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Abstract: The self-acting generation of three-dimensional
models by analysing monocular image streams from standard
cameras is one fundamental problem in the field of computer
vision. A prerequisite for the scene modelling is the former
computation of camera poses for the different frames of the se-
quence. Several techniques and methodologies are introduced
during recent decades to solve this classical Structure from Mo-
tion (SfM) problem, which incorporates camera egomotion es-
timation and subsequent recovery of scene structure. Neverthe-
less the applicability of those systems in real world devices and
applications is still limited due to non-satisfactorily properties
in terms of computational costs, accuracy and robustness. This
paper suggests a novel framework for visual-inertial scene re-
construction (VISrec!) based on ideas from multi-sensor data
fusion (MSDF). The integration of additional modalities (here:
inertial measurements) is useful to compensate typical problems
of systems which rely only on visual information.
Keywords: Structure from Motion (SfM), Inertial sensing, Dy-
namic World Modeling (DWM), Multi-Sensor Data Fusion
(MSDF), Kalman Filter

I. Introduction

The automatic generation of three-dimensional models has
been one of the fundamental problems in computer vision
for decades. Even if methods for image-based modelling are
already introduced the usage of active 3D scanners is still the
dominant technology in this field. Thus it is highly desirable
to use monoscopic image streams which can be captured by
standard digital camera devices as a base for non-invasive
scene modelling. Those cameras are available at low costs
and easy to handle even for a single non-professional user.
The simultaneous estimation of the camera motion and scene
structure is widely known as the Structure from Motion
(SfM) problem where numerous solutions were proposed and
implemented. Even if the potentials of those methods are
worthy for many different application fields, as Augmented
Reality (AR), robot navigation or Unmanned Vehicles (UV),
the applicability in real-world applications is limited due to

some unsolved issues.
One of these drawbacks is the missing ability to run those
classical SfM-systems in real-time due to high computational
costs (see [41]) or necessary batch-type computations1 as
for classical factorisation methods (see [45]). On the other
hand most SfM-methods are suffering from missing robust-
ness of the feature detection and tracking procedures which
are generating necessary input data for the recovery of shape
and motion. In [6] numerous problems (namely: occlusions,
depth discontinuities, low texture, repetitive patterns, etc.) of
image registration are listed and analysed in the context of
stereo matching. All of these problems are also considerable
for SfM and many algorithms suffer from non-robust feature
registration between subsequent frames of a monocular im-
age stream. Also [43] stated that even the tracking of a subset
of features is unstable in nature. By this two different prob-
lems have to be solved by SfM methods: on the one hand in-
accurate localisation of matches and on the other hand a not
neglectable number of complete wrong matches (outliers).
Many algorithms are also restricted to constrained type of
camera movements or only a subset of possible scene types.
In this context especially the necessity for a reinitialisation of
the whole systems if the feature track is lost once within the
sequence is a major drawback for manually operated camera
systems.
In the field of mobile robotics novel methodologies and con-
cepts for simultaneous localisation and mapping (SLAM) are
recently crossing the border to real-time processing. So [21]
presented the MonoSLAM-approach which is based on a sin-
gle camera mounted on a moving robot. Similar ideas were
used in the parallel tracking and mapping approach (PTAM)
suggested by [33].
Due to these problems with classical vision-based SfM
methodologies and inspired by recent developments in mo-
bile robotics in general and SLAM in particular the general

1Batch-type methods are composed in such a way that the whole image
sequence has to be available for the estimation of camera egomotion and
scene structure. In those systems structure and motion are recovered simul-
taneously by solving a large-scale optimisation problem.
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concept of aided Structure from Motion (aSFM) was devel-
oped. Due to the fact that the estimation of camera egomo-
tion is a major step for 3D scene recovery the state-of-the-art
for Integrated Navigation Systems (INS) is a major influence
for the suggested approach of a visual-inertial approach for
aSfM.
The integration of visual and inertial information was re-
cently proposed as a methodology for full six degree of free-
dom (6DoF) tracking of an object’s ego-motion (position
and orientation) for AR applications (see [29]), navigation
of UVs or mobile robot navigation [32]. Research in the
field of SfM by combining visual and inertial cues is an open
topic, since recently published work lacks the ability for real-
time operation [19], modelling of unconstrained, dense scene
reconstruction or rapid sensor movements. This paper de-
scribes a multi-modal approach for aSfM incorporating vi-
sual measurements from a single standard camera and inertial
measurements from gyroscopes, accelerometers and magne-
tometers. The main focus lies on a naive implementation
based on a two-track architecture which consists of several
fusion nodes for MSDF. This paper is an extended version of
the work presented in [4] with the same title.
The remainder of this paper is organised as follows: Sec-
tion II gives a general introduction into the motivation for
using visual-inertial cues for aSfM. Section III covers the
conceptual design of the systems general architecture. In this
context the idea of a two-track design is introduced and de-
scribed in detail. Subsequent sections IV and V are cover-
ing the implementation of the processing of visual, respec-
tively inertial measurements, while Section VI gives an idea
about the interfaces between the visual and inertial route of
the system. Finally section VII concludes the work and gives
an overview about intended working packages for future re-
search.

II. Visual-Inertial Scene Reconstruction (VIS-
rec!) - A Motivation

Any kind of sensor measurements are uncertain and the phys-
ical property which should be determined can only be esti-
mated with a limited level of confidence. Especially for opti-
cal measurement systems there are many possible sources of
errors beside the typical random noise. Some of the typical
problems of relying only on images for estimation the mo-
tion of a camera during the acquisition of a sequence were
already mentioned in Section I.
The general concept of MSDF was successfully applied for
example in the field of mobile robotics in recent years (see
e.g. [37, 50]). One reason for the attention MSDF has cov-
ered in a wide branch of applications and scientific disci-
plines is the fact that a sound mathematical and formal back-
ground was developed since the mid 1990s. In this context
the works of [39, 12, 24, 34, 13] are examples for particular
overviews and surveys.
The major objective of applying MSDF in the field of SfM
and 3D modelling is the compensation or at least attenuation
of the described drawbacks of classical SfM-methods. So
the incorporation of the inertial-modalities should improve

the overall system performance2 in terms of:

• Temporal coverage - Typical frame rates of a image
processing system lie between 5 to 50 frames per sec-
ond. So an update of the cameras egomotion is only
available every 20 to 200 ms.

• Accuracy - Due to the fact that the recovered scene
structure is determined based on a previously estimated
relative camera position based on feature correspon-
dences in successive frames of a sequence which are
incorporated by noise and other uncertainties (see [2])
the accuracy of typical SfM-methods is limited.

• Certainty - Typically the certainty of SfM-algorithms
is mainly influenced by the quality of the used homolo-
gous image features. For this especially the handling of
outliers is an important aspect, because all the desired
information is directly related to the quality of the used
matches.

• Computational costs - All sates of the system (motion,
observed scene structure) are not directly measured by
a vision system, but have to be recovered from image
data and adequate algorithms. As mentioned before the
corresponding computational complexity leads often to
the lack of ability of real time operation.

Besides these specific objectives of the MSDF-approach
there are also general targets which are indirectly derived
from the disadvantages of currently available 3D scanning
devices as high costs, missing mobility and time consuming
measurements. Thus the final system should mainly integrate
standard low-cost components in a mobile easy-to-operate
device.
As suggested by [39] the implementation of a MSDF-system
which relies on fusion across sensors (see [59]) starts with
a conceptual design based on former identification of ade-
quate additional modalities and information channels. For
this we follow the classification of relational sensor proper-
ties as given in [22, 10]. The following Table 1 gives an
overview about the sensor-sensor relationships between vi-
sual and inertial measurements and clarifies the adequate-
ness of inertial cues towards the realisation of a aSfM-system
which is able to fulfil the objectives defined above.3

As it is indicated in Table 1 there is a asynchronous prop-
erty of the different sensors observable which should lead
to increased temporal coverage of the overall system. This
reduces the danger of wrong or inaccurate feature matching
because the stability of feature tracking is influenced in a pos-
itive manner by the higher update rate of a possible motion
prediction step, which is especially important for constant
velocity (CV) or constant acceleration (CA) motion models
(see [53] for a definition and description of motion models in
feature tracking). In this context the robustness of the feature
tracking can be increased. The heterogeneous characteristics
leads to a higher coverage of possible motion patterns of the
camera. Furthermore the redundancy of the involved signals
provides the possibility to achieve a higher accuracy of the

2The different categories are based on the definition of a generic notion
of the qualified gain of a data fusion process in [10].

3The table is taken from a former publication of the author given in [5].
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Table 1: Relational properties of visual and inertial sensing
Visual sensing Inertial sensing Property

Sensing spatial derivative Sensing spatial derivatives
with order 0 (position) with order 1 (gyroscopes -

angular velocities) and Complementary
order 2 (Accelerometers -
translational accelerations)

Long-term estimation Short-term estimation for
for slow and smooth rapid and unpredicted Heterogeneous

motion movements
Operating frequency: Operating frequency: Asynchronous

5-30 Hz 50-1000 Hz
Pose estimation Gyroscopes: Attitude estimation

from corresponding from integrated rotational
image features velocities

between successive Accelerometers: Attitude
frames estimation (roll and pitch) Redundant

from gravitational field
Magnetometers: Attitude
estimation from sensing

earth’s magnetic field

motion estimate and as a consequence from this also accu-
racy of the reconstruction of the scene can be increased. Thus
the integration of inertial measurements into a visual system
is an adequate way for compensate typical drawbacks of the
optical SfM.
Besides these specific characteristics the recent develop-
ments in the field of Micro-machined Electro-Mechanical
Systems (MEMS) make it possible to integrate inertial sen-
sors such as accelerometers, gyroscopes or magnetometers
into a handheld device at low-costs. At this point it should
be mentioned that the usage of MEMS sensory units is in-
corporating a bunch of problems based on immense drifting
errors and variable biases. Those problems will be covered
in Section IV in detail.
The integration of visual and inertial information was re-
cently proposed as a methodology for full six degrees of
freedom (6 DoF) tracking of an objects pose (including po-
sition and orientation) for Augmented Reality (AR) applica-
tions (see [28]), navigation of unmanned vehicles (UV) or
mobile robot navigation ([32]). Research in the field of SfM
by combining visual and inertial cues was recently done by
[35], [18] and [17], but none of these systems can be regarded
as a complete solution for on-the-fly 3D scene modelling in
real-time.
The following section of this work describes the conceptual
design of the proposed VISrec-system based on actual defi-
nitions from MSDF.

III. VISrec!-architecture

The first milestone in the development of a complete im-
plementation of a VISrec!-system is the conceptual design
and realisation of a dual track architecture based on ideas
presented in [18, 35]. Here two separate tracks (visual and
inertial routes) are considered as almost independent fusion
nodes. This strategy allows the generation of two different
subsystems integrating only one specific form of data sources
(inertial or visual measurements). By this it is possible to
compare the performances of the separate stages in a first step
independently from each other and in a second step the es-
tablishment of different interfaces between both subsystems

or the addition of another fusion node.
The following subsection describes the dual track architec-
ture as a parallel fusion network by following the definitions
from [39], before in the last subsection the used hardware-
prototype is described in detail.

A. Parallel fusion network

The dual-track architecture we suggests is mainly influenced
by the works of [35, 18], but we choose a formulation more
closely related to the scheme of MSDF. Here each track is
considered as a fusion cell as suggested by [39]. So the
easiest representation of the dual-track system would be the
structure shown in Figure 1. It can be seen that each fu-
sion cell (FC) consists of at least one input which collects
all sensory data. Here the inertial fusion cell (IFC) collects
data from a 9-DoF inertial measuring unit which consists of
a 3-DoF accelerometer unit, a 3-DoF gyroscope unit and a
3-DoF magnetometer. The visual fusion cell (VFC) collects
the frames from a single camera. FCs also have additional
inputs for auxiliary information (AI), which can be derived
from other sources in the network, and external knowledge
(EK). External knowledge collects all those additional data
sources which are a-priori known and help to derive a higher
level of abstraction which should be delivered at the output
of each FC.

VISUAL FUSION CELL 
(VFC)

AI EK

3 DoF 
accelerometers

3 DoF 
gyroscopes

3 DoF 
magnetometers

Camera

INERTIAL FUSION CELL 
(IFC)

AI EK

VISUAL-INERTIAL FUSION 
CELL (IVFC)

AI EK

Figure. 1: Dual track system design in a representation as a
parallel arrangement of fusion cells

The suggested structure contains of course different inter-
faces between VFC and IFC which are indicated in Figure
1 by the connections between the outputs of the two FCs and
the AI-inputs of the opposite FC.
The output of the IFC will contain information about the
cameras movements in a higher granularity as the raw in-
put values (e.g. camera pose). The VFC will deliver scene
structure estimates. Both signals can be collected in an addi-
tional visual-inertial fusion cell (IVFC) which realises a final
refinement of structure and motion. Noteworthy there is of
course the possibility that the separate FCs contain also sub-
FCs for the realisation of their function.
Details about the implementation of the IFC and the VFC can
be found in Sections IV and V respectively, while ideas for
the realisation of the IVFC are collected in Section VI.
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B. Hardware prototype

The current hardware platform used for the implementation
of the shown architecture consists on a visual-inertial sensory
unit build from a greyscale Unibrain Fire-i digital camera and
a 9-DoF inertial unit, as shown in Figure 2.

Figure. 2: Hardware prototype of the visual-inertial sensory
unit

The inertial unit is inspired by the standard configuration of a
multi-sensor orientation system (MODS) as defined in [49].
The used system consists of a LY530AL single-axis gyro and
a LPR530AL dual-axis gyro both from STMicroelectronics,
which are measuring the rotational velocities about the three
main axis of the inertial coordinate system ICS (see Figure
2). The accelerations for translational movements are mea-
sured by a triple-axis accelerometer ADXL345 from Ana-
log Devices. Finally a 3-DoF magnetometer from Honey-
well (HMC5843) is used to measure the earth gravitational
field. All IMU sensors are connected to a micro controller
(ATMega 328) which is responsible for initialisation, signal
conditioning and communication. The data from all sensors
are transferred from the MODS to a standard PC. The digital
camera is connected to a PC by using a standard Firewire-
interface (IEEE1394).
The whole implementation of the different FCs is realised on
the standard PC, as described in the subsequent sections.

IV. Inertial Fusion Cell (IFC)

The inertial route contains all the steps which are necessary
to determine position and orientation of the MODS (which is
rigidly attached to the camera). As already indicated in Sec-
tion III-B the used MODS consists of three orthogonal ar-
ranged accelerometers measuring a three dimensional accel-
eration ab = [ax ay az]

T normalised with the gravitational
acceleration constant g. Here b indicates the actual body co-
ordinate system in which the entities are measured. In addi-
tion three gyroscopes measuring the corresponding angular
velocities ωb = [ωx ωy ωz]

T around the sensitivity axes of
the accelerometers. Also magnetometers with three perpen-
dicular sensitivity axes are used to sense the earth’s magnetic
field mb = [mxmymz]

T .
Classical approaches for inertial navigation are stable-
platform systems which are isolated from any external rota-
tional motion by specialised mechanical platforms. In com-
parison to those classical stable platform systems the MEMS
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Figure. 3: Computational elements of an INS

sensors are mounted rigidly to the device (here: the camera).
In such a strapdown system it is necessary to transform the
measured quantities of the accelerometers into a global co-
ordinate system by using known orientations computed from
gyroscope measurements.
In general the mechanisation of a strapdown inertial naviga-
tion systems (INS) can be described by the computational
elements indicated in Figure 3.
The main problem with this classical framework is that lo-

cation is determined by integrating of measurements from
gyros (orientation) and accelerometers (position). Due to su-
perimposed sensor drift and noise, which is especially for
MEMS devices not neglectable, the errors for the egomotion
estimation tend to grow unbounded. Besides that the dan-
ger of ambiguities during initialisation of initial conditions
is given. It was shown e.g. by [16] that a combination with
magnetometers can help to reduce drift error.
The calibration of IMUs can be realised by moving the IMU
with specialised mechanical platforms or industrial robots to
known orientations with precisely controlled accelerations
and rotational velocities. This provides a possibility for the
determination of calibration parameters for a given sensor
model and allows a signal correction.
So the final framework for pose estimation considers two
steps: an orientation estimation and a position estimation as
shown in Figure 4. In terms of FCs the whole procedure can
again described as a sub-network of FCs which are located
inside the inertial fusion cell of the overall system design, as
indicated in Figure 1. In comparison to the classical strap-
down mechanisation as described e.g. in [51, 60] the sug-
gested approach here incorporates also the accelerometers
for orientation estimation. The suggested fusion network is
visualised in the following figure, whereat the different sub-
fusion processes are described in subsections IV-A and IV-B.

A. Fusion for orientation

The estimation of the orientation of the MODS is realised in
most approaches just based on information from the magne-
tometer and the gyroscopes. The most simple approach is
the implementation based only on a single integrator. Due
to the fact that the MEMS-implementation of the gyroscopes
is suffering from an immense drifting error such a system is
only stable for short-term sequences. The following Figure
5 gives an indication for the accumulated drifting error over
time, while on the left hand side a comparison between the
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Figure. 4: System design of the inertial fusion cell (IFC)

true and the determined angle (here: roll) is shown and on the
right hand side the corresponding residual. It can be easily
seen that over time the error is accumulated over time.
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Figure. 5: Drifting error of gyroscope measurements

The general idea for compensating the drift error of the gyro-
scopes is based on using the accelerometer as an additional
attitude sensor for generating redundant information. Due
to the fact that the 3-DoF accelerometer measures not only
(external) translational motion, but also the influence of the
gravity it is possible to calculate the attitude based on the
single components of the measured acceleration. This is of
course only true if no external force is accelerating the sen-
sor. So there are to questions which have to be answered: 1.
How it is possible to calculate the attitude from accelerome-
ter measurements? and 2. How external translational motion
can be handled? Both problems can be solved by following a
two-stage switching behaviour inspired by work presented in
[47]. At this point it should be pointed out that measurements
from the accelerometers can only provide roll and pitch angle
and the heading angle has to be derived by using the magne-
tometer instead.
Figure 6 gives an illustration about the geometrical relations
between measured accelerations due to gravity and the roll
and pitch angle of the attitude. By this it follows that the
angles can be determined by following relations:

θ = arctan2

(
a2x,
√

(ay + az)2
)

(1)

ϕ = arctan2
(
a2y,
√
(ax + az)2

)
(2)

The missing heading angle can be recovered by using the
readings from the magnetometer and the already determined
roll and pitch angles. Here it is important to consider that
the measured elements of the earth magnetic field have to be
transformed to the local horizontal plane (tilt compensation).
Figure 7 is indicating the corresponding relations as shown
in [16]:

y

z

x

Q - Roll

F - Pitch

F
Q

Gravity

Figure. 6: Geometrical relations between measured accel-
erations due to gravity and the roll and pitch angle of the
attitude

Xh = mx · cφ+my · sθ · sφ−mz · sθ · sφ
Yh = my · cθ +mz · sθ
ψ = arctan 2 (Yh, Xh)

(3)

Based on these findings a discrete Kalman filter bank (DKF-
bank) is implemented which is responsible for the estimation
of all three angles of Ξ. For the pitch and the roll angle the
same DKF-architecture is used, as indicated in Figure 8-(a).
In comparison to that the heading angle is estimated by a al-
ternative architecture as shown in Figure 8-(b).
All DKFs are mainly based on the classical structure of a
Kalman filter (see [12]) which consists of a first prediction
of states and subsequent correction, where the two states are
the unknown angle ξ and the bias of the gyroscope bgyro. The
Kalman filtering itself is composed from the following clas-
sical steps, whereat the following descriptions are simplified
to a single angle ξ.

1) Computation of an a priori state estimate x−
k+1

As already mentioned the hidden states of the system are
x = [ξ,bgyro]

T. The a priori estimates are computed by
following the following relations:

ω̂k+1 = ωk+1 − bgyrok
ξk+1 = ξk +

∫
ω̂k+1dt

bgyrok+1
= bgyrok

(4)

Here the actual measurements from the gyroscopes ωk+1 are
corrected by the actually estimated bias bgyrok from the for-
mer iteration, before the actual angle ξk+1 is computed.

2) Computation of a priori error covariance matrix P−
k+1

The a priori covariance matrix is calculated by incorporat-
ing the Jacobi matrix A of the states and the process noise
covariance matrix QK as follows:

P−
k+1 = A ·Pk ·AT +QK (5)

Local horizontal plane

Gravity

-roll

pitch

Yh

Xh

Figure. 7: Local horizontal plane as a reference
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Figure. 8: (a) - Discrete Kalman filter (DKF) for estimation of roll and pitch angles based on gyroscope and accelerometer
measurements; (b) - DKF for estimation of yaw (heading) angle from gyroscope and magnetometer measurements

The two steps 1) and 2) are the elements of the prediction
step as indicated in Figure 8.

3) Computation of Kalman gain Kk+1

As a prerequisite for computing the a posteriori state estimate
the Kalman gain Kk+1 has to be determined by following
Equation 6.

Kk+1 = P−
k+1 ·HT

k+1 ·
(
Hk+1 ·P−

k+1 ·HT
k+1 +Rk+1

)−1

(6)

4) Computation of a posteriori state estimate x+
k+1

The state estimate can now be corrected by using the calcu-
lated Kalman gain Kk+1. Instead of incorporating the ac-
tual measurements as in the classical Kalman structure the
suggested approach is based on the computation of an angle
difference ∆ξ. The difference is a comparison of the angle
calculated from the gyroscope measures and the correspond-
ing attitude as derived from the accelerometers, respectively
the heading angle from the magnetometer, as already intro-
duced in the introduction of this chapter. So the relation for
x+
k+1 can be formulated as:

x+
k+1 = x−

k+1 −Kk+1 ·∆ξ (7)

At this point it is important to consider the fact that the atti-
tude measurements from the accelerometers are only reliable
if there is no external translational motion. For this an exter-
nal acceleration detection mechanism is also part of the fu-
sion procedure. For this reason the following condition (see
[47]) is evaluated continuously:

∥a∥ =
√
(a2x + a2y + a2z)

!
= 1 (8)

If the relation is fulfilled there is no external acceleration and
the estimation of the attitude from accelerometers is more
reliable than the one computed from rotational velocities as
provided by the gyroscopes. Noteworthy for real sensors an
adequate threshold ϵg is introduced to define an allowed vari-
ation from this ideal case. If the camera is not at rest the ob-
servation variance for the gyroscope data σ2

g is set to zero. So

by incorporating the magnitude of the acceleration measure-
ments as ∥a∥ and the earth gravitational field g = [0, 0,−g]T
the observation variance can be defined by following Equa-
tion 9.

σ2
g =

{
σ2
g ,
0,

∥a∥ − ∥g∥ < εg
otherwise

(9)

A similar approach is chosen to overcome the problems with
the magnetometer measurements in magnetically distorted
environments for the DKF for the heading angle. Instead
of gravity g the magnitude of the earth magnetic field m is
evaluated as shown in the following relation4:

σ2
g =

{
σ2
g ,
0,

∥m∥ −mdes < εm
otherwise

(10)

5) Computation of posteriori error covariance matrix P+
k+1

Finally the error covariance matrix is updated in the follow-
ing way:

P+
k+1 = P−

k+1 −Kk+1 ·Hk+1 ·P−
k+1 (11)

B. Fusion for position

At this point the orientation of the camera is known and by
following the classical strapdown mechanisation, as shown
in Figure 4, the next steps for position estimation consist of
the transformation from body-coordinate frame to the global
navigation coordinate system and the double integration of
accelerometer measurements.
In the actual configuration of the system all measurements
are resolved in a body-coordinate frame, rather than a global
inertial system. Hence, the position p can only be obtained
by double integration of the body accelerations a, when a
known orientation Ξ = [ϕ θ ψ]T is available that allows a ro-
tation from body frame B to reference (or navigation) frame
N by using the direct cosine matrix (DCM) Cb

n, defined as
follows5:

4mdes describes the magnitude of the earth’s magnetic field (e.g. 48 µT
in Western Europe)

5For simplification: sα = sin(α) and cβ = cos(β)
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Cb
n(q) =

1√
q24 + ∥e∥2

·

 q21 − q22 − q23 + q24 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q1q2 − q3q4) −q21 + q22 − q23 + q24 2 (q2q3 + q1q4)
2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q21 − q22 + q23 + q24

 (12)

Cb
n =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


(13)

The DCM can also be expressed in terms of an orientation
quaternion q = [eT , q4]

T , where e = [q1, q2, q3]
T describes

the vector part and q4 is the scalar part of q. Equation 12
shows the relation between Cb

n and a computed q. A de-
tailed introduction in quaternions for representing rotations
can be found in [52].
The actual position is computed by double integration of ac-
celerometer measurements.

C. Evaluation

The evaluation of the orientation estimation was realised by
attaching the VISrec!-prototype to an industrial robot plat-
form. A ABB IRB1400 industrial robot as shown in Figure
9 was used to generate different motion patterns where the
ground truth data is known.

Figure. 9: ABB industrial robot for determination of ground
truth motion data

At this point the following figure gives just an impression
about the performance of the DKF approach in comparison
to the usage of gyroscopes alone, whereat the roll angle is
shown for vibration without motion (Figure 10-(a)) and for
a specified rotation pattern (Figure 10-(b)). It can be clearly
seen that the DKF is improving the situation enormously in
terms of long-time stability and accuracy by the incorpora-
tion of accelerometer attitude measurements.
The same experiment is also done for the yaw angle and us-
ing the magnetometer as an additional information source.
By observation of the residuals (Figure 11-right) it can be de-
termined that the accuracy of orientation estimation can also
be increased for this case. Noteworthy the performance for
the heading angle is of course dependent of the environmen-
tal magnetic disturbances during the measurements which
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Figure. 10: Results of orientation estimation for the roll an-
gle for (a): no rotations only noise and vibration; (b): rotation
pattern

was one sever problem during the data acquisition near the
moving industrial robot. Due to the definition from Equation
10 the system is relying completely on gyroscope measure-
ments if the magnetic disturbance exceeds over a specified
threshold.
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Abb. 11.1.9. Darstellung Yaw-Winkel und des absoluten Fehlers. 

Figure. 11: Results of orientation estimation for the yaw an-
gle for a specified motion pattern left: estimated angle; right:
residual

V. Visual Fusion Cell (VFC)

For the VFC classical SfM algorithms have to be reconsid-
ered and evaluated for their applicability in the given con-
text, but most of those methods are fundamentally offline in
nature (see e.g. [46]) due to their structure based on batch-
computation. Especially those methods proposed for 3D
model generation are mostly based on analysing a complete
given image sequence and not successive frames. An exam-
ple of such an approach can be found in [23]. Recently new
approaches for SLAM, as those proposed by [21], are highly
focused on the ability for high frame-rate real-time perfor-
mance motivated by the intended usage in mobile robotics,
but the focus is not a dense and accurate 3D reconstruction of
the scene but rather a robust localisation. Thus this method-
ology is also labelled as visual odometry (VO). For the im-
plementation of a mobile on-the-fly scene acquisition device
the recently developed methods for SfM and SLAM have to
be combined, due to the goal of a sequentially growing scene
structure model which consists of reliable 3D feature points
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acquired in real-time during camera motion. Figure 12 illus-
trates the main stages of the VFC as described in the remain-
der of this section.

Sequential Operation

Initialisation of 

structure model

Sequential SfM

Trajectory model

Structure model

IFC

Figure. 12: Overview of the elements of the visual fusion
cell

A. Initialisation of structure model

The VFC of the two-track system design consists of two sep-
arate steps: the initialisation of the structure model and the
sequential SfM. The initial structure model is generated at
the beginning of the data acquisition and can be used during
the sequential SfM phase to estimate the absolute pose of the
camera.

R, t

Object

Feature 

tracking

Automatic 

keyframe 

selection

Relative pose 

estimation

Preliminary 

stereo 

triangulation

Optimisation 

of initial scene 

model

Initial scene 

model

Figure. 13: Elements of the initialisation phase for the VisR

The Figure 13 gives an overview about the different elements
of the initialisation phase as described in the following sub-
sections, starting with the acquisition of the initial sequence
in section V-A.1, followed by the recovery of motion infor-
mation for initial keyframes in sections V-A.2 and V-A.3 and
the subsequent generation of an initial model, as described
in sections V-A.5 and V-A.5. Finally a bundle adjustment
scheme, as described in subsection V-A.6 is used for optimi-
sation of the initial model.

1) Acquisition of the initial sequence

Due to the fact that the usage of the five-point relative pose
algorithm as proposed by [42] in 2004 leads to a scale ambi-
guity for the translational motion it is necessary for the gen-
eration of the initial structure model to capture an initial se-
quence where the translational motion between the first and
the last frame is approximately known. This can be done in
the final scheme of the two-track system design to use posi-
tion information from the IFC. For the first tests, as explained

here, a fixed translational motion of 600 mm is assumed and
the operator of the camera has to manually start and finish the
acquisition of the initial sequence, e.g. by pressing a button.
By incorporating this initial guess of the translational motion
it is possible to get a more adequate initial reconstruction of
the feature points which is an important factor for the final
bundle adjustment, because only ”good” initial values guar-
antee an optimal convergence of the nonlinear optimisation
routine.
The initial sequence is acquired during the camera is moved
in front of the object by approximately 600 mm in one di-
rection. Figure 14 illustrates the acquisition of the initial se-
quence which contains of n frames. The overall translation
between the first frame of the sequence I1 and the last one
(In) is assumed as t13 = [tinit, 0, 0]

T , where tinit repre-
sents a fixed known translation between the first and the last
frame of the initial video stream.

Object

Q1

Q2

Q3I1
In/2

In

R12,t12
R23,t23

R13,t13

Figure. 14: Acquisition of the initial sequence

From the overall frames of the initial sequence three
keyframes Q1,Q2 and Q3 are selected.
The three keyframes are used subsequently for the estimation
of the relative pose and the partial stereo reconstruction of the
observed object as described in the following sections.

2) Relative pose estimation between key frames

The three first keyframes of the initialisation sequence are
used to generate two relative pose estimates by following
general five-point relative pose algorithms as the one pro-
posed by [42]. For this at least five points (Pi) have to be
matched successfully between two of the three keyframes.
The general problem of relative pose estimation based on
a set of 2D/2D correspondences can be formulated as the
recovery of time-varying parameters of a cameras egomo-
tion Rk, tk from corresponding image feature coordinates
[ui,k, vi,k]

T . In this context it is necessary to distinguish two
different setups: the calibrated or uncalibrated camera setup.
The relative pose parameters Rk, tk are directly related to
the essential matrix E as defined as follows:

Ek = Rk [tk]× (14)

The essential matrix describes the general epipolar relations
for a stereo image pair. Here Xi describes a point in the
world coordinate system which is imaged on the two image
planes Π and Π′. So two corresponding image feature points
are localised at xi, respectively x′

i.
In general for an image point in homogeneous coordinates
x = [u v 1]

T in image I and an corresponding image point
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x′ = [u′ v′ 1]
T in image I′ the simplified epipolar constraint

as shown in the following equation is true:

q′TEq = 0 (15)

Where q and q′ are computed by multiplication of the image
points with the inverse of the predetermined calibration ma-
trices K and K′ of the camera. Those coordinates are called
camera normalised coordinates.

q = K−1x and q′ = K′−1
x′ (16)

The intrinsic calibration matrices K and K′ are determined
within a prior calibration routine following the procedure of
the Camera Calibration Toolbox of Bouguet.
K is in general composed as shown in Equation 17, where the
parameters uo and v0 describe a translation along the image
plane and αu, αv and γ describe scale changes along the
image axes and a rotation in the image plane (see [9]).

K =

 αu γ u0
0 αv v0
0 0 1

 (17)

The definition in equation 16 shows also the relation between
the essential and the fundamental matrix F:

F = K−TEK′−1 (18)

F can be used to define the general epipolar constraint as
shown in Equation 19.

x′TFx = 0 (19)

One important constraint for estimation of both essential and
fundamental matrix is the fact that both matrices are singular.
So their determinants are both zero:

det(F) = 0 and det(E) = 0 (20)

During the last decades many different algorithms are deal-
ing with estimating both the essential and fundamental ma-
trix from point correspondences. The approach which is
mostly used in literature over years is the so called eight
point algorithm which is widely used to estimate F and sub-
sequently derive E by following Equation 18. A detailed
description can be found e.g. in [26].
By using the additional constraint from Equation 20 it is pos-
sible to reduce the minimal number of points for estimating
E to seven. As indicated by [26] it is necessary to normalise
the point correspondences due to the dependency of the esti-
mation techniques to the range of the measured values. For
this case Hartley suggested an isotropic scaling which can
be summarised as translate all points (in inhomogeneous co-
ordinates) so that their mean coordinate is at the origin and
scale the points that the average distance from the origin is
equal to

√
(2).

It was shown by [44], that an additional property, as shown
in Equation 21 of the essential matrix, which can be derived
from the fact that the two non-zero singular values of E are
equal, can be used to reduce the sufficient number of points
to six (see [44]), respectively five (see [42]).

EETE− 1

2
trace

(
EET

)
E = 0 (21)

It was shown in an experimental evaluation by [48] that the
usage of five-point algorithms outperforms other techniques,
especially for noisy data. Even if [14] suggested a combina-
tion of an eight-point and an five-point estimator as the op-
timal solution for robust relative pose, the current approach
considers the five-point relative pose estimator as suggested
by [42]. A experimental evaluation of different techniques
is provided in [3]. Each pair of corresponding points in
the images x is leading to one equation following the con-
straint shown in Equation 15. [42] suggests the formulation
q̃T Ẽ = 0, as shown in Equation 26.
For all five point correspondences the following 5x9 data ma-
trix Q̃ can be obtained:

Q̃ =

 q̃1
[1] · · · q̃1

[9]

...
...

...
q̃5
[1] · · · q̃5

[1]

 (23)

The solution for E is found by first decomposing Q̃ by
singular value decomposition (SVD) (see [14]) or QR-
factorisation (see [42]) to compute the null space. The null
space is leading to vectors Ã, B̃, C̃ and D̃. Than the follow-
ing linear combination is leading to the essential matrix:

E = a · Ã+ b · B̃+ c · C̃+ d · D̃ (24)

It should be stated here that the four scalar values a,b,c and
d are just defined up to a common scale, so it can be as-
sumed that d = 1. Substituting Equation 24 into the con-
straints as shown in Equations 19 and 21 the problem can be
formulated as ten polynomials of third degree. Nister sug-
gested an algorithm for solving the problem to recover the
unknowns of the system and recovering the essential ma-
trix E, whereat up to ten solutions are possible. In recent
years different methods for the final estimation of E were
suggested in literature. The original algorithm proposed by
Nister in [42] uses Sturm sequences to solve a univariate for-
mulation of the problem. Later [55] proposed a more effi-
cient procedure based on Groebner bases. It was suggested
by [61] that a formulation as a polynomial eigenvalue prob-
lem is more straightforward and leads to solutions which are
numerically more stable. The different methods were evalu-
ated in terms of accuracy and robustness against noise for the
current project (see [3]).
In most cases the feature detection and matching routine will
produce more than the minimum set of five correct point cor-
respondences. In those cases the ”best” solution can be found
by evaluating a defined error metric. Different kinds of error
metrics are defined in literature. So [48] suggests the usage
of the Sampson error metric de over all matches ℓ, which
should be minimal for the correct solution of E and can be
defined as follows:

de =

ℓ∑
K=1

(
x̃T
k′Ex̃k

)
[Ex̃k]

2
x + [Ex̃k]

2
y + [ET x̃′

k]
2
x
+ [ET x̃′

k]
2
y

(25)

[26] uses the classic algebraic error based on the simplified
epipolar constraint as already defined in Equation 15. An-
other error metric is the symmetric squared geometric error,
as suggested by [14]:
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q̃ =
(

x̃[1]x̃
′
[1] x̃[2]x̃

′
[1] x̃[3]x̃

′
[1] x̃[1]x̃

′
[2] x̃[2]x̃

′
[2] x̃[3]x̃

′
[2] x̃[1]x̃

′
[3] x̃[2]x̃

′
[3] x̃[3]x̃

′
[3]

)T
Ẽ =

(
E[1,1] E[1,2] E[1,3] E[2,1] E[2,2] E[2,3] E[3,1] E[3,2] E[3,3]

)T (26)

dssg =

(
x̃T
k′Ex̃k

)2
[Ex̃k]

2
x + [Ex̃k]

2
y

+

(
x̃T
k′Ex̃k

)2
[ET x̃′

k]
2
x
+ [ET x̃′

k]
2
y

(26)

3) Recovering motion parameters

Once the essential matrix is known the egomotion of the
camera between two successive frames can be retrieved from
E. It has to be stated here that E can just be recovered up
to scale. There is also an ambiguity, such that there are four
possible solutions regarding the rotation matrix and the trans-
lation vector.
The first step in determining R and t from E is the com-
putation of the singular value decomposition (SVD) of the
essential matrix:

E ∼ UΣVT (27)

As it was shown in [58, 26] the four possible solutions R and
t can be composed based on two different solutions for the
rotation matrix Ra, Rb and two different solutions for the
translation ta, tb as follows: {Ra, ta}, {Rb, tb}, {Ra, tb}
and {Rb, ta}.
The definition of the solutions is based on the following def-
initions for ta and tb:

ta ≡
[
U[1,3] U[2,3] U[3,3]

]T
tb ≡ −1 ·

[
U[1,3] U[2,3] U[3,3]

]T (28)

Ra and Rb are defined as follows:

Ra = UDVT ; Rb = UDTVT (29)

with

D =

 0 1 0
−1 0 0
0 0 1


This four-fold ambiguity can be solved by using the cheiral-
ity constraint, which states that the observed feature points
have to be located in front of both cameras. For this it is nec-
essary to reconstruct the three-dimensional coordinates of at
least one feature point by using standard triangulation meth-
ods and the four possible solutions for the motion parame-
ters. Only in one of those cases the reconstructed point lies
in front of both cameras which means that the z-coordinate
is bigger than zero.
[42] suggested a more efficient method to test the cheirality
constraint which just uses one triangulation and subsequent
testing of additional properties which can lead directly to the
correct configuration.

4) Guided-RanSaC for handling outliers

Usually the feature detection and matching routine will pro-
vide more than five corresponding points between two suc-
cessive frames of the image sequence. However, it is very

likely that the set of point matches contains also a non neg-
ligible number of wrong matches (outliers). So there is the
open question of choosing the optimal point correspondences
for the relative pose estimation.
Thus in literature the calculation of the essential matrix is
realised by following Random Sample Consensus (RanSaC)
which randomly selects a minimal subset of the data (here:
five point matches) and generates an estimate for E based on
those points. Finally all other points are tested against the ac-
tual estimation of the essential matrix (e.g. by checking the
simplified epipolar constraint from Equation 15). If a suf-
ficient number of point matches are following the estimated
model it is assumed to be a correct estimate, otherwise the
next minimal subset of points is sampled and the procedure
starts again.
Due to the iterative character of the RanSaC approach its us-
age is neglected within this framework. Instead of a random
sampling which treats all samples equally a guided sampling
based on a-priori known measures from the feature detection
and matching procedure is used here. Similar ideas are de-
scribed by [38] and [56] within their GOODSaC and GuiSaC
procedures.
Most feature detection methods lead to a score which can be
interpreted as kind of a distinctiveness measure6 ξ and also
the matching procedure leads to a similarity measure ρ. For
the experiments incorporating Harris features the distinctive-
ness V[u,v] at the corner positions defines ξ. These informa-
tion sources are weighted by factors wξ and wρ to compute
an indicator τ which can be interpreted as the likelihood for
being a correct or wrong match.
For the estimation of E at least five matches are neces-
sary. Hence, the minimal sample sets (MSSs) consist of five
matches which are sampled from the set of matches presorted
with respect to τ . An iterative procedure is generating esti-
mates for E by Nisters five-point algorithm until a test of the
actual configuration produces a Sampson error de over all
matches ℓ below a specified threshold dlim. The definition of
de can be found in Equation 25. Besides that, the number of
inliers produced by the actual configuration of E is evaluated
for the stop criterion. The whole procedure for estimating
relative camera pose can be described by the following Al-
gorithm 1.
The whole routine is used to generate an estimate for E,
whereat it is of course also necessary to apply the concept
of the guided-RANSAC scheme for handling the outliers in
the set of matched point features. Furthermore the rotation
matrix R and the translation t are extracted by SVD and
subsequent evaluation of the cheirality constraint. The ar-
bitrary scale of t is determined by incorporating the assump-
tion for tinit as the translational movement during the acqui-

6It should be stated that the general term distinctiveness describes dif-
ferent properties for different feature detectors. So the distinctiveness for
a corner-detector would be labelled more exactly as ”cornerness” while the
features extracted by Fast-Radial Symmetry Transform (FRST) (see [54])
are selected based on their ”roundness”.
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Algorithm 1 Guided-RanSaC procedure for camera egomo-
tion estimation

1: Detect n features in I and m features in I′ and compute
ξi : i ∈ {1...n} and ξ′j : j ∈ {1...m}

2: Find ℓ corresponding points qk and q′
k and compute ρk

with k ∈ {1...ℓ}
3: for all found matches ℓ do
4: {Calculate likelihood for being a correct match}
5: τ k = wξξk + wρρk

6: end for
7: Sort all found matches x and x′ by τ
8: Transform x and x′ to normalised coordinates q and q′

9: Sample N MSSs from sorted matches
10: while (de < dlim) ∧ (g ≤ N) ∧ (h > hlim) do
11: Estimate E with MSS g : g ∈ {1...N}
12: Calculate de over ℓ matches
13: Calculate number of inliers h with actual E
14: end while
15: Extract Ra, Rb and ta, tb from E by SVD
16: Chose correct solution for R and t by cheirality con-

straint

sition of the initial sequence. The following figure gives an
overview about the whole procedure, where xQj−k describe
the matched 2D feature point coordinates in Qj and Qk.

5-pt relative 

pose 
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tracking
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RQ1-3, tQ1-3 RQ1-2, tQ1-2 RQ2-3, tQ2-3

Figure. 15: Relative pose estimation based on three
keyframes

5) Preliminary Stereo Triangulation

The generated estimates for R and t are used subsequently
to determine the preliminary scene model. For this the ob-
served point features which were successfully tracked during
the acquisition of the initial sequence, are reconstructed in
3D by standard triangulation techniques (see e.g. [26]). Due
to the fact that the translation t can only be recovered up to
an arbitrary scale by Nisters algorithm and the used proce-
dure, which involves the usage of tinit is only an assumption
about the translational motion between the first and the last
frame, the unknown scale between the different two-frame
reconstructions has to be resolved. For this the procedure of
[27] was used to estimate the scale s by minimising the term
shown in Equation 30, where CX

Qj−k

i =
[
xi yi zi

]T
describes the 3D reconstruction of the i-th feature point
found in both keyframes Qj and Qk. The minimisation of
Equation 30 is realised in a least-squares sense.

∑
i

(
CX

Q1−2

i − s ·C X
Q1−3

i

)
(30)

6) Optimisation of initial scene model

The initial reconstruction of the scene structure is used as a
base for a further refinement by using classical Bundle Ad-
justment (BA). BA performs a simultaneous optimisation of
3D structure and camera egomotion by minimising the dif-
ference between estimated and measured image feature lo-
cations Pxk

i =
[
uki vki

]T
. In this context the camera

or projection matrix of the k-th frame Pk is used to compute
the estimated projections of the 3D structure by following the
projection shown in Equation 31, where ∼ indicates equality
up to scale. Here P x̃k

i describes the i-th 2D point in pixel
coordinates for the k-th frame of a sequence in homogenous
coordinates. Kk is the corresponding intrinsic camera matrix
and Rk and tk are the corresponding extrinsic parameters for
the rigid transformation.

P x̃k
i ∼ KkRk

[
CX̃k

i − tk

]
(31)

In general this projection can be formulated by using the pro-
jection or camera matrix Pk = Kk [Rk| − tk] as follows:

P x̃k
i ∼ Pk

CX̃k
i (32)

The procedure of BA consists an interleaving approach based
on ideas in [27] and [57] which decouples structure and mo-
tion optimisation. The following subsections describe the
structure and motion estimation with BA in detail. Besides
that it is shown which data is used as initial estimates for
both scene structure and camera egomotion, because the pro-
vision of adequate initial estimates is crucial for the success
of BA-algorithms.

Optimisation of scene structure

The scene structure optimisation is based on the minimisa-
tion of the difference between estimated and measured im-
age feature locations. For this the projection in Equation 32
is used as a reference.
The optimisation incorporates all m features, which could
be tracked through the whole initialisation sequence with n
frames. So the optimal 3D point location for all features can
be computed by minimising the following term:

n∑
k=1

(uki −
PT

k,1
CX̃i

PT
k,3

CX̂i

)2

+

(
vki −

PT
k,2

CX̃i

PT
k,3

CX̂i

)2
 (33)

The minimisation is realised in MATLAB by using the
Nelder-Mead method as described in [7], where the recon-
structed 3D points from the two stereo pairs are used as the
initial estimate of scene structure.

Optimisation of camera egomotion

The initial estimates for the camera movement are generated
by interpolating the calculated rotations and translations be-
tween Q1 and Q2, respectively Q1 and Q3 from David Nis-
ters algorithm.
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The minimisation is based on a nested optimisation proce-
dure which runs one optimisation of scene structure for each
iteration of the minimisation of the following error term:

m∑
i=1

min
CX̃i

 n∑
k=1

(uki −
PT

k,1
CX̃i

PT
k,3

CX̂i

)2

+

(
vki −

PT
k,2

CX̃i

PT
k,3

CX̂i

)2


(34)
It should be stated that it is necessary to update the elements
of Pk for each new iteration of the Nelder-Mead method.
The following figure gives an example for an initial scene
model for a planar object (checkerboard on a wall) and the
corresponding camera egomotion.

Figure. 16: Example for an initial scene model and the cor-
responding camera egomotion

B. Sequential SfM

The initial scene model is then used to estimate the camera
pose based on 2D/3D correspondences between image fea-
tures and a scene model which contains calibrated feature
positions. For this the 4-point algorithm suggested by [15],
because this procedure is also working for a unknown focal
length of a camera. This is important to consider if the focal
length of the camera can change during the scene acquisi-
tion. The following Figure 17 gives an impression about the
general configuration of the four-point problem, whereat the
relation between object model and image features in the ac-
tual frame is visualised.
One major issue in this context is the successful detection and
tracking of at least four feature points between the acquired
frames and the initial scene model. Of course it is also nec-
essary to add adequate points to the 3D world model to guar-
antee also the possibility to move around the object which
is necessary acquire a complete 3D representation from all
sides of the scene. The different parts of the sequential SfM
are described in detail in the following paragraphs.

1) Feature detection and matching

The reconstruction of a 3D scene or object from 2D image
sequences and the estimation of the camera trajectories are
always based on generating correspondences between ex-
tracted features from two or more successive frames. For this
reason the task can be subdivided into the detection of visual
landmarks and their matching in successive frames (image
registration) of the sequence. Those features could be of var-
ious appearances, whereat most SfM algorithms are based on
point features, because the identification of distinctive points

x

z

y

World 

coordinate 

system

Pixel 

coordinatesCamera 

coordinate 

system

Figure. 17: General configuration of the four-point absolute
pose problem

(corners, junctions, etc.) is a well studied field in image pro-
cessing (see [40]). Also recently published methodologies as
SIFT (see [36]) and SURF (see [8]) have drawn the attention
of researchers due to their tolerance to scale, illumination and
pose variations which can considerably increase the robust-
ness of the registration procedure. For first experiments the
Harris corner detector as described by [25] was used for find-
ing distinctive features in the images. The Harris-features
are located at the maxima of the local image autocorrelation
function A, as shown in the following equation:

A =


∑

(i,j)∈Ω

fx(i, j)
2

∑
(i,j)∈Ω

fx(i, j) · fy(i, j)∑
(i,j)∈Ω

fx(i, j) · fy(i, j)
∑

(i,j)∈Ω

fy(i, j)
2


The distinctiveness V[u,v] of the points is computed by eval-
uating A at image position [u, v] in the following manner:

V[u,v] = det(A[u,v] − k · trace(A[u,v])
2 (35)

2) Feature tracking

The feature tracking procedure is based on ideas mainly
developed by [53] and [31]. Whereat the combination of
Markov chains (Kalman filter) and graphical models is used
for a robust tracking in 3D. The predicted feature positions
are reprojected and based on the reprojected 2D image co-
ordinates a search region for the feature matching proce-
dure can be defined. This is realised by an area-based ap-
proach which compares intensity-patches around the feature
positions from two successive frames by following the non-
parametric ordinal measure as described by [11]. A com-
parative study of area-based matching techniques in [2] has
shown that the ordinal measures outperforms other classical
approaches in terms of robustness. Nevertheless there are
many possible reasons for wrong matches, as shown e.g. by
[6].

3) Absolute pose estimation

As already mentioned above the estimation of the abso-
lute pose is realised by following the algorithm proposed in
[15]. The suggested method uses a Groeber basis technique
which solves a system of algebraic equations derived from
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the number of 2D/3D correspondences generated by the fea-
ture tracking and matching routine.

VI. Inertial-Visual Fusion Cell (IVFC)

As mentioned before, one motivation for the implementation
of a loosely coupled system as a first stage in the develop-
ment process is the possibility to run both routes indepen-
dently. This allows a deep analysis and evaluation of both
tracks. By this it will be easily possible to give evidence
for the aiding character of the IMU to the SfM-procedure by
comparing results of the SfM with and without inference of
the inertial track. For the combination of both tracks two
unidirectional interfaces will be established between the two
routes, as it was shown in Figure 18.
It should be pointed that the visual- and inertial-route will
be operating at different frequencies due to the implied sen-
sor devices and the computational elements of both tracks.
So for the implementation of the interfaces it is important
to consider the multi-rate character of the different measure-
ments. As it was already stated one major problem of the
visual measurements is the missing robustness and computa-
tional complexity of the feature extraction and tracking. By
integrating the pose predictions of the IMU it is possible to
considerably limit the search space for feature tracking, be-
cause there is an expectation where those features are posi-
tioned in the new frame. For this each new feature point in-
serted into the scene graph is described by a Hidden Markov
Model (HMM) (see [20]) for tracking the new feature posi-
tion based on egomotion estimates from visual and inertial
cues.
Moreover it is possible to pre-warp the extracted patches for
feature matching based on estimated camera pose. For this
the patches are assumed to be locally planar as visualised in
Fig. 18. Thus a homography as shown in the Equation 36

Figure. 18: Locally planar patches for pre-warping

can be computed which relates the patch appearance from
one frame to another. Here K is the intrinsic camera matrix,
R and t describe the rotation and translation between cam-
era poses, n is the surface normal, which can be estimated
by following the algorithm described in [21], and xp is the
centre of the patch in the image.

H = KR
[
nTxpI− tnT

]
K−1 (36)

During times of rapid camera movements strength motion
blur exists in the imaged frames, so there is the danger that
vision-based estimation of egomotion is not possible. In such

periods the inertial route would be able to fill the gaps and
leading the system while the vision-module is almost not in
operation. It was shown by [30] that such a strategy is able
to compensate missing measurements from the vision sensor.
On the other hand the estimated camera motion from SfM
can be used to bound the drift error of the IMU which is a
logical consequence from necessary double integration. This
is possible due to the generation of position measurements
of the visual route and provides a possible solution for an
extension of accurate inertial pose predictions for long-term
sequences. The realisation of fusing both pose estimates is
based on an additional Kalman filter scheme, which incor-
porates the uncertainties of the separate tracks. It should be
pointed out here that the suggested two track system fuses
in the Kalman stage pose estimates from both routes which
provides the possibility for a relatively simple system and
measurement model. It was shown by [17] that it is also pos-
sible to fuse the measurements from the MEMS IMU (e.g.
3D acceleration and rotational velocity) directly with pose
estimates from the visual route.

VII. Conclusions and future work

The paper proposed a framework for visual-inertial scene re-
construction, whereat the main focus lies on the two distinc-
tive fusion cells for visual and inertial information alone. The
actual configuration consists of a parallel fusion network as
indicated in Figure 1.
The authors developed also the scheme of a monolithic sys-
tem design which combines in a single FC the measurements
of all four sensory units. The following figure indicates the
general architecture of such an entity.

Motion
Inertial 

Measurement 

Unit (IMU)

Camera

Measurements

Visual-inertial 

measuring unit

Feature

detection 

and 

matching 

processor

 motion state 

estimation

System model “motion”

SfM Estimator

Structure

structure 

state 

estimation 

System model “structure”

Figure. 19: Monolithic System Design

In such a monolithic or tightly-coupled approach the differ-
ent sensor units are not longer handled as two separate mod-
ules. The camera and the MODS are interpreted as a single
visual-inertial sensing device, which provides typical iner-
tial measurements (3D acceleration, angular velocities, earth
magnetic field) and feature correspondences as visual mea-
sures. Thus the Feature detection and matching processor
are formally included in the single measuring unit in this ap-
proach. Therefore the definition and implementation of this
routine is one major task in this field. Based on the findings
from the first stage of the project an enhancement and pos-
sible expansion of feature handling is planned at this stage.
Furthermore a strategy for handling of multi-rate signals has
to be considered and implemented based on the used sensor
devices for inertial and visual sensing. Here especially the
work of [1], which suggests a multi-rate Unscented Kalman
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Filter (UKF) for camera egomotion estimation, shows the po-
tential of multi-rate (MR) sensor fusion.
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