

Dynamic Publishers, Inc., USA

MoonGate: RTS Engine

with User-Oriented Architecture

Rudolf Kajan
1
 and Adam Herout

2

1 Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic

ikajanr@fit.vutbr.cz

2 Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic

herout@fit.vutbr.cz

Abstract: This paper introduces MoonGate - a real-time

strategy engine based on replaceable components, thus serving as

an easily customizable educational environment for studying a

wide range of problems in several research areas.

The implemented engine also supports, alongside the Windows

platform, Microsoft’s Xbox 360 gaming console, making it the

first open source starter kit and real-time strategy engine for

Xbox 360. MoonGate’s main goal is to attract students,

academics and indie game developers to learn by creating highly

interactive and visually attractive games, and by providing easily

understandable and highly customizable educational

environment which incorporates the best features of modern

commercial games, visualization environments and game

middleware.

Keywords: MoonGate, real-time strategy, user-oriented

architecture, game components, strategy middleware

I. Introduction

Out of many game genres that are available nowadays, one of

the most important is the genre of real-time strategy games,

since they are useful from an entertainment as well as serious

games perspective [1]. Researchers such as [2], [3], [4] or [5]

suggest that real-time strategy games also offer a wide variety

of fundamental AI research problems.

Real-time strategy is the genre of computer games that

encompasses tactical games that happen in real-time.

―Real-time‖ means that there is a continuous flow of time in

the game world, so that immediate decision making and

responding quickly to arising situations is important. These

games can be viewed as simplified military simulations played

by two or more players where each player can be in control of

potentially hundreds of units with specific properties and

abilities.

One of the current problems is that commercial game

developers and researchers do not focus on exactly the same

elements. Up until now, game companies have spent more time

on improving the game‘s graphics more than any other part of

it and commercial RTS games are closed software which

prevents researchers, students and hobbyists from connecting

their own modules to them. A shortage of artificial intelligence

competitions based on real-time strategies also deprives

artificial intelligence researchers and enthusiasts of an

opportunity to compare their algorithms [6]. Moreover,

available free RTS engines are usually too complex to serve as

a practical educational and demonstrational tool in courses

(for example, Spring [10] engine v.0.8.1 has 340641 lines of

code in 1425 files).

In order to address these problems, MoonGate [7] – an open

source, real-time strategy game engine for Xbox 360 and

Windows platforms, was designed and implemented.

MoonGate‘s main purpose is to attract academics, students

and hobbyists to learn by creating games and giving them an

opportunity to easily study various problems by providing

easily understandable and customizable educational

environment accompanied by a repository of components

varying from terrain, particle systems, bone animations to

shaders. These are easily readable and reusable without the

need to study the non-related support parts of the code as it is

common in other engines.

MoonGate Engine was designed and implemented with the

following in mind:

 Simple extensibility through usage of reusable

components.

 Content pipeline that allows easy creation and import of

content.

 Tweaking without the need of source code recompilation.

 Exploiting benefits of target platforms for learning

purposes.

In order to achieve the mentioned properties, the XNA

Framework and the Xbox 360 game console were chosen as

the most suitable to create a base upon which MoonGate was

implemented.

One of the reasons behind the selection of the XNA

Framework is the fact that since its release in 2006 XNA has

seen a surge of momentum with more than 1 million

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 4 (2012) pp. 121-129

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Kajan and Herout 122

downloads of the tool and more than one thousand academic

universities globally [8] are using XNA in their classrooms.

That is why MoonGate can stay really close to its target

audience – students, teachers, and indie game developers and

keep constantly evolving.

II. Existing Real-Time Strategy Engines

Currently there are only a few open source real-time strategy

engines freely available to the general public that were

developed to a phase when they are actually usable as a

visualization tool or a test-bed for algorithms. The vast

majority of produced engines are commercial, which means

only very limited usability by students and researchers due to

severely limited options in their modification. Some of the

mostly used 3D open source real-time strategy engines are

stated below.

A. ORTS – Open real-time strategy

The ORTS project [9] was started with the goal of creating a

free software system that lets people and machines play fair

RTS games. It is a programming environment for studying

real-time AI problems such as path finding, dealing with

imperfect information, scheduling, and planning in the domain

of real-time strategy games.

The communication protocol is public and all source code

and artwork is freely available. Users can connect whatever

client software they like. This is made possible by a server /

client architecture in which only the currently visible parts of

the game state are sent to the players.

This openness leads to new and interesting possibilities

ranging from on-line tournaments of autonomous AI players to

gauge their playing strength to hybrid systems in which human

players use sophisticated GUIs which allow them to delegate

tasks to AI helper modules for increased performance.

ORTS is not a single RTS game, but an RTS game engine.

Users define the game they want to play in the form of scripts

which describe all unit types, structures and their interactions.

These scripts are loaded by the ORTS server and executed.

The second part of the ORTS system is client software

which connects to the server and generates actions for objects

in the game. The server sends player views to the clients and

receives actions for all the player objects, which are then

executed. This loop is executed multiple times a second. If the

3D graphics client is connected, the world is rendered using

OpenGL and the user can issue commands using the mouse

and keyboard.

B. Spring engine

Spring [10] is a project aimed to create a new and versatile

open source (GPLv2) real-time strategy engine. Spring is a

multi-platform project written in C++, using OpenGL,

OpenAL, SDL, boost, 7zip and Lua scripting language.

At the moment Spring fully supports Windows and Linux

platforms, while the Mac OSX version is currently not

available. Spring is well-known for massive battles limited

only by the power of the host computer – up to 30,000 units

and up to 250 players can fight on a single map. Fully featured

lobby clients allow to easily play multiplayer games. These

clients have built-in support for all standard features like

automatic game and map downloading, chat and friends lists.

Spring‘s architecture allows for the usage of third party AIs

that can work very competently in many cases with multiple

Spring engine based games.

Very extensive Lua interface allows users to create custom

(graphical) user interfaces. Through third party widgets, users

are able to improve not only the GUI, but also gameplay.

Spring with a built-in physics engine supports realistic

projectiles trajectories, deformable terrain, forest fires and

dynamic water.

C. Glest

Glest [11] is a free 3D real-time strategy game built on a

custom engine. It is a multi-platform project written in C++

with portability in mind, so it can be compiled easily on

Windows, Linux, FreeBSD and Mac OSX. Glest uses the

cross platform OpenGL API to render 3D graphics. For unit

models and animations, Glest uses its own 3D format; an

export plugin for 3D Studio Max, and tools for Blender are

available. Every unit, building, upgrade, faction, resource and

all their properties and commands are defined in XML files.

D. Common problems

The problem that often plagues (mainly freely available) game

engines and starter kits is difficult extension. These engines

and starter kits are not designed with extensibility in mind

from the beginning. When users would like to extend them in

some way, it is often almost impossible to do so without

making (rather large) changes in overall project structure,

mainly due to changes not only in components, but also due to

changes in connections among these affected components.

Afterwards, thorough regression testing is usually needed to

verify the correctness of changed couplings and parts of the

code. These engines and starter kits are thus hardly usable –

easy extensibility is one of the key features that are expected.

Some engines even use content that is very hard to

understand and create. For example, we can see quite often

binary 3D models with built-in parameters for an engine‘s

model and texture processors that were set in 3D content

creation application, shaders that are referenced directly from

models or skeletal animations exported in an undocumented

way. In this case, it is difficult to create one‘s own game

content, which again lowers the usability of an engine or a

starter kit as a whole.

It is not an easy task to avoid these common pitfalls and

create an educational environment that is not overwhelmingly

complex and easily customizable. There are examples of

successful projects in nearly every game genre, like the

already mentioned Spring from real-time strategy genre, which

is often chosen for visualization of AI algorithms, or genre of

role-playing games, where many solid educational

videogames have been developed to run on one of the

iterations of Neverwinter Nights [14] using the Aurora

Neverwinter Toolset (Aurora is part of Neverwinter Night‘s

installation). Many of these have been designed by teachers for

their classrooms and released to the general public.

If we look at these projects, regardless of what genre they

belong to, we can clearly see that these engines are completely

MoonGate: RTS Engine with User-Oriented Architecture 123

modifiable, thus making it fairly easy to manipulate for desired

educational outcomes. Although they present a full 3D virtual

interactive environment, complete with anthropomorphically

correct characters, their runtime requirements are relatively

light. These features are basic principles which MoonGate

follows as closely as possible.

III. Main Design Objectives

Although the MoonGate Engine was originally designed as a

starter kit for real-time strategy games for Microsoft‘s Xbox

360 gaming console that would allow for fast creation of these

games in an easy and convenient way, positive feedback from

its users soon showed that it can also be a valuable tool not

only for indie game developers, but also for students interested

in game development for PCs and Xbox 360 game console.

There are already companies exploiting the console‘s

hardware in order to create edutainment software, as for

example Educomp Group, which is an education solutions

provider and the largest education company in India that

reaches out to over 25,000 schools. They chose Xbox 360 as a

platform to promote its interactive learning programme [12],

but these companies focus mainly on children attending

elementary schools and create only simple educational games,

rather than focusing on students attending university courses

and people with game development as a hobby.

On the other hand, MoonGate‘s purpose is also not to

directly compete with projects like ORTS that focus solely and

deeply on a single selected problem which, for example, in

ORTS‘s case is studying real-time AI problems. Of course,

because MoonGate is a RTS engine, it is able to serve as a

visualization tool for areas within AI research, as for example:

 Resource management. Resource management is a vital

part of every strategy. Players must immediately create a

supply chain in order to start producing defense and attack

forces and structures, climb up the technology tree and

purchase upgrades for units.

 Decision making under uncertainty. At the beginning,

game players are not aware of the enemies‘ locations of

buildings, units or places that are being used to harvest

resources from. Each unit has a certain radius in which it is

able to ―see‖ other units and it is up to the player to use

units and their combinations in order to obtain intelligence

as quickly and accurately as possible.

 Spatial and temporal reasoning. Static and dynamic terrain

analysis as well as understanding temporal relations of

actions is of the utmost importance in RTS games – and

yet, current game AIs largely ignore these issues and fall

victim to simple common-sense reasoning [13].

 Collaboration. In real-time strategy games, communication

and coordination of actions among groups of units and

players is a must.

 Opponent modeling and learning. AI opponents in most

contemporary real-time strategy games have a great

handicap when compared to human players – they are not

learning from experience.

But what is important, MoonGate and RTS games in

general are also very useful as a test bed and visualization

environment in many other areas like rendering of a large

terrain, particle systems, bone systems and many others.

MoonGate aspires to act as a bridge between commercial

games, visualization environments and game middleware by

providing an open source, easily customizable environment

for studying a wide range of problems from several research

areas.

IV. System Overview

MoonGate Engine was designed from the beginning as a

lightweight environment that tries to be as generic and flexible

as possible. It provides a large amount of functionality right

out of the box, but allows for quick and simple modification of

each and every part.

Figure 1. Architecture of MoonGate Engine with its three

layers – Game Definition, Extended Engine and Core Engine

built on top of the XNA Framework. Arrows denote

communication between layers

MoonGate Engine uses the XNA Framework as the lowest

layer. Its purpose is to provide the most basic platform

abstraction and access to hardware.

Kajan and Herout

MoonGate Engine consists of three main parts - MoonGate

Core Engine, MoonGate Extended Engine and MoonGate

Game Definition (See Figure 1), which form layers where each

layer takes functionality of the lower layer, extends it and

brings more abstraction. These layers have the following

purpose.

A. MoonGate core engine

MoonGate Core Engine is built directly on top of the XNA

Framework. It uses its access to hardware and basic

application model along with content pipeline and extends

them to create a foundation for upper layers which are, unlike

MoonGate Core Engine, game-genre specific.

MoonGate Core Engine itself is not designed specifically

for real-time strategies, but provides a rather generic

foundation for different types of games. This is achieved

through custom content pipeline extensions, generic game

state manager and a component manager used for components

registration.

Custom content pipeline extensions currently support the

most frequently used tools and 3D models, textures, fonts and

audio formats. These extensions consist of content importers

and content processors which allow for the usage of various

graphic effects and file formats unsupported directly by the

XNA Framework. They are commonly used in modern

computer games, as for example in the creation of mipmaps or

the usage of various mapping techniques (e.g., normal

mapping).

MoonGate Core Engine also contains a generic game state

manager responsible for maintaining the stack of one or more

GameScreen instances. It coordinates the transitions from one

screen to another, and takes care of routing user input to

whatever screen is on top of the stack. Each screen class,

including the actual gameplay which is just another screen,

derives from GameScreen. This provides methods for

updating, drawing and input handling, along with logic for

managing the transition state. GameScreen does not actually

implement any transition rendering effects; however, it merely

provides information about transition progress, leaving it up to

the derived screen classes to process the information in their

drawing code. This makes it easy for screens to implement

different visual effects on top of the same underlying transition

infrastructure.

One of MoonGate‘s main advantages is the usage of

reusable components – GameComponents which are

registered, initialized and managed by the Component

Manager. The idea behind GameComponents is to provide a

way to keep a reusable code in a nicely encapsulated form. The

dependencies between classes can also be managed and

de-coupled from one another, so that they can be removed,

altered or replaced in isolation. They can be even dropped into

other completely new projects quickly and easily. Components

that need to access each other do so only through well-defined

interfaces that could be provided by a different component in

another game, or not at all. GameServices are a mechanism for

maintaining a loose coupling between objects that need to

interact with each other. Services work through a mediator—in

this case, GameServices. Service providers register with

GameServices and service consumers request services from

GameServices. This arrangement allows an object that

requires a service to request the service without even knowing

the name of the service provider.

For example, to register an object that provides a service

represented by the interface IMyService, the following code

would be used:

Services.AddService(typeof(IMyService), myobject);

B. MoonGate extended engine

MoonGate Extended Engine focuses mainly on functionality

that is relevant mostly for the genre of real-time strategy games

by providing a set of reusable components containing game

logic and artificial intelligence modules which define the

behavior of agents used in game.

This layer consists of GameComponents, which can be

further divided into Core Game Components and Additional

Game Components, and A.I.Modules.

Core Game Components are Game Components which

provide basic functionality are essential for gameplay. An

example can be a component responsible for rendering of

terrain, an input management component or an object creation

component.

Additional Game Components are optional components that

are not essential for playing the game, as for example the

in-game game state management console or a component

showing the number of frames that are rendered every second.

These components provide support for various tasks like

performance monitoring, debugging or creation and editing of

the game environment.

A.I. Modules refers to artificial intelligence algorithms used

by agents in the environment. MoonGate provides several

pathfinding and resource management algorithms along with

classes describing different behavior of agents out of the box

as starting examples. It also encourages users to import and

test their own algorithms.

C. MoonGate game definition

MoonGate Game Definition layer contains XML-based

configuration files. These files describe the game and define

all static and dynamic in-game objects along with their

representation and properties (for more information about

Objects Definitions see Section 5.3).

When running an application based on the MoonGate

Engine, clients - PCs and/or Xbox 360s are using a

peer-to-peer network topology to exchange data during

network sessions (see Figure 2).

One of the clients is always the session host. This computer

is responsible for the execution of the Game Script – script that

defines the game that will be played along with precise terrain

definition and initial placement of objects on the terrain. Each

client afterwards loads Game Assets – in-game models,

textures and sounds and registers Core Game Components and

optionally Additional Game Components. Clients can be also

configured to run one or more A.I. Modules.

124

MoonGate: RTS Engine with User-Oriented Architecture 125

Figure 2. Example setup of a network game with three

differently configured clients. One of clients is Session Host

responsible for running Game Script with

a definition of the game.

D. User-oriented architecture

MoonGate Engine was designed with different types of users

in mind. Its three main parts represent three main categories of

users that are targeted:

1) “Modders” (game modifications makers), level

designers, people with no programming experience.

Modifications solely at MoonGate Game Definition level are

suitable for people who are just getting to know the MoonGate

Engine or real-time strategies in general. These users want on

average to create a customized real-time strategy game as soon

as possible without spending much time reading

documentation or writing code. Changes at this level typically

involve the creation of custom maps in map editor, replacing

existing game assets with their own, tweaking properties of

existing objects in configuration files and defining new objects

out of existing components via configuration files. Changes at

this level do not require programming skill.

2) Students, hobbyists, (individual) independent game

developers and academics.

Users requiring a significantly customized game can do so just

by editing existing ones and creating new GameComponents

and A.I. Modules at MoonGate Extended Engine layer. This

approach is recommended for advanced users with

considerable programming skill. This way new objects can be

created and new or modified types of behavior can be assigned

to agents. Modifications at this level are also often used to test

and visualize custom algorithms. Users making changes at this

layer should be familiar with making changes at the MoonGate

Game Definition layer.

3) Skilled individual independent developers, small

teams of students or hobbyists.

By accessing the MoonGate Core Engine layer, engine users

are have the option to control and modify every aspect of the

game – be it visual representation, game logic or content

pipeline with its extensions. This is necessary for using the

engine outside the real-time strategy genre and for large

modifications of application model and game logic as a whole.

This approach allows different types of users to use MoonGate

Engine more quickly than traditional real-time strategy game

engines, where one must understand their complete structure

and have considerable programming skill in order to create a

custom game.

V. Components

The creation of a flexible internal structure allows simple

changes of any engine‘s part without the need of modification

of other components. This approach greatly reduces the

amount of possible errors and allows for the creation of

specialized components that can be used without change in

other projects in a plug-and-play style. Some of the most

important components that provide functionality right out of

the box are the following.

A. Terrain

The terrain component is one of the MoonGate‘s more

complex components. When considering what approach

should be used to render terrain, quadtree-based terrain

[15], was chosen mainly due to its simple and easily

understandable implementation and sufficient performance.

The implemented terrain supports bump mapping and texture

blending.

Due to well defined interfaces that allow communication

with other components, the default terrain component can be

easily replaced with more sophisticated approaches that are

able to handle rendering of a large and complex terrain with

improved performance, as for example Geo-Mipmapping

[16], without the need to change any other component or

interface.

Kajan and Herout

Figure 3. Terrain created by terrain component with visible

quad-tree structure (up) and an example of terrain created by

terrain component (bottom)

B. Objects creation

The heavy usage of flexible text-based formats like XML that

are easily readable by humans and also computers ensures that

not only various preferences, but also environment definition

as a whole, can be modified and tweaked without the need of

project recompilation.

One very important feature is also the definition of all static

and dynamic objects like vegetation and units directly in XML

files along with their representation and properties. MoonGate

Engine goes beyond simple storing of independent values in

XML files that can be commonly seen in most projects. A

simple and intuitive hierarchy of definitions was designed and

implemented in order to be used by MoonGate, in order to

ensure fast learning and quick configuration.

In order to define an object we need to provide two XML

definitions – ModelInfo and Blueprint. ModelInfo provides

information about the 3D model used to visualize a given

object (for example, .X file), object‘s bones that should be

available for manipulation and a preferred rendering method.

Blueprint describes an internal representation of the object and

serves as a template for an engine‘s object factory. Blueprint

also provides information about the object‘s behavior which is

implemented as a library and thus is easily reusable. This way

the user is able to describe a new type of object, whether static

or dynamic, in just a few lines rather quickly and then

immediately use it in the environment.

While the previous two definitions covered the creation of

units, they did not provide a way to manipulate parts of the

defined objects. In the genre of real-time strategies, units are

often composed of several parts where each part acts

autonomously at a certain level. A simplified example of this

behavior can be a ship which consists of the main part – hull,

several anti-ship cannons and several anti-aircraft cannons.

These cannons are parts of the ship, but contain certain logic

and animations which are characteristic for them.

AnimationInfo describes individual parts of a model, their

properties, animations and logic that controls them at the

lowest level.

<ModelInfo>

 <ID>Jeep</ID>

 <Path>models/units/jeep</Path>

 <Bones>

 <Bone>bone_turret</Bone>

 </Bones>

 <RenderMethod>ReplacementColor</RenderMethod>

</ModelInfo>

< Blueprint >

 <ID>LightAttackJeep</ID>

 <Behavior>StandardUnit</Behavior>

 <Model>Jeep</Model>

 <Category>Ground</Category>

 <Health>600</Health>

 <Armor>100</Armor>

 <TurnSpeed>0.3</ TurnSpeed >

 <MoveSpeed>0.9</ MoveSpeed >

 <LineOfSight>25</LineOfSight >

</ Blueprint >

<AnimationInfo>

 <Key>Jeep</Key>

 <Controllers>

 <Controller>

 <Bone>bone_turret</Bone>

 <ClassName>TurretControler</ClassName>

 <Attacks>GroundUnits</Attacks>

 <FireDist>80</FireDist>

 <ReloadTime>0.12</ReloadTime>

 <TurnSpeed>0.3</ TurnSpeed >

 <Bullet>

 <Type>SmallBullet</Type>

 <Sound>MachineGun</Sound>

 <MoveSpeed>130</MoveSpeed>

 <Damage>5</Damage>

 <Radius>3</Radius>

 </Bullet>

 </Controller>

 </Controllers>

</AnimationInfo>

Figure 4. Example of ModelInfo, Blueprint and

AnimationInfo

C. Particle systems framework

A particle component is a customizable lightweight 3D

particle framework which uses point sprites. The particles are

animated entirely on the graphics card using a custom vertex

shader, so a large number of particles can be drawn with

minimal CPU overhead.

Like the rest of the system, the particle component uses

XML definitions to define properties of objects – in this case,

particle systems. This approach allows for the creation and

tweaking of the particle systems without the need to change the

main game executable. There are several examples of particle

126

MoonGate: RTS Engine with User-Oriented Architecture 127

systems in MoonGate that are available right out-of-the-box,

for example, fire, smoke, explosions or trails.

D. Input management

The input management component provides a single point of

access to user control input. Xbox 360 keyboard and Xbox

360 controller are fully supported on both platforms; on

Windows platform it is also possible to use the mouse. Besides

providing input, the input manager also provides the

functionality of an in-game console. It is possible to define

commands, execute them and display chosen values in real

time in order to change MoonGate‘s internal variables and

state. The console provides also a history of commands and an

option to automatically complete commands. It is a useful tool

not only during debugging, but also because it enables

monitoring of the system's internal status.

E. Level editor

The level editor that comes with MoonGate Engine is not a

standalone application like most editors that are available for

real-time strategy games. MoonGate uses a custom built-in

editor that is available directly from the game environment.

Although this approach is more difficult to implement, it has a

great advantage over the previously mentioned type – users are

able to directly see the changes that they have made. There is

no need to recompile the code or restart the application and the

editor is available at any time.

MoonGate‘s editor works in three modes. The first is the

―terrain painting‖ mode, where users ―paint‖ different textures

on the terrain. Painting is implemented as a change of weights

of textures in the terrain‘s vertices. Every change is

automatically saved, so the next time after the user starts the

application, the most recent values are loaded. The second

mode is the ―static objects manipulation‖ mode. This mode

permits manipulation with objects - users can add, remove,

move, rotate and scale objects on the terrain, and immediately

after the editor is closed, all changes are reflected into dynamic

units‘ behavior, for example, the newly added objects that act

as obstacles are avoided when units are moving.

The third mode is the ―unit placement‖ mode in which users

are able to add, remove and move dynamic objects – units

which represent a complex unit with certain behavior

controlled by the players. It is possible to create new units and

assign them to various players or teams.

VI. Performance

The use of XNA permits targeting besides the PC platform

also Microsoft‘s Xbox 360 gaming console. Compared to

other edutainment platforms focused on learning

multiprocessing game development, graphics and media, as

for example Hydra Game Console [17], which is based on

Parallax Multiprocessing Propeller Chip with 32-bit RISC

CPUs, Xbox 360 is by far superior in performance and also

ease of use due to relying on C# language instead of using

custom C-like and BASIC-like languages. This makes it a very

interesting platform for students, academics and indie game

developers.

In order to understand the sources of performance

bottlenecks that occur mostly on the Xbox 360 platform, one

must realize that the XNA Framework on Xbox 360 uses the

compact version of Common Language Runtime (Compact

CLR) to run a compiled intermediate language code. The

Compact CLR is optimized for devices like PDAs and cell

phones, where small size is more important than high

performance. As such, the implementation of the Compact

CLR on Xbox 360 does not optimize the floating-point code.

Another problem is that the garbage collector on the Xbox 360

is not generational. As a consequence, when garbage

collection occurs, all objects on the heap will be scanned to

determine if they are alive or not. Finally, the just-in-time

compiler does not optimize the code as well, so small routines

are not inlined.

To overcome these difficulties, MoonGate uses various

mechanisms like object pools [18], manual inlining of critical

parts of the engine [19], along with combinations of design

patterns (for example Prototype Factory). This is meant to

avoid excessive garbage creation, keeping the heap small and

simple in order to speed up the garbage collection, which,

according to feedback from the XNA community, is currently

one of the biggest performance bottlenecks. Due to the usage

of both full and compact versions of CLR in XNA,

MoonGate‘s users are able to identify differences in

performance on Xbox 360 and Windows platforms, learn by

using code optimizations techniques and exploit

multiprocessor environments on both platforms.

At the moment MoonGate runs at well over 60 FPS on most

PC configurations and at more than 100 FPS on Xbox 360 with

a medium-sized map and tens of objects, which is comparable

to other free RTS engines.

VII. User Evaluation

In order to obtain feedback from MoonGate Engine‘s users

and to better know MoonGate‘s audience, an online survey

was conducted. Sixty-three participants – independent game

developers, students, hobbyists and people experienced with

real-time strategy games modifications who were using

MoonGate Engine from several weeks to months took part in

this survey.

The main goals of this survey were to identify the main ways

in which MoonGate Engine is being used; identification of

parts of the engine‘s architecture which are being most often

customized, so future development could reflect these needs;

and to better understand the community around MoonGate

Engine.

Out of 63 participants, 13% were younger than 18 years old,

27% were between 18 and 25 years old, 38% were between 26

and 35 years old and 22% were older than 35 years.

The survey showed that MoonGate is used mostly by

individuals - 84% of participants, while 12% of participants

were using MoonGate Engine in teams with less than five

members.

The results also showed that MoonGate is currently being

used primarily as a base for an independently developed

real-time strategy game; a test bed for A.I. algorithms; as an

Kajan and Herout

advanced XNA tutorial; and as a test bed for HLSL shaders.

For complete results related to this question, see Figure 5.

Users wishing to modify MoonGate Engine in order to

create custom a game prefer making changes at Game

Definition and Core Engine layers. Almost half of the

participants preferred changes at these layers to just changing

Game Definition configuration files and importing custom

assets, and making changes to all three layers (Figure 6).

Figure 5. Survey results showed that MoonGate Engine is

currently being used primarily as a base for independently

developed real-time strategy games and as

a test bed for A.I. algorithms

Figure 6. Users wishing to modify MoonGate Engine prefer

making changes at Game Definition and Core Engine layers to

just changing Game Definition files or making changes

to all three layers

For future development, participants prefer the creation of a

reusable set of GUI components – 19%; in contrast to

improvements in material manager – 15%; and improvements

of MoonGate‘s networking abilities – 14%.

The survey also showed that a quarter of the participants

had previous experience with other real-time strategy engines.

Survey results have confirmed an hypothesis that

individuals and small teams of hobbyists can benefit from a

multiplatform open source real-time strategy engine in various

ways – be it development of an independent game or A.I.

algorithms testing and that engine‘s component-based

structure that allows quicker development by providing easy

access to those layers of the engine in which change is relevant

for the user.

VIII. Conclusion

In this paper, MoonGate – an open source, real-time strategy

game engine for Xbox 360 and Windows platforms was

presented as a tool of choice, not only for indie game

developers, but also for students and hobbyists. MoonGate‘s

main goal is to attract them to learn by creating highly

interactive and visually attractive games and give them an

opportunity to easily study various problems by providing an

easily understandable and highly customizable educational

environment which incorporates the best features of modern

commercial games, visualization environments and game

middleware. What is important, MoonGate is the first open

source starter kit and real-time strategy engine for Xbox 360.

MoonGate promotes simple extensibility through usage of

reusable components, custom content pipeline extensions that

permits easy creation and import of game content and

tweaking without the need of source code recompilation. Its

flexibility not only allows for the creation of a game in one of

the most popular game genres, but it also allows for the

exploitation of Xbox 360‘s hardware for a variety of tasks,

ranging from shader development, rendering of terrain through

particle systems to visualization of AI algorithms, which are

very tightly bound to this game genre.

At the moment MoonGate is used by individuals and small

teams that are using it as a base for custom strategy games and

as a platform for experimenting with algorithms from various

research areas.

In the near future, the network component that is still in the

beta version will be replaced with a more robust version that

will be able to handle synchronization among connected users

with better results. Since the XNA Framework does not

provide standard graphics user interface controls out of the

box, a component that allows for the usage of these controls

will be added to MoonGate.

References

[1] R. Butt, S. J. Johansson. ―Where do we go now?: Anytime

algorithms for path planning‖, in Proceedings of the 4th

International Conference on Foundations of Digital

Games, pp. 248-255, 2009.

[2] M. Buro, J. Bergsma, D. Deutscher, T. Furtak, F. Sailer,

D. Tom, N. Wiebe. ―AI Systems Designs for the First

RTS-Game AI Competition‖. [Online].

Available: http://www.cs.ualberta.ca/~mburo/ps/ortsco

mp06.pdf [Accessed: Feb. 10, 2011].

[3] M. Buro. ―Real-Time Strategy Games: A New AI

Research Challenge‖, in International Joint Conferences

on Artificial Intelligence, pp. 1534-1535, 2003.

[4] M. Sharma, M. Holmes. ―Transfer Learning in Real-Time

Strategy Games Using Hybrid CBR/RL‖, in Proceedings

of the Twentieth International Joint Conference on

Artificial Intelligence, pp. 1041-1046, 2007.

[5] J. Orkin. ―Applying Goal-Oriented Action Planning to

Games‖, in AI Game Programming Wisdom II, Charles

River Media, 2003.

[6] M. Buro. ―Call for AI Research in RTS Games‖, 2005.

[Online].

128

MoonGate: RTS Engine with User-Oriented Architecture 129

Available: http://www.cs.ualberta.ca/~mburo/ps/RTS-A

AAI04.pdf [Accessed: Feb. 8, 2010].

[7] The MoonGate Engine [Online]. Available:

http://mgengine.blogspot.com/ [Accessed: Feb. 15,

2011].

[8] XNA Facts ‗N Stats [Online]. Available:

http://creators.xna.com/assets/cms/docs/marketing/GDC

09/XNA%20Facts%20N%20Stats.docx [Accessed: Jan.

22, 2011].

[9] ORTS – A Free Software RTS Game Engine [Online].

Available:http://www.cs.ualberta.ca/~mburo/orts/

[Accessed: Jan. 25, 2011].

[10] The Spring Project [Online].

Available: http://springrts.com/ [Accessed: Feb. 15,

2011].

[11] Glest – The Free Real-Time Strategy Game [Online].

Available: http://glest.org/en/index.php [Accessed: Feb.

15, 2011].

[12] Educomp Solutions [Online].

Available: http://www.educomp.com/ [Accessed: Feb.

15, 2011].

[13] K. D. Forbus, J. V. Mahoney, K. Dill. ―How qualitative

spatial reasoning can improve strategy game AIs‖. In

IEEE Intelligent Systems, 2002.

[14] Neverwinter Nights [Online].

Available: http://nwn.bioware.com/ [Accessed: Feb. 14,

2011].

[15] R. Pajarola. ―Overview of Quadtree-based Terrain

Triangulation and Visualization‖[Online].

Available:http://vmml.ifi.uzh.ch/files/pdf/publications/

UCI-ICS-02-01.pdf [Accessed: Feb. 15, 2011].

[16] W.H. de Boer. ―Fast Terrain Rendering Using

Geometrical MipMapping‖ [Online].

Available:http://www.flipcode.com/archives/article_geo

mipmaps.pdf [Accessed: Feb. 15, 2011].

[17] Hydra Game Development Kit [Online].

Available: http://www.xgamestation.com/ [Accessed:

Jan. 22, 2011].

[18] Improving Performance with Object Pooling [Online].

Available:http://msdn.microsoft.com/en-us/library/ms68

2822(v=vs.85).aspx [Accessed: Feb. 16, 2011].

[19] GDC 2008: Understanding XNA Framework

Performance [Online].

Available:http://www.microsoft.com/downloads/en/deta

ils.aspx?FamilyID=b11ad912-4158-44cc-a771-a5e044f

7e3bb&displaylang=en [Accessed: Feb. 16, 2011].

Author Biographies

 Rudolf Kajan is a PhD student at Faculty of Information

Technology, Brno University of Technology, Czech

Republic. He is a member of Graph@FIT research group.

His research interests include computer graphics and

processing multimedia data in heterogeneous distributed

environments.

Adam Herout received his PhD from Faculty of

Information Technology, Brno University of Technology,

Czech Republic, where he works as an associate professor

and leads the Graph@FIT research group. His research

interests include fast algorithms and hardware acceleration

in computer vision and graphics.

