new Neighbors Merge step – marked as Merge. 

 

 
 

 Penalty Weight = 2 Penalty Weight = 6 

Phase 1 

Beamlet 

 

 
930 Segments 

 

 
17 Segments 

Phase 2 

Merge 

 

 
368 Segments 

 

 
3 Segments 

Table 1 - Segmentation results of normally noised image, 

when using different penalty weights. 

 

In Table 1 we can see the effect of the Merge phase. The 

Merge phase has significantly reduced the number of 

segments in each image. At the first example (Penalty 

weight=2) the number of segments is reduced from 930 to 

368. At the second, it reduced from 17 to 3 – which is 

exactly the number of segments in the original image. One 

can note that when using a small penalty weight (AIC), our 

algorithm doesn‟t function well. 

In the next step we examine the algorithm with different 

noisy images, when using penalty weight of four. 

 

 
 

Noisy Image 
Penalty Weight = 4 

Beamlet Merge 

 

 
       

 

 
 

 

 
 

 

 

        

 

 

 

 

 

 

         

 

 

 

 

Table 2. Segmentation results of images with different 

Gaussian noise level. 

In Table 2 we can see segmentation results, while using 

penalty weight of four. First we can notice how the merge 

phase significantly improves the resulted images. Second, 

even under extremely noise conditions such as       

(SNR=0.2) we get very good results. In our agricultural 

application of interest, which we‟ll show in section II.H, the 

noise level is quite moderate.  

2) Different object size 

In the previous section we tried to segment objects in the 

same size in all of the examples. The relative proportion of 

the objects in the previous examples was 40% of the image 

size. 

In this section we try to analyze the sensitivity of the 

algorithm to different object sizes. In each image, the object 

size was set differently and was marked as a proportion of 

the image (Table 3). The noise level was set to        ) and 

the Penalty weight to four. We can notice the different 

representation accuracy of each different object size. 

 

 Object size 1% Object size 9% 

Original 

Image 

  

Original Image 

Original Image With Gaussian N(0,1) Noise 
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Noised 

Image 

N(0,0.5) 

  

Phase 1 

Beamlet 

  

Phase 2 

Merge 

  
Table 3. Segmentation results of noised images with 

different object size 

In Table 3 we can see segmentation results of noisy images 

with different object size. It is easy, and quite trivial, to see 

that as the object‟s size is increases the segmentation results 

are better. As mentioned in previous sections, in our 

application of interest the objects that needed to be 

segmented  are relatively large and their proportion is around 

3% - 6% of the image.  

3) Different Object Locations 

The beamlet algorithm is based on a quad-tree structure, as 

stated before. Therefore, the same object in different 

locations of the image is represented by a different quad-

tree; meaning that the analysis is not completely translation 

invariant. The difference can be reflected in a different order 

of the tree branches with the same tree levels and the same 

amount of leaves as in Figure 11. In such a case, the 

accuracy of the representation is kept.  

 

 

 
Figure 11. The same object in different location of the 

image (Up and Down) cause different tree representation 

The tree representation is determined by the target function 

values, which is based on a complexity penalty. In Figure 12, 

the representation accuracy is kept because we have the 

same number of segments. In other cases, such as shown in 

Table 4, in order to get to the same accuracy representation, 

a tree structure with larger number of leaves is needed.    

 
Figure 12. The same object as in the previous figure, with 

different tree representation 

This increased number of leaves result in a larger 

complexity. 

 

Let‟s look at this observation from another point of view, 

from the beamlet algorithm point of view. When running the 

algorithm, a preliminary step is setting the penalty weight 

and this definition of the target function dictates the resulted 

tree structure. Therefore, for a given target function, when 

analyzing images with the same objects but in different 

locations different results can be obtained.  

 

Original Image Noised image 
Segmentation 

results 

 
7 Seg. is needed 

 

 

 

 
7 Seg. 

representation 

 
28 Seg. is needed 

 

 
 

 

 
8 Seg. 

representation 

Table 4. Segmentation of images with the same object in 

different locations, when using PW=6 

In Table 4, we can see segmentation results of noisy images 

with the same object in different locations. The top image is 

represented by 7 blocks. In order to get to the same 

representation accuracy in the second example, a 28 blocks 

representation is needed. Using the same penalty weight as 

in the top image forces an 8 blocks representation, which 

decreases the accuracy.  
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There are two possible solutions. One is to tolerate this lack 

of accuracy, which will cause, in the worst case, 

approximation using beamlet decorated cells instead of 

another dyadic split (as in Table 4). Another is to use a 

different penalty value for the beamlet phase and a different 

one for the merge phase. The idea is to set lower penalty for 

the Beamlet phase and higher for the Merge phase. In the 

Beamlet phase we let the algorithm produce a relatively  

complex image, which doesn‟t corrupt the object shape, but 

produce many objects. In the Merge phase, we merge the 

different objects and get larger blocks with the right shape. 

 
Figure 13. Example of different penalty weight for each 

phase. Beamlet phase – Pw=2; Merge phase – Pw=8 

Figure 13 shows an example of segmentation (the example 

of Table 4) using different penalty weigh for each phase. 

The penalty weight of the Beamlet phase is two and of the 

Merge phase is eight. With this solution, we improved the 

segmentation result and got closer to the original image. 

4) Comparison with Lark’s algorithm 

After examining the performance and properties of our 

algorithm, we can compare it with Lark‟s algorithm. The 

comparison between these two algorithms is done in two 

steps. In each step the examination is done under different 

noise levels. The first comparison step is analysis of 

performance, when the proportion of object size is 2.5%. 

 

 
 

Noised Image Lark Beamlet + Merge 

 
N(0,0.25) 

  

 
N(0,1) 

 
 

 
 

 
N(0,4) 

 
 

 
 

Table 5. Segmentation results of images with different noise 

level 

In Table 5 there are examples of segmentation results of the 

two algorithms, when analyzing images with different noise 

level. We can see that Larks algorithm has difficulties in 

recognizing a small object even under the presence of low 

level of noise. On the other hand, our algorithm presents 

relatively good results even under noise with      

(SNR=0.5)  

From the examples shown above we can note that the 

segmentation accuracy is determined by a combination of 

two properties: object size and noise level. From the 

segmentation results we can notice of the tradeoff between 

these two properties. We get the same segmentation 

accuracy for a large object with high noise level and a small 

object with low noise level. In statistical terminology, the 

meaning of small object is small sample size of its class and 

the meaning of high noise level is that there is a large 

overlapping between the classes. In these conditions Lark‟s 

algorithm has difficulties in producing an accurate 

segmentation. On the other hand, the new BD-RDP 

algorithm is less affected by these conditions. The reason 

lays on its multiscale property. The tree produced by our 

algorithm is built in a bottom-up approach, therefore the 

identification of the objects are done in a relatively small 

spatial sample. In other words, during the recursive 

operation, we can find the right sample size (square size) in 

which the object will be relatively big enough (the object‟s 

sample size will be big enough) in order for it to be 

identified. That is one of the reasons for the outstanding 

results of our method and its superiority over Lark‟s or 

similar methods in performing well and in a robust fashion 

even under extreme conditions.   

The beamlet algorithm is not perfect and has its drawbacks 

compared to Lark. We can notice that because of the 

quadratic and geometric structure of our segmentation 

algorithm, in some cases it is difficult to recognize and 

represent object depending on their location (respectively to 

the quad tree squares) and shape (such as circular lines). 

This problem does not occur in Lark‟s algorithm because 

there is no attempt to fit the data into geometric shapes. 

H. Real Agricultural Data Analysis 

As a part of a research conducted in collaboration with the 

Volcani agricultural institute and sponsored by the Israeli 

space agency, our new segmentation algorithm is being used 

on aerial and satellite hyperspectral imagery. The goal of the 

joint project is to develop a precise agricultural method to 

control the fertilization process. The agricultural motivation 

Original Image 128x128x3 

Noisy Image 

Beamlet Merge 
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is firm. Adequate assessment of nitrogen level (using 

fertilization), leads to higher chlorophyll level in the plant, 

which results in a better photosynthetic process and increase 

yield [19] [20]. 

In this research, different areas of a potato field were 

fertilized with different amount of nitrogen (Figure 14). The 

multispectral data are images of a potato field, taken by an 

air plane and contain 11 spectrum channels from 400 nm up 

to 1000 nm (Figure 15). The goal of the segmentation is to 

identify each treatment, where high reflectance value 

corresponds to low nitrogen content. 

  

 
Figure 14. Right: The experiment field scheme with 

different treatments; Left: Index of the fertilization portions. 

 

 
Figure 15. Up: two layers out of the hyperspectral image - 

910nm (left) and 420nm (right); Down: mapping of the 

image areas. 

We run our improved Beamlet algorithm using the real 

agricultural images. In Figure 16, we can see the 

segmentation results in two steps: before and after the merge 

stage.  

 
 
Figure 16. Segmentation results using Pw=30. Left: before 

Merge phase; Right: after the Merge phase 

One can notice that there is a big improvement in the 

segmentation results. The numbers of segments were 

reduced significantly from 839 segments to 201.  

We can notice that areas: 0_2,1_2,0_3,0_1,1_3 and 1_4 

(Figure 14) which has the lowest nitrogen level, differ from 

the surrounding. Furthermore, these areas got the highest 

values, which is corresponding the theory described in 

above. Choosing the “right” penalty weight stays an open 

question and depends on the segmentation sensitivity which 

the analysts look for. In our application it seems that 

(according to our dialogue interactions with the researchers 

from the Volcani institute) the penalty weight should be 

between 10 to 20. 

Discussion and Conclusion 

This research was done in two related planes: algorithmic 

and practical. The first plane is the theoretical algorithmic 

one, which its goal was to develop and implement a new 

improved multiscale segmentation algorithm for 

Multi/Hyper-spectral images. The second plane is the 

practical one, which is expressed in using the proposed 

algorithm for agricultural purposes.  

The proposed algorithm is based on the BD-RDP algorithm, 

which functions as the first step of the new proposed method 

after being adjusted to multi-channel images. Our 

improvement is reflected in two main ways.  The first one is 

adding a new merge procedure, which functions as the 

algorithm‟s second step. The second one is generalizing and 

adapting the algorithm to hyper/multi-spectral data. The 

implementation of the algorithm is based on the Pseudo 

Polar Fourier Transform and the projection slice theorem 

combined with smart updates of sums on the image using 

successive evaluations of parallel linear splits, which results 

in reduction of the complexity of the algorithm from N
2
 to 

NlogN. In the proposed implementation we used a flexible 

target function which is based on generalization of the well-

known AIC/BIC functions.  Due to the target function‟s 

flexibility, which is expressed in the penalty weight, the 

algorithm performs very well even under extremely noise 

conditions. This flexibility combined with our two step 

method, which enables dynamic penalty weight have 

significantly improved the identification of objects in the 

image over the original BD-RDP algorithm as well as 

compare to non multi-scale segmentation methods 

commonly used for HS images analysis  such as the Lark 

algorithm.  

On the practical point of view, our algorithm was used as a 

part of a research conducted with Volcani‟s institute for 

agricultural engineering. The research‟s goal was to make 

fertilization decisions based on analysis of multispectral 

images of a potato field. Our segmentation method was able 

to identify the low nitrogen level treatments and distinguish 

them from the others. As a part of the multi-spectral data 

analysis we have identified the most influential wavelength 

bands and used PCA in order to reduce dimensionality and 

decrease the running time of the algorithm. The 

collaboration with the Volcani institute continues where the 

goal is that the new segmentation method will serve as a pre-

stage for classification to different nitrogen levels. 

Being general and flexible, the proposed methods can be 

adjusted and fitted to many other image processing 

applications in various fields of applications, especially in 

multi-channel and other types of high dimensional images. 
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