
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 3 (2011), pp. 870–877
c© MIR Labs, http://www.mirlabs.net/ijcisim/index.html

ParaViewWeb: A Web Framework for 3D
Visualization and Data Processing

Sebastien Jourdain, Utkarsh Ayachit and Berk Geveci
sebastien.jourdain@kitware.com, utkarsh.ayachit@kitware.com, berk.geveci@kitware.com

Kitware Inc.
28 Corporate Drive, Clifton Park, NY 12065, USA

Abstract: Since the early days of the Internet, web technolo-
gies have been at the forefront of innovation with many tradi-
tional desktop applications migrating to the web and new ones
continually being invented. In this paper, we present a 3D visu-
alization framework, ParaViewWeb, which enables interactive
large data processing and visualization over the web. To enable
large data processing, ParaViewWeb uses ParaView, an open-
source, parallel data visualization framework, to generate visu-
alizations on the server-side while rapidly delivering images to
the client. ParaViewWeb makes it easier to develop customized
applications for the web that cater to a wide variety of scien-
tists and domain experts who can use such a web-based sys-
tem to analyze their datasets without leaving the familiar and
omnipresent environment of a web browser. In this paper, we
present the ParaViewWeb framework and its features and dis-
cuss some of the application fields that can benefit from it.
Keywords: Web3D, Scientific visualization, Collaboration, Re-
mote rendering, VTK, ParaView

I. Introduction

In recent years, organizations across the globe have increased
development efforts on high performance computing infras-
tructures. These are often distributed across several sites.
This enhanced compute power has made it possible to run
large simulations, producing large datasets. The data sizes
have made distance visualization a necessity; it is no longer
possible to copy datasets to your desktop for analysis. Par-
aView [1] is an open-source, multi-platform data analysis
and visualization application. ParaView was developed to
analyze extremely large datasets using distributed memory
computing resources. It can be run on supercomputers to an-
alyze datasets of terascale as well as on laptops for smaller
data. In this paper, we present an exciting new approach
for visualizing data over the web. We present a ParaView-
based web-visualization framework that allows developers
to build custom web applications that incorporate interactive
3D visualization. These web applications can leverage Par-
aView’s parallel data processing and rendering capabilities
on the server side, while presenting easy-to-use, highly cus-
tomized webpages to the users to control and interact with
their visualizations; all without leaving the familiar and om-
nipresent environment of a web browser.

Figure. 1: Ray-casting web application

II. Objectives

The web has been evolving rapidly since its inception. It has
permeated the modern way of life so much that people are
now migrating traditional desktop applications to the web,
e.g. document editing [2], finance management [3] and tax
filing [4]. Part of the appeal of the web is its ease of ac-
cess. One simply types the URL in the web browser and
can access the application, regardless of location or type of
device. Additionally, web makes it easier to share and collab-
orate with other users no matter where they are located. The
same is true for visualization over the web. There are several
frameworks that have been developed that focus on visual-
ization, e.g. Protovis [5] and Many Eyes [6]. However, most
of these are dealing with 2D visualization and use client-side
rendering to generate the visualizations, which works well
for smaller data sizes but is not feasible with large datasets.
Our main objective is to leverage that growing usage and
be able to easily access HPC resources and allow cross do-
main expertise on large scale simulation projects where ex-
pert teams may be scattered across the globe.
Moreover ParaViewWeb aims to provide a set of web-
oriented components to allow web designers to easily de-
velop their own ad-hoc visualization applications for the web
or extend their existing portals or monitoring tools with inter-

Dynamic Publishers, Inc., USA

active 3D data analysis capabilities. The Figure 1 illustrates
a simple 3D web application that use the ray-tracer rendering
engine of ParaView through the ParaViewWeb framework.
The rest of this paper is organized as follows. In the Section
3, we give a general overview of the system and the different
components involved. Section 4 covers the different compo-
nents of the framework in detail, while in Section 5 we will
demonstrate the use of the framework in different applica-
tions.

III. Architecture Overview

To address the need for visualizing large datasets in 3D, we
have developed a framework based on ParaView. We can
leverage all of ParaView’s visualization and data processing
features such as parallel processing and rendering, volume
rendering and ray-casting. To provide interactive 3D con-
tent in real time to the client, we use server-side rendering.
This approach makes it possible to render large geometries
without putting any requirement on the client’s devices and
enables the use of mobile devices such as iPhone and iPad.
To manage the 3D rendered content on the client side, the
framework provides a set of components for viewing it in
an interactive manner. Those components are available in
Java [7], Flash [8] and JavaScript [10] and can be used to
rotate, zoom or pan the 3D data.
As a framework, ParaViewWeb uses proven technologies and
standards such as Java Servlet, Java Server Pages (JSP) [12],
Java Messaging Service (JMS) [11], and Java Persistence
API (JPA) [13] on the server side to do most of the binding
between the browser and the ParaView framework. We use
JavaScript and JSON-RPC [14] for communication protocol
on the client side. Being a web-based application, all com-
munication follows either HTTP or HTTPS protocols which
make it easier to manage firewall and proxy issues. Par-
aViewWeb provides a collection of components that can be
used directly or easily integrated into an existing web por-
tals. These components range from server side to client side.
Figure 2 gives an overview of the complete system.
On the server side, the visualization server (PWServer) is a
ParaView-based engine that does the actual visualization ei-
ther by itself or by connecting to a remote ParaView server
running over a cluster with MPI. Then, the web service com-
ponent named PWService manages communication between
remote visualization servers (PWServer) and clients. It also
includes administration webpages, allowing a user to mon-
itor running visualization session as well as browsing logs
and information of the previous ones. On the client side, a
JavaScript library is provided for creating remote visualiza-
tions and managing them. It also contains several visualiza-
tion components enabling users to look at 3D content in the
browser interactively.
Using these components, developers can build websites or
web portals with visualization and data processing capa-
bilities. These components can be easily integrated into
Rich Internet Applications (RIAs) developed using popular
web design infrastructures including qooxdoo [15], Dojo [9],
Google Web Toolkit [16], jQuery [17], Flex [8], and Java [7].
Figure 2 gives a schematic of the various components in-
volved. Our implementation requires any supporting Java-
based Web Application server, such as Apache Tomcat, an

Client Applications

JavaScript Java Flash

JMS Broker

Web Server

Web ApplicationsPWService

Visualization Nodes

PWServer PWServer PWServer
PWServer

PWServer
PWServer

HTTP

TCP

MPI

TCP

Figure. 2: Schematic of the ParaViewWeb Visualization
System

open-source, freely available implementation.
In the next section we will see each of these components in
detail.

IV. Components

As described earlier, there are 3 major components in the
ParaViewWeb architecture.

• Web Service provides the facade exposed to the external
network including the web browsers. It enables access-
ing visualization as a service over the network.

• JavaScript Visualization API is used by web-browser to
create and update visualization pipelines. Internally, it
uses the services provided by the Web Service to per-
form the requested tasks.

• Visualization Engine is a ParaView application that runs
on the visualization nodes to do the actual data analysis
and processing.

A. Web Service

The crux of a typical web framework is its collection of web
services. The web services provide the facade that is ac-
cessible by the client applications including the webpages
loaded in web browsers. The collection of services pro-
vided by ParaViewWeb framework are called PWService.
PWService is a web application that is deployed on the web
server accessed using a particular URL that is determined
at configuration time. Using JSON-RPC [14], which is a
simple JSON [18] (JavaScript Object Notation) based pro-
tocol for remote procedure calls, clients can make calls on

871 Jourdain, Utkarsh and Geveci

PWService to start new instances of PWServer, monitor run-
ning PWServer instances, and even send JSON messages
to PWServer. The messages sent to PWServer range from
those constructing the visualization pipeline to those that
communicate the mouse interactions. PWService is respon-
sible for delivering responses from the visualization engine
(PWServer) to the web clients.
The PWService also makes it possible for the clients to re-
quest rendered images from the PWServer. To address the
concerns of highly secure domains, we do not expose any
additional ports through which the clients can communi-
cate with the PWServer. Hence, their only access is via
the PWService. This provides an interesting challenge es-
pecially when providing rendered images as the latency be-
comes critical. Any overhead inherent in the web service or
the HTTP protocol itself can adversely affect the perceived
framerate on the client side. HTTP protocol [19] in itself
does not support the server sending data to the client, un-
less the client requested it. This implies that the client has
to periodically check with the server if a new rendered im-
age is available and then fetch it. Also every time there are
new requests, a handshake as per the protocol ensues, which
can affect the latency. To address these issues a few tech-
niques are gaining widespread acceptance in the community
under the umbrella term of server push [20] techniques. Each
of rendering components uses a different technique to get
the best performance. The long-polling [21] (for JavaScript
rendering) and streaming (for Java rendering) techniques
are the two mechanisms currently implemented inside Par-
aViewWeb. ParaViewWeb uses Abodes BlazeDS [22] remot-
ing technology for the Flash renderer which also employes
similar techniques under the covers. Next we’ll see the tech-
niques employed by each of the renderers implementation.

WebServer (Tomcat)

JavaScript
renderer

PWService
(Java)

loadImage(1)

C
om

m
un

ic
at

io
n

ov
er

 H
TT

P

loadImage(2)

Client computer

Im
ag

e
in

 th
e

w
eb

 p
ag

e

image
receivedupdateImage()

updateImage()

loadImage(3)
updateImage()

loadImage(4)

Same network
connection

The connection
is still alive

image
received

Figure. 3: Image delivery with the long-polling technique
for JavaScript renderer

1) Image delivery for JavaScript renderer

The standard polling technique allows the client to fetch
server data periodically with some overhead and latency. In
order to reduce that latency and to allow JavaScript clients
to fetch binary content such as images, we implemented a
long-polling communication style, which is also known as
Comet programming [23]. Instead of using this technique for
small payload messages, we used it for image delivery in the
JavaScript renderer. Figure 3 illustrates the communication
between the JavaScript renderer of ParaViewWeb through the
web service and the ParaView rendering engine.
Moreover, that technique has an interesting side effect for
heterogeneous clients: the image delivery is driven by each
individual client. Therefore, the ParaViewWeb service has
been designed to deliver only the latest image available to
the client and keep the connection open if nothing new is
available since the last data transfer. In this manner, each
client gets the best possible framerate without affecting other
clients. For example, if the server is able to produce 80
frames per second for a given visualization, some clients may
get only 30 frames per second compared to others who would
receive 60 frames per second.

2) Image delivery for Java Applet renderer

Java Applet [7] is not the most supported platform on the
web but compared to JavaScript or Flash, it provides more
advanced capability. In order to provide the most efficient en-
vironment for user interactivity, we developed a renderer for
ParaViewWeb written in Java that could be used as an embed-
ded applet inside a webpage or any other standard Java appli-
cation. In order to improve the communication between this
component and the server side we used the multi-threading
capability of the environment to better separate the image
management from the user interaction. Moreover, as Java has
some built-in tools for stream management, we used custom
protocol on top of the HTTP one. For the mouse interaction,
the web service allows the clients to use an up-stream persis-
tent network connection where interaction events are written
using an XML structure. This allows any client to use a sin-
gle up-stream channel for the user interaction and by doing
so prevents the client from creating new connections while
the user is interacting. For the image stream, the web service
is producing a single zip stream where the images are pushed
one after the other as a separate entry in the stream. Using a
zip stream is also another standard way to communicate with
a client a stack of binary content. This allows any other heavy
client to benefit from that existing communication channel.
The up-stream channel is only established at the beginning of
the user interaction and gets released when the user stop its
interaction. Conversely, the down-stream connection stays
live for the entire session.
By using a separate up-stream and down-stream communi-
cation channel we almost mimic a standard socket commu-
nication. But even with that communication capability, if we
do not provide any extra care in the image management, we
could get a poor interactivity result with that design. In fact,
if all the images produced on the server side are sent through
the web, we might simply overflow the bandwidth and induce
an increasing lag between the current user interaction and the
image that is currently rendered locally. So depending on the

 872ParaViewWeb: A Web Framework for 3D Visualization and Data Processing

network capability of the client connection, if we do not drop
images we will create an increasing image stack that will still
be playing after the user has stopped its interaction. There-
fore, in the same way as we did for the image delivery for the
JavaScript client, we allow the service to skip images on the
server side. As the client and the server remain connected
all the time, it is unnecessary to write all the images on the
communication socket. Therefore what we are doing is only
writing or waiting for the latest image available after each
image has been fully written on the stream. That technique
prevents this buffering lag and reduces the bandwidth usage.

3) Image delivery for Flash/Flex renderer

Flash [8] is a commonly used technology on the web to de-
liver rich and interactive content. It was the first choice for
ParaViewWeb for its rendering component since all the in-
frastructure existed and is widely used. BlazeDS [22] is
the technology developed by Adobe [24] to support asyn-
chronous messages between client and server communica-
tion and specifically in a server push [20] paradigm. Based
on those technologies the ParaViewWeb Flash rendering
component has been designed to exchange both mouse inter-
actions and server images. Unfortunately, we did not imple-
ment any image dropping technique along the image deliv-
ery chain which induces some lag with low connection band-
width during interaction.

4) Future Extensions

Web standards are rapidly evolving and new ones will be-
come available with the new HTML 5 [25] standards. Par-
aViewWeb could benefit from several of these either for im-
age delivery or client side rendering. The communication
mechanism in the JavaScript layer could be even more ef-
ficient than the current Java one by using WebSocket [26].
On the other hand, WebGL [26] could allow the browser to
directly render small geometry models without heavy com-
munication payload.
Those standards are making their way into the current web
browsers and some early implementations are available in
advanced browser such as Chrome or Safari. Some exper-
imentation has been done using those new standards [26] to
render a 3D scene that has been generated by ParaView into a
web browser using the WebGL framework. This work could
easily be used to extend ParaViewWeb to support such client-
side rendering mechanisms.

B. Visualization Engine

The actual data analysis and visualization in the Par-
aViewWeb framework is done by the visualization engine,
called PWServer. PWServer is a ParaView-based process
that can be thought of as a headless ParaView application
that responds to the JSON messages relayed via the PWSer-
vice. In typical configurations, the web-server and the visu-
alizations nodes are separate machines. This means that the
PWService has to use network communication to relay the
messages to PWServer. In our design, we use Java Message
Service (JMS) for this communication. JMS is an API for
sending messages between two or more clients which was
proposed as part of the Java Platform. There are several

proprietary as well as open source implementations available
for the both the relaying server (known as the JMS Broker)
as well as the message sending and receiving libraries. The
protocol employed is still JSON-RPC-based even though the
communication is over JMS.
PWServer is the visualization engine. It can be set up to use
MPI to perform parallel data processing and rendering over a
cluster or as a single process and it does all the data process-
ing and rendering. For each separate visualization session,
we created a separate PWServer process. PWService handles
the management of these instances of PWServer, whether
they are local or working on a remote cluster and involving
MPI internal communication.
To ensure that the client application perceives the best pos-
sible framerate when interacting, the PWServer employs a
couple of optimizations.

1) Asynchronous Processing

As most users would expect in remote rendering, every user
interaction that affects the 3D scene should trigger the ren-
dering of an image which should be immediately shipped to
the clients. However, there undoubtedly is some delay be-
tween the client requesting an image and the server deliv-
ering one. If the server continuously processes the requests
received from the client while the user interacts, the user is
bound to see a lag in the movement. To overcome the is-
sue, the client send asynchronous requests to the server. The
server receives the first requests and start rendering. While
the rendering is happening, it keeps on receiving any addi-
tional interaction updates in a separate thread, from the client
and combines them into a single update. Once the rendering
is over the image is dispatched and the server starts process-
ing the most recent update.

2) Image Resolution/Quality Tweaks

Another trick to improve the perceived frame rate on the
client side is interactively adapt the image resolution and/or
quality during interaction. As one interacts on the client side,
the image resolution and/or quality is reduced. Once the in-
teraction is stopped, the server sends the optimal quality and
resolution image.
In our implementation, we have chosen to reduce the image
quality via two parameters. The first one is the image size
and the second one is the JPEG [29] compression option. By
reducing each dimension by two and by setting the quality
to 50 for the JPEG compression, we can produce images that
could be 70% smaller than full size.

C. The JavaScript library

JavaScript has become the language of choice for develop-
ing web applications for the browser. ParaViewWeb pro-
vides a JavaScript API that can be used within web browsers
to access the PWService as well as communicate with the
PWServer. The JavaScript library provides remoting capa-
bilities, enabling the web browser to access remote visual-
ization objects present on the PWServer.
ParaView is a post-processing application that can either
work on laptops or larger distributed computers [30]. Par-
aView is using the VTK [31] library for its data processing

873 Jourdain, Utkarsh and Geveci

but the client side code never directly manipulates those VTK
objects. Instead the client is using proxies to abstract the
communication and the deployment of those VTK objects.
Thanks to that design, ParaView is using the same code on
the client side to work either in a standalone manner or in a
distributed mode across several nodes of a super computer.
On the client side, ParaView uses proxies to abstract the man-
agement of objects on the server side. The ParaViewWeb
JavaScript library allows the user to create and manipulate
the ParaView proxies directly inside JavaScript code. This
facilitates the definition and the configuration of visualiza-
tion pipelines. Figure 4 illustrates how proxies can be cre-
ated and how we can retrieve and set their properties in
JavaScript. Alternatively, Figure 5 illustrates how a full inte-
gration of ParaViewWeb can be achieved inside a static web-
page, which embeds a 3D interactive renderer.

/* Let’s start by creating a Cone object: */
var cone = paraview.Cone();

/* Get the full list of properties. */
var propertiesArray = cone.ListProperties();

/* Get the resolution of the cone */
var resolution = cone.getResolution();

/* Double the resolution of the cone */
cone.setResolution(resolution * 2);

/* Creating another cone with a resolution of 64 */
var cone2 = paraview.Cone({ Resolution:64 });

/* Assign an array value */
cone2.setCenter(4, 5, 6);

/* Apply a shrink filter and show the result */
var shrinkFilter = paraview.Shrink({Input:cone});

/* Getting data information of the shrink filter */
var dataInformation =
 paraview.GetDataInformation({proxy:shrinkFilter});

var numberOfCells = dataInformation.NbCells;
var numberOfPoints = dataInformation.NbPoints;
var bounds = dataInformation.Bounds;
var memoryUsage = dataInformation.Memory;
var dataType = dataInformation.Type;

/* Show the result of the shrink filter */
paraview.Show({proxy:shrinkFilter});

/* Manage camera and view */
paraview.ResetCamera();
var view = paraview.CreateIfNeededRenderView();
view.setCenterOfRotation(view.getCameraFocalPoint());

Figure. 4: Sample JavaScript pipeline setting

By providing the full access to the Proxy Manager of Par-
aView, we allow web developers to design any kind of appli-
cation, which could range from a very simple application like
the one illustrated in Figure 5 and 6 to a more complex one
that could mimic the current Qt one. On the other hand, de-
veloping ad-hoc applications that target a very specific com-
munity on web could be a valuable endeavor. Moreover, it
might be easier to develop several simple applications and
have a dedicated URL for each of them.

1) Plugins for server side API extension

Managing Proxies with the JavaScript layer may result in a
lot of communication overhead where you only want a de-
fault setting to be applied on a large number of proxy objects.
To overcome this limitation we designed a server-side plugin

<html>
 <head>
 <meta http-equiv="content-type"

 content="text/html; charset=ISO-8859-1">
 <script src="seb_files/ParaViewWeb.js"

 type="text/javascript"></script>
 </head>
 <body onunload="paraview.disconnect();">

 <div id="renderer">
 <!-- Renderer will be inserted here-->

 </div>

 <script type="text/javascript">
 var url = "http://paraviewweb.kitware.com/PWService";

 // Create a paraview session

 var paraview = new Paraview(url);
 paraview.createSession("name", "comment");
 var view = paraview.CreateIfNeededRenderView();
 var viewId = view.__selfid__;

 // Load 3D file
 var cow = paraview.OpenDataFile(
 {filename:'/server-path/cow.vtp'});
 // Cut data
 var normal = [1,2,10];
 var origin = [0,0,0];

 // Red side of the cow
 var clipRed = paraview.Clip({Input:cow});
 var planRed = clipRed.getClipType();
 planRed.setNormal(normal);
 planRed.setOrigin(origin);
 var repClipRed = paraview.Show({proxy:clipRed});
 repClipRed.setDiffuseColor(1,0,0);

 // Blue side of the cow
 var clipBlue = paraview.Clip({Input:cow,InsideOut:1});
 var planBlue = clipBlue.getClipType();
 planBlue.setNormal(normal);
 planBlue.setOrigin(origin);
 var repClipBlue = paraview.Show({proxy:clipBlue});
 repClipBlue.setDiffuseColor(0,0,1);

 // Make sure we update the view once
 paraview.Render();

 // Add a green bell to the cow
 cone = paraview.Cone({Center:[4.5,0.25,0],
 Direction:[0,1,0], Resolution:16 });
 var repCone = paraview.Show({proxy:cone});
 repCone.setDiffuseColor(0,1,0);

 // Create and bind 3D interactive renderer
 var renderer = new JavaScriptRenderer("0",url);
 renderer.init(paraview.sessionId, viewId);
 renderer.setSize('400','400');
 renderer.bindToElementId("renderer");
 renderer.start();
 </script>
 </body>
</html>

Figure. 5: Sample HTML & JavaScript code

Figure. 6: View of the HTML & JavaScript code

 874ParaViewWeb: A Web Framework for 3D Visualization and Data Processing

mechanism that allows the user to call any custom remote
methods like they could do with proxies.
Those plugins are python module that lie on the server side
and get wrapped into a JavaScript object at runtime. Due to
that extension capability, the client code written in JavaScript
can use a simplified and dedicated API to implement com-
plex behavior that could be painful to do on the client side.
However, this also allows the web developer to build smaller
and simpler JavaScript code where the most complex code
stays and gets executed on the server-side with no network-
ing overhead.

V. Applications

Web visualization has several real world applications. As
mentioned earlier, it facilitates development of web por-
tals for job submission and then result analysis using Par-
aViewWeb for supercomputing sites. These visualization ap-
plications can be customized to the types of datasets that are
being visualized, making them easier to use for the domain
experts.
In order to help web designers benefit from this library, sev-
eral basic applications have been developed to either illus-
trate the capability of the framework or to provide some tu-
torial code on how the framework works and how it can be
used through several contexts and third-party JavaScript li-
braries.

A. Post Processing

As a demonstration prototype, Figure 7 illustrates a web ap-
plication that has been developed using the framework. That
application has been designed to illustrate how ParaView can
be used as a backend for relatively complex 3D data process-
ing on the web. The Google GWT [16] JavaScript toolkit has
been used to build this application. The purpose of that ap-
plication is to illustrate what can be done on the web in terms
of interactivity with data processing involved. It has not been
built as a ParaView replacement, but as an example of what
can be done with the ParaViewWeb framework.

Figure. 7: Simple post processing Web application

In regards to data, the user can either select a dataset on
the server or upload their own. The supported data types

are the one supported by ParaView which range from sim-
ple geometry one such as VRML and PLY to real simulation
dataset using VTK, Exodus, Xdmf or other formats. Once
the data is loaded on the server, it can be processed by a
set of classical scientific visualization filters such as clip-
ping plane, slicer, iso-contours and, depending on the data,
a stream tracer which is used to see the flow based on the
integration of a vector field. Moreover, interactive 3D ob-
jects can be used to move or rotate the plan used by the slicer
and the clipping plane filter as well as the line seed where
streaming lines start their computation.

B. Knowledge Sharing

Web visualization also presents exciting new possibilities for
modern classrooms. Students no longer have to look at static
images in a textbook. They can study the fluid flow proper-
ties, for example, by interacting with a visualization online.
Similarly, with online journals, instead of merely presenting
static images in papers, we can develop online journals and
publication establishments that enable the reader to simply
click on the image to start interacting with the real dataset.

Figure. 8: State based generated Web application

In fact, an advanced web application has been developed
along the framework to allow users to build a standalone web
application based on a ParaView state file. That state file is
used to load and set up the full processing pipeline. More-
over, if that state file has been extended with some additional
information, a control panel can be shown to enable users to
configure at runtime some filters parameters. Figure 8 illus-
trates a running state application where the user can interact
with the 3D scene and, by enabling the control panel on the
left, change the iso-contour value of that scanned mummy
skull with a slider.

C. Online Data Publishing

ParaViewWeb can also be used as a rendering engine for on-
line 3D databases. Through ParaViewWeb, users will be able
to browse datasets and visualize them directly inside their
browser. In fact, some first integration steps have been done
with MIDAS [32], a multimedia server for storing massive
collections of scientific data where users can now explore
their data interactively.

875 Jourdain, Utkarsh and Geveci

D. Visualization on Mobile Devices

Since most modern mobile devices come with built-in web-
browsers, its very easy to develop web apps accessible from
devices such as iPhone and iPad. The JavaScript renderer
supports multi-touch capability of the devices and allows the
user to zoom with the appropriate gesture. Also since the
web browser using simple JSON based protocol to communi-
cate with the web service, its possible to create custom Apps
for the mobile platform using the native SDK.
To this end, we developed a prototype running on
AndroidTM [33] phones and tablets that use the JSON-RPC
protocol to set up the visualization pipeline and use the ad-
vanced streamed image delivery channel that the Java applet
is using to reduce the communication overhead.

VI. Conclusions

In this paper, we have presented ParaViewWeb, a framework
for large data visualization over the web. ParaViewWeb is a
parallel visualization framework that is comprised of compo-
nents that make it easier to develop websites that enable in-
teractive analysis of large datasets. It is based on ParaView, a
popular open-source visualization tool which uses distributed
data processing and rendering. ParaViewWeb uses server-
side rendering to avoid complications with delivering large
geometries to the client and complications with rendering 3D
geometries in a web-browser in a cross-browser and cross-
platform manner. To provide a responsive 3D visualization
system, we optimized image processing and delivery to re-
duce latency.
ParaViewWeb is not just a visualization framework; it is a
web extension of ParaView. This allows any web devel-
oper to build applications inside a web page that leverage the
computation and rendering capability of ParaView. Although
ParaViewWeb has a focus on remote rendering for large data
visualization, some of its first usage has been done on small
data models where WebGL technology could have been used.
However, this evolution can still be achieved once WebGL is
mature enough and if the community feels the need for it.
Like ParaView, ParaViewWeb will be released under a BSD
license, enabling anyone to extend and customize it to their
specific needs.

Acknowledgments

Portions of this work were supported by DOE SBIR Phase II
Award DE-FG02-08ER85143.

References

[1] Henderson A. et al, 2007. ParaView Guide. A Parallel
Visualization Application. Kitware Inc.

[2] Google Docs, 2010. http://docs.google.com

[3] Mint Software, 2007. Mint, Inc. http://www.mint.com

[4] TurboTax, 1997. Intuit, Inc. http://www.turbotax.com

[5] Bostock M., Heer J., 2009. Protivis: A graphical toolkit
for visualization. http://vis.stanford.edu/protovis

[6] Many Eyes, 2004.
http://manyeyes.alphaworks.ibm.com/manyeyes/

[7] Sun, 1995. Java-Oracle. http://java.sun.com

[8] Adobe Flex, 2006. Adobe.
http://www.adobe.com/products/flex

[9] Dojo, 2009. Dojo foundation.
http://www.dojotoolkit.org/

[10] Ecma, 1999. Standard ECMA-262,
ECMAScript Language Specification, 3rd edition

[11] JSR-914, 2002. Java Message Service.
http://jcp.org/en/jsr/summary?id=914

[12] JSR-245, 2006. JavaServerTM Pages.
http://jcp.org/en/jsr/summary?id=245

[13] JSR-220, 2006. Enterprise JavaBeans 3.0.
http://jcp.org/en/jsr/summary?id=220

[14] JSON-RPC, 2006. http://json-rpc.org

[15] Qooxdoo, 2005. 1&1 Internet AG.
http://qooxdoo.org

[16] GWT, 2007. Google Web Toolkit.
http://code.google.com/webtoolkit

[17] jQuery, 2009. Software Freedom Conservancy.
http://jquery.com

[18] JSON, 1999. http://json.org

[19] Hypertext Transfer Protocol, 1990,
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[20] Server Push.
http://en.wikipedia.org/wiki/Push technology

[21] Jourdain Sebastien, Forest Julien, Mouton Christophe,
Mallet Laurent, Chabridon Sophie, ShareX3D, a scien-
tific collaborative 3D viewer over HTTP, Web 3D sym-
posium, 2008.

[22] Blazeds, 2008.
http://opensource.adobe.com/wiki/display/blazeds

[23] Comet, 2006.
http://en.wikipedia.org/wiki/Comet (programming)

[24] Adobe, 2010.
http://opensource.adobe.com/wiki/display/site/Home

[25] HTML 5, 2011.
http://dev.w3.org/html5/spec/

[26] WebSocket, 2011.
http://dev.w3.org/html5/websockets/

[27] WebGL, 2011.
http://www.khronos.org/registry/webgl/specs/latest/

[28] x3dom sample, http://www.x3dom.org/?p=821

[29] JPEG, http://en.wikipedia.org/wiki/JPEG

 876ParaViewWeb: A Web Framework for 3D Visualization and Data Processing

[30] SANDIA Report, September 2010.
http://www.cs.unm.edu/ kmorel/documents/MilestoneFY10Sandia.pdf

[31] The Visualization Toolkit. http://www.vtk.org/

[32] Midas, 2009. Kitware Inc.
http://www.kitware.com/products/midas.html

[33] AndroidTM, http://www.android.com/

Author Biographies

Sebastien Jourdain received a Master’s De-
gree in Computer Science, from the ESSTIN
Engineering School (France) in 2002. Since
then he worked in software development in-
volving high performance, 3D scientific visu-
alization and collaboration. In February 2010,

he joined Kitware where he is currently working as Research
and Development engineer on ParaView and its collaborative
aspects.

Utkarsh Ayachit Mr. Ayachit is a technical
lead at Kitware Inc. He is one of the leading de-
velopers of the ParaView visualization aplica-
tion and leads the ParaViewWeb development
team. Mr. Ayachit received his Master’s De-
gree in Compture Science from Univerity of

Maryland, Baltimore County in 2004. His interests include
large scale parallel data analysis and visualization, collabo-
rative remote visualization and application frameworks.

Berk Geveci Dr. Geveci leads the scientific
visualization and infomatics teams at Kitware
Inc. He is one of the leading developers of
the ParaView visualization application and the
Visualization Toolkit (VTK). His research in-
terests include large scale parallel computing,

computational dynamics, finite elements and visualization al-
gorithms. Dr. Geveci regularly publishes and teaches courses
at conferences including IEEE Visualization and Supercom-
puting conferences.
Dr. Geveci received his B.S. in Mechanical Engineering from
Bogazici University in 1994, his M.S. and Ph.D. in Mechan-
ical Engineering from Lehigh University in 1996 and 1999,
respectively. While at Lehigh University he conducted re-
search on subsonic and supersonic flow induced nonlinear vi-
brations, developing a new procedure for the solution of cou-
pled flow and structural equations. In addition, he authored
software for the study of separation in unsteady boundary
layer flows and the visualization of the numerical and ex-
perimental results. After graduating from Lehigh University,
Dr. Geveci completed a post-doctoral fellowship at the Uni-
versity of Pennsylvania during which he worked in the area
of optimal control investigating applications in the control of
hydrothermal instabilities.

877 Jourdain, Utkarsh and Geveci

