
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 3 (2011) pp. 862-869

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Towards a Flexible Context-aware Pervasive Alert

Generation System

Alessandra Esposito , Luciano Tarricone and Marco Zappatore

 Department of Engineering for Innovation, University of Salento,

via per Monteroni, 73100 Lecce, Italia

{alessandra.esposito; luciano.tarricone; marcozappatore}@unisalento.it

Abstract: This paper presents a proposal for a context-aware

framework for alert generation. The framework is based on a

general purpose architecture integrating three core technologies:

ontology representation, multi-agent paradigm and rule-based

logic. The system is very efficient and versatile and its

customization to new scenarios requires a very reduced effort,

substantially limited to the update/extension of the ontology

codification. The effectiveness of the system is demonstrated by

reporting both customization effort and performance results

obtained from validation in two different real-life applications in

the environment monitoring context as well as in healthcare

scenarios.

Keywords: Multi-agent system, context-aware monitoring,

pervasive computing, alert generation system, ontology, rule-based

system.

I. Introduction

The increasing availability of network connection and the

progress in information technology and in hardware

miniaturization, are determining new computing scenarios,

where software applications are able to "configure

themselves" based on information coming from heterogeneous

sources (sensors, RFID, GPS, user input, etc.) which form the

so called "context". Such computing scenarios find application

in a large number of real-life domains, such as monitoring,

target localization, auto-diagnostics. Nowadays many

different monitoring systems are available: in the health-care

domain they perform many tasks such as therapy and treatment

planning, diagnostic support, prognosis analysis (see [1] for an

up-to-date review). Ubiquitous context-aware systems find

also usage in diverse application domains concerning the

environment [2], such as water and air pollution monitoring,

climate changing tracking, indoor monitoring, etc.

Such a high number of applicative domains casts a

fundamental need: the availability of a framework easily

configurable and adaptable to different real-life scenarios. For

this reason, we designed and implemented a pervasive system

for context-oriented monitoring purposes which is based on a

flexible and versatile framework. The system is based on the

integration between three core technologies: ontology

representation, multi-agent paradigm and rule-based logic.

The customization of our system to a specific scenario just

requires the extension of the available ontology. This is

demonstrated in the paper by providing an example of

application to two concrete situations: the former in the

health-care domain, the latter in the environment monitoring

context. Moreover, numerical results are provided as a

validation of the system amenability to support real-life

situations.

II. Related Work

Our framework is organised according to a general purpose

architecture, centred around an ontological context

representation.

The amenability of ontologies for building context-aware

pervasive computing systems has been already demonstrated

in other works. Some of them, such as [3] and [4], both built

around OWL and rule-based inference for ubiquitous

healthcare, are dedicated to a specific application field, thus

being not flexible, and requiring a huge effort to be converted

to other fields of application.

Other works, instead, present context-aware systems which

are suited to be reconfigured and adapted to different practical

situations. Wang et al. [5] propose Semantic Space, a

pervasive computing infrastructure based on Semantic Web

technologies. Gu et al. [6] propose SOCAM, an

ontology-based middleware for context-aware services. Chen

et al. [7] describe COBRA, an agent-based framework for

intelligent meeting rooms. These systems propose software

infrastructures which greatly help the developer in

implementing context-oriented frameworks by providing

useful APIs, context wrappers, middleware.

Our work differs from previous works in several respects.

Rather than implementing a software infrastructure, we

developed a reusable framework, able to auto-configure

automatically to specific application scenarios. The unique

operation requested is the ontology extension. This eliminates

the intervention of software developers in system

customization. This was made possible by restricting the area

of interest to alert monitoring. Moreover, previous works often

lack a well documented characterization of customization

effort and behavior.

863 Aesposito, Tarricone and Zappatore

We, instead, provide a twofold evaluation. First, we build

up real-world applications. Then, we measure the resulting

system’s performance.

III. Alert Generation Systems: a General

Schema

In order to cover most alert generation situations with a

reduced customization effort, we defined a very essential

schema (Figure 1) able to describe a generic alert generation

system. As shown in figure, on one side we have raw sensed

data, on the other side there are the monitoring entities, who

are interested in being notified when sensed data have some

out-of-range behavior.

Raw data are provided by physical sources which monitor

parameters. Several context sources (i.e. parameters) can be

associated to a single monitored entity (e.g. pressure and

glycolic value sensors are associated to a patient in the

health-care domain, humidity and temperature sensors are

associated to a room in the environment monitoring case, etc.).

The alert notification system bridges monitored and

monitoring components and is substantially responsible for:

1. identifying alarm events;

2. identifying the monitoring entities being able to manage

the alarm event when it is generated;

3. forwarding data to the monitoring entity when requested.

As to item 1), we identified and codified three categories of

alarm events: instantaneous, interval-based and

multiparametric. Instantaneous alarms are triggered each time

the value of a parameter leaves a pre-established range (e.g.

humidity exceeds a certain threshold value). Interval-based

alarms [8] are associated to situations lasting for a span of time

(e.g. rapid huge increase of temperature). They are based on

the knowledge of the dynamics of parameters and on the

reasoning over their temporal evolution.

Multiparametric alarms are built by considering

simultaneously several parameters, which, taken in isolation,

are irrelevant, but which become meaningful if they are related

with each other (e.g. during haemodialysis therapy, a slight

increase in heart rate associated with a light increase in the

systolic blood pressure may be symptomatic of a pathological

state [9].

The diverse categories of alarms are characterized by

values, thresholds, time windows, etc., which are necessary to

detect the event. For instance, instantaneous alarms need

threshold values, interval-based alarms need the definition of

time windows and thresholds for the speed variation,

multiparametric alarms need the list of parameters to be

simultaneously observed, etc.

As to item 2), it is a complex task for several reasons. First

of all, the available monitoring entities must be supposed to

vary over time (consider for instance familiars and health

operators in the health-care case, which may be available only

in certain time intervals, which may be not necessarily

rigorously predefined). Therefore, the system must support the

dynamic registration and deregistration of the available

entities, together with a rich advertising of their characteristics

(e.g. the description of their capabilities: a familiar has less

competence than a doctor to manage a severe alert).

Item 3) is the most simple to explain, as it substantially

deals with the need of storing raw data and of allowing for

bidirectional flux of data. The most onerous issues, in this

case, are related to the amount of data to transmit, the

availability of network bandwidth, of graphical utilities for

visualizing data patterns, and so on. But such issues are

outside the scope of this paper.

Figure 1. A schematic representation of alert generation

systems

IV. System Logical View

A logical view of the system is provided in Figure 2 (see [4]

for a more detailed description). The figure focalizes on the

multi-agent system organization, but, as explained in the

following, the other two components of the system, ontology

and logic-based rules, have a fundamental role in shaping the

system behavior. Agents have four fundamental roles:

Registration agents (RA) are in charge of managing agent

registration and deregistration.

Context provider agents (CPA) get and filter raw context

data and detect alarm events. Such agents are distinguished in

physical CPAs (CPAp), virtual CPAs (CPAv) and logical

CPAs (CPAl) [10]. CPAp and CPAv agents manage data

concerning a single context source. CPAp agents are

responsible for identifying both instantaneous and

interval-based alert events. CPAv agents are in charge of

storing sensor data in suited archives (and periodically

refreshing it), and of forwarding them to monitoring entities

when requested. CPAl agents elaborate information provided

by CPAp agents, so that context information coming from

different context sources can be aggregated and

multiparameter alarm events detected.

Towards a Flexible Context-aware Pervasive Alert Generation System 864

Figure 2. System Logical View

Context interpreter agents (CIA) are in charge of

observing context changes sensed by CPAs, and, as

consequence of these changes, of identifying the set of actions

that should be performed. Substantially, they are responsible

for identifying the monitoring entity best suited to manage an

alarm situation, for contacting it and for forwarding context

information to it.

Context consumer agents (CCA) are responsible for

performing the actions triggered by CIAs. Actions provide the

application reaction to context information changes, which

may assume diverse forms, such as the generation of a signal,

the delivery of a notification or a web service request.

Moreover, they may request further data to CPAs by

contacting the suited CPAv agent.

V. The Enabling Technologies

Agents were implemented by using the Java Agent

Development Environment (JADE) [11], which supports the

development of agent applications in compliance with the

FIPA specifications.

The ontology, created by using the open source Protégé

[12], was codified in OWL [13], as it is a key to the Semantic

Web and was proposed by the Web Ontology Working Group

of W3C.

The rule-based domain knowledge was implemented with

Jess [14], chosen for its high computational speed and its good

integrability with JADE.

Moreover, in order to integrate the three technologies and

make an easy-to-customize system, we:

 adopted the Protégé BeanGenerator Plugin [15],

which converts OWL ontologies into JavaBeans, and

made an in-house adaptation of it in order to:

o extend the range of supported types of data

o automatically create Jess templates based on

OWL classes

 imported and extended the so-called

SimpleAbstractJadeOntology [16], which renders a

knowledge base JADE compliant.

VI. A Reconfigurable System

System design was carried out by emphasizing commonalities

between different application domains. As a result, the system

is based 1) on a hierarchically structured ontology, delegating

to lowest levels the conceptualization of elements specifics of

the application domain, 2) on normalized rules [17], i.e. on

rules amenable to be used in a variety of cases without any

change to their structure, and 3) on general purpose agents,

whose behavior is governed by ontology codification and

rule-based reasoning. In the following, we show how these

three implementation choices were carried out.

As to ontology, a common practise, when developing

ontologies, is to adopt a top level (upper) shared

conceptualization [18] on top of which domain ontologies are

built. Top level ontologies codify general terms which are

independent of a particular problem or domain. Once the top

level ontology is available, several lower level ontologies can

be introduced, with the scope of incrementally specializing

concepts from the high level generic point of view of the upper

ontology to the low level practical point of view of the

application.

This way of implementing the ontology leads to a

hierarchical architecture organized into three levels (Figure 3).

The top level concepts of our taxonomy contain terms

useful for codifying the multi-agent environment thus

facilitating their interoperation. Indeed, the top level ontology

reflects the JADE codification of messages, as represented in

the publicly available ontology named

“OWLSimpleJADEAbstractOntology” [16].

The “context middle level ontology” codifies general

concepts related to context, such as “MonitoredEntity” and

“MonitoringEntity”. Terms specifically related to the

application domain are finally introduced at the bottom level

(see Section 7).

High level classes of our top level ontology were used to

codify normalized rules, which provide a general-purpose

approach to different use contexts.

Normalized rules can substitute a set of rules having similar

conditions and actions. In this way, the same code can be used

in different use cases by simply changing the value constraints

of the normalized rule. For example, rules such as:

“if Body Temperature for the Monitored Patient exceeds

Maximum Body Temperature and if contemporarily the Heart

Rate for the same Monitored Patient exceeds Maximum Heart

Rate threshold, then generate a Medium Gravity Alert Event

and contact an available Duty Doctor”

and

“if Relative Humidity for the Monitored Room goes below

the Minimum Relative Humidity threshold and if at the same

time Room Temperature exceeds a specified maximum

threshold, then generate a Low Gravity Alert and contact an

available technician”

 can be substituted by the following normalized rule:

 “if, at time T, parameters PX,...,Z for monitored entity EX

exceed their thresholds ThX,...,Z AND these events are classified

with a certain level G of gravity AND there is a monitoring

865 Aesposito, Tarricone and Zappatore

entity UX available at the same time T, THEN generate an

alert A with a certain level of gravity G AND forward the alert

to a proper monitoring entity UX"

As shown above, when normalized rules are not adopted,

each kind of parameter, threshold, etc. corresponds to a

different rule. As a result, the amount of rules to be codified

becomes very huge, with a large effort in codification and

maintenance activities.

Figure 3. Upper Level ontologies

As to agent design, agents have a common structure, which

has to be customized by defining a suited reasoning template

and by providing some configuration information at start-up.

Indeed, agent role is always that of transforming some sort of

low-level context information into a form of higher level

context information, based on the reasoning template. This

kind of conversion is made in an incremental fashion (Figure

4), with the final global result of forwarding meaningful high

level information to appropriate end-users.

For instance, CPAp convert raw data (low-level

information) received by physical sources into alarms (high

level information) provided that they are informed about

which thresholds generate which kind of alarm (reasoning

template). Similarly, CPAl convert knowledge coming from

several CPAp (low-level information), into aggregated alarms

(high level information) provided that they are informed about

patterns and thresholds (reasoning template). Finally, CIA

convert alarm information coming from CPA agents into

meaningful messages for end-users provided that they are

informed about the appropriate correspondence between the

different typologies of alarms and the different kinds of

end-users.

As to agent inner structure, it consists in the continuous

reasoning over context information and on the consequent

generation of messages (Figure 5). Context information

instantiates Java classes and asserts facts in the Jess working

memory (WM). As a result, rules are fired. This induces a

further instantiation of agent classes, upon which the agent

builds the message to be forwarded to other agents.

Both agent classes and rules operate on ontology entities.

As explained more in detail in the following section, this

allows them to reason over different kinds of real-life contexts,

provided that the upper-level ontology is suitably extended

and provided that configuration data, codified in a simple

format, is given. This is possible thanks to our strong effort

toward integration between ontology, rule-based and agent

technologies.

In order to simplify our explanation and to provide concrete

validation results, since now on we base our narration on two

different well-known real-life domains: health-care and

environment monitoring.

Figure 4. Agent basic structure and incremental context data

transformation

Suppose therefore to consider the following health-care use

case:

One or more patients are continuously monitored by

medical equipment. An alarm may be generated when patient

data exceed some threshold, when different parameters (such

as temperature or glycolic value) are simultaneously over

some other threshold, and/or when the speed with which the

variation occurs is high. Information about patients

Towards a Flexible Context-aware Pervasive Alert Generation System 866

(thresholds, history, etc.) and doctors (specialization,

availability, telephone numbers, etc.) is used to identify the

doctor best suited to manage an alarm situation. The doctor is

alerted on his laptop/mobile and may request further

information to best analyze the patient situation.

and the indoor use case reported below:

One or more indoor regions (hospital rooms, house

sections, laboratories…) are continuously monitored by

sensing equipment in order to maintain a set of life conditions

or storage requirements. An alarm may be generated when

sensed data exceed some threshold, when different

parameters (such as room temperature or relative humidity)

are simultaneously over some other threshold, and/or when

the speed with which the variation occurs is high. Information

about those physical regions (thresholds) and technical

operators (availability, telephone numbers, etc.) is used to

identify the technician best suited to manage an alarm

situation. The operator is alerted on his laptop/mobile and

may request further information to best analyze the room

situation.

Figure 5. Agent inner structure

VII. The Customization Effort: before

Compilation

The system customization phase is in many cases very easy,

being limited to the extension of predefined ontology classes.

More in detail, system customization requires the execution of

a sequence of activities, most of which have been automated.

Some customization activities must necessarily be executed

before system compilation, as they completely “shape-up” the

system, others must be executed during the start-up phase.

Before system compilation, we have to:

1. customize the ontology, i.e. extend the ontology so that

classes specific to the environment are added;

2. customize the agents, i.e. create the Java classes

corresponding to the added ontology entities;

3. customize the rule-engine, i.e. create the Jess templates

corresponding to the added ontology entities.

As to Activity 1, before launching the system we have to

verify whether the entities of the monitored system (i.e.

parameters, monitored entities and monitoring entities) are

ontologically codified or not. In the former case, they are listed

in the start-up user interface, otherwise the entities have to be

codified into the ontology.

Figures 6 and 7 show how the upper level ontology was

extended respectively to the health-care and environment

monitoring cases. As shown in the figures, ontology extension

often corresponds to the insertion of new class names, as the

datatype and object properties needed by the system have

already been codified in the superclass.

Once that the ontology has been extended, activities 2 and 3

are automatically performed by an in-house extension of Bean

Generator which updates rules and Java classes in order to

manage the added concepts. In other words, users are

requested only to set-up input data and to extend the ontology,

if needed. Then, the system configuration phase can start.

VIII. The Customization Effort: at start-up

At start-up, it is necessary to define agent reasoning templates,

which govern agent behavior. This phase was made easy by

implementing an ad-hoc user-friendly graphical user interface.

Reasoning templates depend on the kind of agent they are

applied to. They define agent relationship with other entities

(e.g. CPAp agents are informed about the monitored parameter

and the monitoring entity they are in charge of) and provide

basic information agents need to operate.

For instance, CPAp agents need the thresholds for

generating alarms, whilst CPAl also need the list of parameters

they have to aggregate.

Figure 6. Ontology extension to the health-care domain

867 Aesposito, Tarricone and Zappatore

Finally, CIA agents need to be informed about the kind of

end-user to be contacted in case of alarm (for instance a

familiar is enough in case of low-level alarm related to blood

pressure, whilst a cardiologist is needed in case of high level

aggregated alarm).

Jess templates and Jess normalized rules are automatically

generated on the basis of such configuration information. The

following code snippet shows a CPAl rule (valid in both the

health-care case and in the environment monitoring case),

useful for generating multiparameter alerts, which was

automatically generated on top of a reasoner template:

(defrule aggregate-temporal-variations-for-2-params

 ?f0 <- (SingleParameterVariation_Predicate

 (hasParamName ?pn0)

 (hasParamMeasurementTime ?t0))

 ?f1 <- (SingleParameterVariation_Predicate

 (hasParamName ?pn1)

 (hasParamMeasurementTime ?t1))

 ?f-check <- (aggregation-pattern-for-2-params

 (pattern-time-width ?ptw &: (<= (abs(-?t0 ?t1))

?ptw)) (param-0 ?pn0) (param-1 ?pn1))

=>

(send-aggregate-alert)

(retract ?f0) (retract ?f1))

This rule is fired when two facts, corresponding to

instantaneous alarms, are stored in memory in the same time

window. The function send-aggregate-alert sends the alert

event to the CIA agent.

Figure 7. Ontology extension to the environment monitoring

domain

IX. System Operation

In order to briefly describe system operation, let us focus on

CPAP agents, which identify both instantaneous and

interval-based alert events. They are continuously fed with

sensor data, which instantiate a predicate class (see Figure 5,

Java class instantiation #1), namely the

SingleParameterVariation_Predicate class, whose

instantiation for the health-care use case (BodyTemperature

parameter) is:

SingleParameterVariation_Predicate

 hasParamName: BodyTemperature

 hasParamCurrentVal: 38.5

 hasParamNormalMaxVal: 37.0

 hasParamNormalMinVal: 35.5

 hasParamMeasurementUnixTimestamp: 1255461262

 hasMonitoredEntitySourceID: 3

 hasMonitoredEntityType: Patient

the instantiation for the environment monitoring use case

(RelativeHumidity parameter) is instead:

SingleParameterVariation_Predicate

 hasParamName: RelativeHumidity

 hasParamCurrentVal: 85.0

 hasParamNormalMaxVal: 60.0

 hasParamNormalMinVal: 30.0

 hasParamMeasurementUnixTimestamp: 1255462864

 hasMonitoredEntitySourceID: 5

 hasMonitoredEntityType: Room

Once that the Java bean has been instantiated, it is asserted

into the Jess WM (see Figure 5, Jess Working Memory

Assertion). Instantaneous variations are tackled by using the

following normalized rule, which compares the sensed value

with thresholds:

(defrule verify-sensor-data

 ?f <- (SingleParameterVariation_Predicate

 (hasParamName ?pn)

 (hasParamCurrentVal ?par-c |: (> ?par-c ?par-max) |:

(< ?par-c ?par-min))

 (hasParamNormalMaxVal ?par-max)

 (hasParamNormalMinVal ?par-min)

 (hasParamMeasurementTime ?par-time))

 =>

 (send-sensor-alert))

The Java user function send-sensor-alert notifies the alarm

event to CPAL. Interval-based events are detected by using a

similar procedure. A normalized rule detects the occurrence of

facts concerning the same parameter and having been asserted

in the same time window. If the rule fires, a Java class

containing all the meaningful information concerning the

detected event is instantiated (see Figure 5, Java Class

instantiation #2) and its content forwarded to the CPAL.

X. Experimentation

The overall system was tested within a network of

Towards a Flexible Context-aware Pervasive Alert Generation System 868

computers connected by a TCP/IP-based 100Mb/s network.

Computers run under Linux operating system and have the

following characteristics:

1. CPU: Intel Pentium, 3.00 GHz (single core); RAM: 512

MB;

2. CPU: AMD Athlon, 1.8 GHz (single core); RAM: 478

MB;

The experimentation consisted in collecting average alarm

generation and transmission times in diverse configurations

(Figure 8) of the health-care use case.

The simplest consists of a single entity monitored by one

sensor and assisted remotely by four monitoring entities.

The most complex consists of 5 entities, each being

monitored by 4 sensors and being assisted by 4 monitoring

entities. Results concern average times obtained over 30 runs.

 The system monitors data sensed by sensors, and, based on

monitored entity info (loaded once at system start-up)

determines alarm events. Alarm events trigger actions which

basically consist in identifying the best suited monitoring

entity (i.e. the doctor having the appropriate specialization

and being available in the nearest time interval) and

contacting him/her (via mobile).

Figure 8. Experimentation set-up and configurations

Measured times were taken by imposing two “stressing

conditions”: 1) each sensed parameter has always

out-of-range values, 2) all sensors send data at the same time.

They consist in:

 the time elapsing at the CPAp side between the reception of

a datum from the sensor and the triggering of the

corresponding alarm obtained by means of rule-based

reasoning;

 the time elapsing at the CPAl side between the reception of

a message coming from CPAp and the triggering of the

corresponding alarm obtained by means of rule-based

reasoning;

 the time elapsing at the CIA side between the reception of a

message coming from CPAl and the forwarding of a

message to CCA.

As shown in Table I, CPAp are responsible for filtering data

coming from a single sensor, therefore their times do not

change when the number of sensors and/or of monitored

entities change. Each CPAl, instead, elaborates data coming

from sensors connected to a single monitored entity. In our

experimentation set-up, they elaborate data coming from up to

four sensors and produce two kinds of aggregate alarms: the

former associates “BodyTemperature” and “BloodGlucose”

patterns, the latter combines “BloodPressure” and

“HeartRate” patterns. Therefore, CPAl times increase with the

number of sensors attached to single patients. CIA times,

finally, depend both on the number of sensors and on the

number of patients (i.e. both on the number of CPAp and on

the number of CPAl).

Table I also illustrates data obtained by aggregating the

average times obtained for each configuration. As shown in

the table, processing times are very good, thus demonstrating

the amenability of the proposed approach to attach also more

complex monitoring problems.

Agent
(# Sensors, # Patients)

(1,1) (2,1) (2,2) (4,1) (4,2) (4,5)

CPAP 3.68 3.68 3.68 3.68 3.68 3.68

CPAL / 4.74 4.74 5.96 5.96 5.96

CIA 2.24 2.87 2.93 3.28 6.97 24.49

Ttot 5.92 11.29 11.35 12.92 16.61 34.13

Table 1. Performance results [ms].

XI. Conclusion

In this paper, a smart re-configurable system suitable for

monitoring purposes and able to take decisions coherently

with the context data has been presented. The system

harmonizes heterogeneous technologies, such as agents,

ontologies and rule-based inference engines. As a result, the

ontology provides the knowledge codification needed to

support both agent reasoning and communication. The

effectiveness of the system is demonstrated by using simple

and concrete examples in two real life scenarios. The very

promising results, in terms of easiness of use and

reconfigurability of the system, make the proposed approach a

very good candidate for the solution of complex monitoring

problems.

References

[1] R. Goebel, et al., “ Lecture Notes in Artificial

Intelligence”. Proceedings of 12th Conference on

Artificial Intelligence in Medicine, AIME 2009, Verona

(Italy), July 18-22, Springer.

[2] U. Cortés and M. Poch, Editors, Advanced Agent-Based

Environmental Management Systems. Whitestein Series

in Software Agents Technologies and Autonomic

Computing. Birkhäuser Verlag, Berlin, 2009.

[3] F. Paganelli, E. Spinicci and D. Giuli, “ERMHAN: a

context-aware service platform to support continuous

care networks for home-based assistance” International

Journal of Telemedicine and Applications, Vol.

2008, Issue 5.

869 Aesposito, Tarricone and Zappatore

[4] A. Esposito, L. Tarricone, M. Zappatore, L. Catarinucci,

R. Colella and A. Di Bari, “A Framework for

Context-Aware Home-Health Monitoring”. In UIC '08

Proceedings of the 5th international conference on

Ubiquitous Intelligence and Computing, pp.119-130,

Oslo, Norway.

[5] X. Wang, J.S. Dong, C.Y. Chin, S. Hettiarachchi and D.

Zhang, “Semantic Space: An Infrastructure for Smart

Spaces”, IEEE Pervasive Computing, Vol.3, No.3, pp.

32 – 39, 2004.

[6] T. Gu, H.K. Pung and D. Zhang, “A service oriented

middleware for building context-aware services”,

Journal of Network and Computer Appications (JNCA),

Vol. 28, Issue 1, pp. 1-18, Elsevier, 2005.

[7] H. Chen, T. Finin and A. Joshi, “An ontology for

context-aware pervasive computing environments”, The

Knowledge Engineering Review, Cambridge University

Press, Vol.18, pp.197–207, 2003.

[8] J.C. Augusto, “Temporal Reasoning for Decision

Support in Medicine”. Artificial Intelligence in

Medicine, v.33, n.1, pp.1-24, Elsevier B. V., 2005.

[9] A. Otero, P. Felix, F. Palacios, C. Perez-Gandia and

C.O.S. Sorzano, “Intelligent alarms for patient

supervision”, Proceedings of the IEEE International

Symposium on Intelligent Signal Processing, WISP

2007, pp.1-6, 2007.

[10] J. Indulska and P. Sutton, “Location management in

pervasive systems”, CRPITS’03 Proceedings of the

Australasian Information Security Workshop,

pp.143–151, 2003.

[11] Jade, 2010 http://jade.cselt.it (last access: February

2011)

[12] Protégé, 2010 http://protege.stanford.edu/ (last access:

February 2011)

[13] OWL, 2010

http://w3.org/TR/2004/RDC-owl-features-20040210/

(last access: February 2011)

[14] E. Friedman-Hill, E. Jess In Action.

Manning.Publications Co., Greenwich, CT, USA, 2003.

[15] BeanGenerator, 2010

http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanG

enerator (last access: February 2011)

[16] CLOnto, 2010 http://jade.tilab.com/doc/tutorials/

CLOntoSupport.pdf (last access: February 2011)

[17] J. Williamson, 2010. http://www.jessrules.com/

jesswiki/view?KeepYourRulesNormalized (last access:

February 2011)

[18] N. Guarino, “Formal Ontology and Information Systems”

In N. Guarino, editor, Proceedings of the 1st

International Conference on Formal Ontologies in

Information Systems, FOIS'98, Trento, Italy, pages 3--

15. IOS Press, (1998).

Author Biographies

Luciano Tarricone is a Full Professor of Electromagnetic Fields at the

University of Lecce, Italy. He received his laurea degree (with honors)

from the University of Rome “La Sapienza”, Italy, and his PhD from

the same university, both in Electronic Engineering. In 1990 he was a

researcher at the Italian National Institute of Health, and between 1990

and 1994 at the IBM European Center for Scientific and Engineering

Computing. Between 1994 and 2001 he was at the University of

Perugia, Italy. Since 2001 he has joined the University of Lecce. His

main research areas are: supercomputing and knowledge engineering

for Electromagnetics, environmental electromagnetic compatibility,

CAD of microwave circuits and antennas. He authored around 300

papers in international conferences and journals, and edited 3 volumes

in the area of high performance computing and knowledge engineering

for electromagnetics.

Alessandra Esposito is a free-lance consultant in the area of Computer

Science and Information Technologies, with a focus on networking,

web and grid applications for research in universities and small,

medium and large companies. She received her laurea degree (with

honors) in Electronic Engineering from the University of Naples.

Between 1990 and 1994 she was with IBM Scientific Center in Rome,

Italy. In 1994 and 1995 she was a system engineer for Sodalia, Trento,

Italy, involved in research and development in the area of distributed

systems. Since 1995 she has cooperated with several research

institutions, universities and business companies, in the framework of

educational, research and industrial projects. She authored about 90

papers in international conferences and journals. She is co-author of

the book "Grid Computing for Electromagnetics" edited by da Artech

House.

Marco Zappatore is a PhD Student in Information Engineering at the

University of Lecce. He graduated in Information Engineering at the

same University in 2005 with a thesis dealing with an hybrid genetic

algorithm for 3G wireless network optimum planning. In 2008, He

received a Laurea Specialistica degree (2nd level) in

Telecommunications Engineering from the same University with a

thesis concerning the EM enabling technologies for software intelligent

systems in the healthcare domain. He currently collaborates with the

Electromagnetic Fields Group at University of Salento. His research

activities are mainly focused on: Semantic Web, Context-Awareness

and Multi-Agent Systems applied to the EM area, optimization

techniques for wireless networks planning. He co-authored about 20

papers in international conferences and journals.

http://jade.cselt.it/
http://protege.stanford.edu/
http://w3.org/TR/2004/RDC-owl-features-20040210/
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator

