International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 4 (2012) pp. 208 -218
© MIR Labs, www.mirlabs.net/ijcisim/index.html

A Framework for SPARQL Query Processing,
Optimization and Execution with Illustrations

Sanjay Kumar Malik' , SAM Rizvi?

!"University School of Information Technology, GGS Indraprastha University, New Delhi
sdmalik@hotmail.com

2 Deptt. of Computer Science,Jamia Millia Islamia, New Delhi
samsam_rizvi@yahoo.com

Abstract: The vision of Semantic web is to allow intelligent
description and interchange of integrated data from various
distributed web resources. A structure for this metadata on web
is known as Resource Description Framework (RDF) where
data is in the form of XML (Extended Markup Language). A
query language is used to retrieve such large RDF data
effectively and efficiently which is known as SPARQL
(Standard Protocol and RDF Query Language) which involves
Query Processing, Optimization and Execution. In this paper,
we propose a framework for SPARQL Query Processing,
Optimization and Execution with various SPARQL illustrations
in Twinkle and Jena ARQ. A “Furniture RDF” has been
illustrated with “Filtering RDF using Twinkle” and “Filtering
RDF using Jena ARQ on Eclipse” based on Java source code
obtained after executing Eclipse.

Keywords: RDF, SPARQL, Query Processing, Optimization,
Execution, JENA ARQ, TWINKLE, Eclipse

. Introduction

Sir Tim Berner’s LEE, inventor of WWW(World Wide Web)
and his W3C(World Wide Web Consortium) team along
with others are working hard towards taking the current web
to semantic web. The objective of the semantic web is to
provide a better platform for the knowledge representation of
linked data to allow machine processing on a global scale by
adding logic,inference and rule systems to the web which
allows data to be shared across different applications and
boundaries[1].

Two important technologies for semantic web are
XML(Extended Markup Language) and RDF(Resource
Description Framework) where RDF was developed to
extend XML which tends to make work easier for automated
services and autonomous agents by providing semantic
capability[1]. Therefore, information on web should be
expressed in a meaningful way accessible to machines which
may be achieved by Resource Description Framework (RDF)
as a basic data format aiming to represent information about
resources on the web[2].

Semantic Web requires much more expressive power than
using ontology languages like XML, XMLS(XML Schema),
RDF, RDFS(RDF Schema) and OWL(Web Ontology
Language) used to describe the semantics and reasoning of
resources/metadata which are available on the web and also
identify the relationship between them.

There are a number of RDF query languages available, but
Connected Services Framework (CSF) Profile Manager only
supports queries written in SPARQL. A query language is
used for querying RDF graphs known as SPARQL which
stands for “Simple protocol and RDF query
Language” ,which is basically an RDF query language that
defines a data access protocol and standard query language
to be used with the RDF data model.

SPARQL works forany RDF mapped data
source. SPARQL query language has some similarity with
SQL constructs and there are some tools available as open
source like TWINKLE 2.0, Jena Framework with ARQ [3,4]
processor on which SPARQL can be executed and tested.
SPARQL Query can also be used to retrieve data from RDFS
as well as from OWL[5] which can be created and executed
on Ontology tool like Protégé which involves Query
processing, Optimization and Execution. “Query Processing”
is the internal steps taken by the Query Engine for the
evaluation of the Query and requires some transformation
and rewriting methodologies for the execution without
changing the outcome of the query. Query engine executes
the query but there is a requirement to have optimization
concepts so that the query can retrieve data efficiently as it
affects the execution performance. “Query optimization”
defines some of the rules for rewriting query which
transform execution structure of query. “Query Execution”
is the step in which query engine evaluates the SPARQL
query by generating the QEP (Query Execution Plan).

In this paper, Section 2 presents a framework for Query
Processing, Optimization and Execution and steps for
SPARQL Query Engine Evaluation. Section 3, 4 and 5
discusses about Query processing, Query Optimization and
Query Execution respectively with various SPARQL
illustrations using Twinkle and Jena ARQ in Section 6.
Section 7 refers to a “Furniture RDF” illustrated with
“Filtering RDF using Twinkle” and “Filtering RDF using
Jena ARQ on Eclipse” based on Java source code obtained
after executing Eclipse.

Il. Proposed framework for query
processing, optimization and query execution

We propose framework for Query Processing, Optimization
and Query Execution as shown in figurel.

Dynamic Publishers, Inc., USA

209

SPARQL Query REDE
Data
ooy o
Cuery Parsing & |
Validation
Query l
Processing —
Transformation
into Equivalent
Form
TTTTTTTTTTTTTTTTTTITITTYTS T ¥
1
8ue.ry.) Laogical and |
phimization .
.. Physical Query
(Rewriting Optimization
| Cluery) P
L i ___________ |
Query Execution
Query _ Plan Generation
Execution and Execution '
1
]
_____________________________ | —
: L4
Result Result [, | Evaluation

storage

Figure 1. A Framework for SPARQL Query Processing,
Optimization and Execution

It focus on the internal structure and transformation of the
SPARQL query during the evaluation. It first shows the
processing step in which Parsing and validation is done for
the query and then equivalent transformation takes place in
form of operator tree which is further passed to next
transformation of Query optimization and then emphasise on
the rewriting rule of the query for the better performance.

SPARQL Query Engine evaluation steps accomplishes
many tasks for the evaluation of the SPARQL query. These
steps are shown below:

1) SPARQL Query is written and passed to the Query
Engine for the evaluation.

2) Query Engine then scans and parses for the
SPARQL syntax and order of the semantic like
keywords as SELECT, WHERE etc and then
Validate for the RDF attributes.

3) Query Engine then Transform it into equivalent
form.

4) After transformation into equivalent form,
Rewriting of query is done by first logical
optimization and then with physical optimization.

evaluate a query. All RDF repositories provide querying
capabilities, but some of them do require manual interaction
which minimizes the query execution time.

Query engines for ontological data based on graph models
execute user queries without considering any optimization
and especially for large ontologies, optimization techniques
are required to ensure that query results are delivered within
reasonable time.

Malik and Rizvi

5) After performing optimization steps, it generates an
QEP (Query Execution Plan) to execute the
optimized execution for RDF data [6].

6) After all these steps, if all the steps are performed
error free then engine take RDF file which is passed
with SPARQL query for the evaluation step. Finally
it returns the result. (Many Execution tools also
provide the feature for storing the results which is
represented as Result storage.

I11. Query Processing

A high level query expressed in any high level query
language is first being scanned, parsed and validated. The
role of scanner is to identify the language tokens like
keywords, attribute name and relation name, parser checks
the syntax of the query to make sure that the query is
formulated according to the grammar, then validated check
attributes and relation names are valid or not. The query is
converted into a tree data structure called query tree, which
is internal representation of the query.

Another way of representing the query is using graph data
structure called query graph. For the query execution the
processor apply some optimization techniques on query
graph or tree and optimize that graph for processing and
produces an execution plan. Then, further the code to
execute the plan is generated by query code generator. The
runtime DB processor runs the query code to generate the
result of the query[7].

SPARQL Query has a processing cycle to retrieve the data.
In SPARQL query processing, SPARQL query is firstly
parsed by the parser for any syntax error in which the
keywords of SPARQL are identified. It also verifies the
SPARQL query order e.g. SELECT, where FILTER option
is in order or not. Validation is performed where RDF
attributes are checked within SPARQL query.

Query Processing transforms this SPARQL then into its
equivalent operator tree as shown in figure 4. This operator
tree presents the execution sequence of the queries and is
used further for the optimization purpose which is based on
the SPARQL algebra.

IV. Query Optimization

Query optimization is the process of selecting the most
suitable strategy for processing a query. Due to declarative
nature of SPARQL(SPARQL Protocol and RDF Query
Language), a query engine has to choose an efficient way to

Query optimization is the core concept of reordering /
rewriting of SPARQL using some approach as selectivity
estimation, which demonstrate how triples pattern reordering
according to their selectivity affects the query execution
performance[8]. The SPARQL query graph model and the
transformation rules to rewrite a query into a semantically
equivalent one, was proposed to find an efficient query
execution plan.

One of the significant rule for optimization is rewriting
FILTER variables.

A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations 210

V. Query Execution

As for the evaluation of SPARQL, its Engine requires QEP
to be generated, which is the code of execution of optimized
operator tree. To Execute SPARQL Query, we have different
tools available as open source on which SPARQL query can
be executed. Among these tools TWINKLE and Jena ARQ
is most popular. One sample SPARQL Query and its
execution is demonstrated on JENA ARQ.

Query 1:- The below query will find the name and email of
all employees.

Query syntax:-

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email

WHERE {

7person rdf:type foaf:Person .

7person foaf:name ?name .

OPTIONAL { ?person foaf:mbox_shalsum ?email }

}

The Execution Output with Jena ARQ and Twinkle Tool is
as shown below:

nane	eall
M iva!	"Shi?ﬁ@gmﬁil.ﬂﬂm"
"R	"Ranfihotwail, con®

"S.JJALIE"	"shuailk iphyahoo.con”
"9 K MALIEM	"admalikRhotmail.con®
"Durga”	"durga@gmail.ﬂﬂm"

Figure 2. Execution with Jena ARQ

o CIWNDOWS ytem3omd e

*shivabgnail.con"

"RanBhotnail.con"
'K MRLIK" | "sknailk_ipByzhoo.con
"SEMLIK" 1 "sdnalikBhotmail.con”

"Dorga" 1 "duegabynail.con”

D jena-2.6.4\Jena-2.6.4\hat?

Figure 3. Execution with TWINKLE tool.

Pname, Pemail

N\

\ 9parsan + Psubject
Pemail Pobject

"pmm « Psubject

0 Tpredicate=rdf: type
A Pobjeci=foaf :Person

Triples

pemn Msubject
Tname + Polject

0

Ppredicats=foaf ‘mbox_shatsum

g Tpredicate=foaf :name

Triples

Triples

Figure 4. Operator Tree Equivalent to SPARQL Query

An operator tree (query tree) corresponds to the above
SPARQL query which shows the execution of operators in

SPARQLI[9].

211

VI. SPARQL lllustrations

In this section, we present the SPARQL queries execution in
which Projection, Selection, and then one example of
rewriting rule (rewrite Filter variable) is demonstrated.

A. Applying Projection

Query 1: The below query will find the name, course,
subject and marks of the student.

Syntax:-
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student_name ?course ?subject ?marks
WHERE {

?x rdf:type foaf:Person .

7x foaf:studentname ?student_name .

?x foaf:course ?course .

7x foaf:subject ?subject .

?x foaf:marks ?marks .

}

order by ?student_name

The Execution Output with Jena ARQ and Twinkle Tool is
as shown below:

| student neme | course | subject | narks |
| "ishore" | "W.Tech(IT)" | "Goftware Testing” | "ag" |
| "R | "HCA" | "DEMs" | "
"Rajeey"	"W.Tech(IT	"	"Neural Netwox"	"60"
"Sanjay"	"WTech(IT)"	"inalysis of Algoritimk"	"80"	
"hyan"	"BCA"	" Programingk”	"60"	
"amil"	"HCA"	"leh Tech"	"65"	
"sanjeev”	"W.TechiIT)™	"Analvsiz of Algorithmk"	"33"	

Figure 5. Execution Output with Jena ARQ

SELECT ?student_name ?course ?subject ?marks
WHERE {
7x rdf:type foaf:Person .
?x foaf:studentname ?student name .
7x foaf:course ?course .
7x foaf:subject ?subject .
?x foaf:marks ?marks .
FILTER(?marks >="70")
}

order by ?student_name

The Execution Output with Jena ARQ and Twinkle Tool are
as shown below in figure 6 and 7:

Malik and Rizvi

I Twinkle: SPAROL Tools

Fle Edt Query
B Untited

"" General @Save PR QCM‘

| Mt ingle Qery |

Flesf 0 testistudent Foef

PREFIX foaf: <http://wolns, con/foaf/0.1/>
SELECT Pstudent nane Jeourse ?aubject Mrarks
WHERE {

I rdfitype foaf:Person .

InMemory 'ﬁjl

Planet ROF Feed & Boal
Perii: Table
Ty foafigtudentiane Patudent nawe

I foaficourse Jourse .
7 foafisubiect Paubject .
% foaf:marks "marks .

ﬁ Tnferencing ﬁ
Plenet Feze (ROFS) :
order by ?student_name‘
Q Persistent Stares ﬁ)

shudent nianie Jult aubiet

M Tech(IT) oftware Testing B

@ Remote Services 'ﬁ | MCh DEM3 n
M Tech{IT) Heural Netwok i

Reyvu. o M Tech(IT) Wnelysis of Algortrk 0
GavTrack s I Bk C Propammingk i
Dipedanny | W3 Web Teth £
M Tech{IT) Inelsis of Algortrk B

Figure 6. Execution Output with Twinkle

B. Applying Selection using Filter

Query 2: The below query will find the detail of student will

marks greater than equal to 70.

Syntax:-

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-

ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

| student nawe | cowrse | aubject

| warks |

| "izhore" | "0 Tech{IT)" | "Software Testing"

| I'I'RM,II'I' | I'I'HCAI'I' | I'I'DBHSI'I'

| "sanjay" | "HTech(IT)" | "inalysis of Algorithmk” |
| "sanjeey" | "M Tech{IT)" | "Analysis of Algorithmk” |

"88"
II"?DI'I'
II'BUI'I'
"88"

Figure 7. Execution Output with Jena ARQ

A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations 212

8 Twinke: PARAY Tools
e £ ey | student mame | couese | aubject | warks |

g

B Unitled

X

d i | "Kishore" | "M.Tech(IT)" | "Software Testing® | "88" |
Enefds Y
| "sanjeev" | "HTech{ID)" | "inalysiz of Algorithuk” | 88" |
Yt i , , ,
[PTE—— | Taniay® | "WTeckiIT)" | "lnalysis of Algoritk” | "R0" |
L JFELECT gtident nane enwrse Dswject Twarks 4
B ey) VHERE | Figure 9. Execution Output with Jena ARQ

b] ' '
e AP Fesdithl O rdfitype foaf:Pecaon .
Pesod Table ™1 foaf:studentnae Pstudent nane
Mt foaficourse Joourse .
Ty foafimbiect abect . Twinkle: SPARQL Tools
File Edt Query

Iy foafmarks Mwarks .
FILTER (Mearks »= "T0") . B *Unifled
}
order by Jtudent tene

=
4 General (&) [l 24V L Run

fiase LRI ‘
Data LRL ‘Fi\e:J'D:Jtestlstudentifnaf‘rdf ‘ [Fil... ‘

PREFIZ foaf: <http://umlns.com/foaf/0.1/>
SELECT ?student_name conrse ?subject Mmarks

D White Simple Query

~
.i\/

Gl il sijett milks @)
#)

InMemaory

Hiore M Tech T Saftwate Tedng \BB TRERE |
@RemoteServites) 0 s n ﬁﬁ?:;??;:wwogm” 3% vdfitype foaf:Person .
I Teeh(IT) Hnahssof Aotk ‘BU 7t foaf:studentnane Jstwlent nane
ey com I Teeh(IT) Hnahssof Aotk ‘33 7 foaficourse Teourse .

GonTratkus
DEpedaorg

7% foaf:subject ?subject .

21 foafinarks Tmarks .

FILTER{?marks »= "70" £& %conrse = "W.TechiIT)"|
1

Plangt Feed (RDFS)

[Persistent sores %)

& Reniote Services (3)

Figure 8. Execution Output with Twinkle

shudent_nanie fulli abject matks
Fishare M.TechiIT) Scftare Testing |88
sanjeey M.Tech{IT) indlysis of Algorithik |88
M.Tech{IT) tinalysis of Algorithmk |ED

C. Applying Selection with more condition in Filter
Clause

Reywu.com
GovTrack.us
DBoedia.ora

Query 3: The below query will find the detail of student
will marks greater than equal to 70 and course is M.Tech(IT).
Figure 10. Execution Output with Twinkle

Syntax:-
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax- D. Applying Rewrite Filter Variable Rule of
ns#> optimization
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student_name ?course ?subject ?marks Query 4: The below query will find the detail of student
WHERE { with marks greater than equal to 70 and course is
?x rdf:type foaf:Person . M.Tech(IT).
?x foaf:studentname ?student name .
?x foaf:course ?course . Syntax
?x foaf:subject ?subject . PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-
?x foaf:marks ?marks . ns#>
FILTER(?marks >="70" && ?course = "M.Tech(IT)") } PREFIX foaf: <http://xmlns.com/foat/0.1/>

SELECT ?student_name ?course ?subject ?marks

The Execution Output with Jena ARQ and Twinkle Tool is ~ WHERE {
as shown below : ?x rdf:type foaf:Person .

7x foaf:studentname ?student name .

?x foaf:course ?course .

7x foaf:course "M.Tech(IT)" .

7x foaf:subject ?7subject .

7x foaf:marks ?marks .

FILTER(?marks >="70")

213

The Execution Output with Twinkle Tool is as shown below:

8 Twinke; PARQL Tools

B “Untited

tt General (1) (o

D it St ey

‘ﬂ\e:1D:ftestjstudentffuaf‘rdf

; — JFILECT student nawe Pcourse Psubject Marks A
lnMemury #) VHERL |
Planet ROF Feed & ool & rdtitgpe foafatersan .
o Tale T foaf:atudzntnene Jatudent name
% foaf:course eourse .
= W foaficourse "W.Tech|IT)" .
ﬁlnf&renting WO o saf subject Jaubiers .
Aot s U5 % foafimarks marks
FILTER| fwarks »= "70")
] -
Periten Stres v
student e a3 sibject s
S e HTeah(Im) Sofhuare Testing \88
Eﬂﬂemote Servies) Wlfsaees HTeah(Im) Moyt of Hgorthk \88
Sy HTeah(Im) oy of Hlgorthk \80
Reyicam

GovTrack s

Mradia v

Figure 11. Execution Output with Twinkle

In this illustration, we apply the filter “M.Tech(IT)” clause
before with the foaf:course.

Malik and Rizvi

This is known as rewriting filter variable rule in which first,
engine will execute “filter” condition to reduce the internal
processing.

V1. SPARQL lllustration: “Furniture RDF”

We take another example of a “Furniture RDF” with
“furniture_ name” and “furniture type”. SPARQL is a
query language which is used to retrive data from RDF. We
create a “Furniture RDF” with “name” and “property” triples
with fields “name” and “type”. Sparql Query Syntax for
filtering data from RDF file is shown below:

SYNTAX :
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?type
WHERE {
7x rdf:type foaf:Furniture .
7x foaf:name ?name .
7x foaf:property ?type

order by ?name

The above query is using the namespace “rdf” which will
filter the data using the “foaf :Furniture”. It Further executes
over the said “Furniture RDF” file with two fields, “name”
and “type”

A. Filtering RDF using Twinkle
When we execute the above SPARQL in TWINKLE Tool
which is an open source editor for executing SPARQL, the
following result output is obtained with “furniture name”
and “furniture type”.

A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

Fase LRI
Data LRL

fie: 0 OWL a2 0newFoaf 3, rdf

PREFIL rdf: <http://wmr.wd.org/1999/02/22-rdf-ayntax-naf>
PREFIX foaf: <http://xmlns.cow/foaf/0.1/>
SELECT ?Furniture name 7Furniture type
THERE {
2% rdfitype foaf:Furniture .

7x foaf:name ?Furniture nawe .

7% foafiproperty ?Furniture type
1
order by ‘name

Furniture_name Furniture_type
Sofa Set 5 Seaater
Gofa et 9 %eaater
Rack 4 feet
Rack 7 feet
Bed Dauble
Bied Single
Table Cining Table
Table Study Table
Table Telephone Table
Table centre Table
Table computer Table

Figure 12. SPARQL Query Execution in TWINKLE

| "Zofa Set” | ™5 Seaater”

| "3ofa Set” | "9 Z3eaater”

| "Rack™ | "4 feet™

| "Rack" | "7 feet®

| "Eed" | "Double®™

| "Eed" | "Single™

| "Table"® | "Dining Table®

| "Takble" | "Study Table™

| "Takle™ | "Telephone Tabhle™
| "Takle™ | "eentre Table™

| "Takble™ | Meomputer Table™

Figure 13. Data Retrieved from Furniture RDF
B. Filtering RDF using Jena ARQ on Eclipse

We create an RDF which describes the Furniture of
different types with their properties using Jena (a toolkit for
parsing RDF using Java). Now, using Eclipse (open source
java editor), Jena and ARQ tool, the source code of java will
be compiled into “TestFurniture.class” file. Using java

214

interpreter, when the class file will be executed, it will fire
the sparql query over the furniture RDF file and generate the
result which is ordered by the “name” field in the said
Furniture RDF, in alphabetical order. Following are the
source code and output which demonstrates the filtering of
data from the Furniture RDF file:

C. Java Source Code : (obtained after executing Eclipse)
Following source code is written in Java on Eclipse:
public class TestFurniture {
public static void main(String[] args)throws Exception {
InputStream in = new FileInputStream(new
File("FurnitureRdf.rdf™));

Model model =
ModelFactory.createMemModelMaker().createModel(null);
model.read(in,null);

in.close();

String queryString ="PREFIX rdf:
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>" +
"PREFIX foaf: <http://xmlns.com/foaf/0.1/>"+

"SELECT ?name ?type"+

" WHERE {"+

"?x rdf:type foaf:Furniture . "+

7x foaf:name ?name . "+

7x foaf:property ?type "+

" }"JF

"order by ?name";

Query query = QueryFactory.create(queryString);
QueryExecution gqe = QueryExecutionFactory.create(query,
model);

ResultSet results = ge.execSelect();
ResultSetFormatter.out(System.out, results, query);
ge.close();

b

The following output is obtained after executing the above
code:

OUTPUT
| name | type |
HEEd" IFDD-Jl:lEH
HEEd" lrsi:—lglelr
"Rack" "4 feetg®
HREC}:H rr'? fEEt"
"Sofa Set™ "5 Seaater™
rrg

| | |
| | |
I I I
"Sofa Setc™	Seaater™

"Table™ "Dining Tabkle™
"Table™ "Study Table™
"Table™ "Telephone Table™
"Table™ "centre Table™
"Table™ "computer Table™

Figure 14. Data retrieved from “Furniture RDF” using Jena
and ARQ with Eclipse

From the above output, we infer from the furniture RDF file,
the different “names” of the furniture and their “types”.

215

VIl. Executing SPARQL on OWL in Protege

Following is the OWL Code Snippet obtained while creating
the Ontology of IP University(IPU) using Protégé. We
would execute a SPARQL Query on this code in protégé and
obtain the output of ontology class hierarchy(subject/object).

IPU OWL FILE SNIPPET
<?xml version="1.0"?>
<rdf:RDF
xmlns:xsp="http://www.owl-
ontologies.com/2005/08/07/xsp.owl#"
xmlns:swrlb="http://www.w3.0rg/2003/11/swrlb#"
xmlns="http://www.owl-
ontologies.com/Ontology1277277573.owl#"
xmlns:swrl="http://www.w3.0rg/2003/11/swrl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/prot
egett"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xml:base="http://www.owl-
ontologies.com/Ontology1277277573.owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Vice_Chancellor">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchematstring

>Vice Chancellor</rdfs:label>
<rdfs:subClassOf>
<owl:Class rdf:ID="GGS_IP_University"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="USCT">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>USCT</rdfs:label>
<rdfs:subClassOf>
<owl:Class rdf:ID="Univ_School of Studies USS "/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Academics">
<rdfs:subClassOf>
<owl:Class rdf:ID="IPU_Campus_Administration"/>
</rdfs:subClassOf>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemafstring

>Academics</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="Asst_Registrars">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemafstring

>Asst Registrars</rdfs:label>
<rdfs:subClassOf>
<owl:Class rdf:ID="Dyp_ Registrar"/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="USBT">

Malik and Rizvi

<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string
>USBT</rdfs:label>
<rdfs:subClassOf>
<owl:Class
rdf:about="#Univ_School of Studies USS "/>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:about="#Dyp Registrar">
<rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchemat#string

>Dyp Registrar</rdfs:label>
<rdfs:subClassOf>
<owl:Class rdf:ID="Controller of Examination"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Data_Entry Operators">
<rdfs:subClassOf rdf:resource="#Asst Registrars"/>
<rdfs:label

rdf:datatype="http://www.w3.org/2001/XMLSchemat#string

>Data Entry Operators</rdfs:label>
</owl:Class>

<owl:FunctionalProperty rdf:ID="1d">

<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string
"/>

<rdfs:comment
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>Id of COE</rdfs:comment>
<rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchemat#string

>Id</rdfs:label>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Qualification">
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string
"/>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaffstring

>Qualification</rdfs:label>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Intake">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaf#string

>Intake</rdfs:label>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#int"/>
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
</owl:FunctionalProperty>

A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

<owl:FunctionalProperty rdf:ID="IGIT Class10029">
<rdfitype
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:comment
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>ID of COE which is Unique</rdfs:comment>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaf#string

>IGIT_Class10029</rdfs:label>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemaf#string
"
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Year">
<rdfitype
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string

>Year</rdfs:label>
<rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Add">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchematstring

>Add</rdfs:label>

<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string
H/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Sal">
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#float"/
>
<rdfitype
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>Sal</rdfs:label>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Roll No.">
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemaftstring
" />
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchematstring

>Roll No.</rdfs:label>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Designation">

216
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemaf#string
H/>

<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>Designation</rdfs:label>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description
rdf:about="http://www.w3.0rg/2002/07/owl#Thing"/>
<owl:Class
rdf:about="#Controller of Examination"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="DOJ">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaf#string

>DOJ</rdfs:label>

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string
"/>

<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>

<rdfs:domain>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description
rdf:about="http://www.w3.0rg/2002/07/owl#Thing"/>
<owl:Class
rdf:about="#Controller of Examination"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Program">

<rdfitype
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string
"/>

<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemafstring

>Program</rdfs:label>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Ph. No.">
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>Ph. No.</rdfs:label>

217

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#int"/>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description
rdf:about="http://www.w3.0rg/2002/07/owl#Thing"/>
<owl:Class
rdf:about="#Controller of Examination"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="Name">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description
rdf:about="http://www.w3.0rg/2002/07/owl#Thing"/>
<owl:Class
rdf:about="#Controller of Examination"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaf#string

>Name</rdfs:label>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string
" />
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="NAME">
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchemaf#string
||/>
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchematstring

>NAME</rdfs:label>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="ID">
<rdfs:label
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaf#string

>ID</rdfs:label>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description
rdf:about="http://www.w3.0rg/2002/07/owl#Thing"/>
<owl:Class
rdf:about="#Controller of Examination"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>

Malik and Rizvi

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string
IV/>
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypePro
perty"/>
</owl:FunctionalProperty>
<Controller of Examination
rdf:about="IGIT Class10032">
<ID
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>1</ID>
<Designation
rdf:datatype="http://www.w3.0rg/2001/XMLSchemaffstring

>Professor , COE</Designation>
<DOJ
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>2006</DOJ>
<Name
rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string

>Prof. Yogesh Singh</Name>
<Ph._No.
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>23900400</Ph. No.>
</Controller of Examination>
</rdf:RDF>
<!-- Created with Protege (with OWL Plugin 3.4.1, Build
536) http://protege.stanford.edu -->

Executing a SPARQL query on IPU Ontology
(already created before) Using Protégé

Steps for executing SPARQL in Protégé 3.3.1 are:

1. Select ‘Open SPARQL Query Panel’ from OWL menu
from the menu bar in protégé tool. (Version 3.3.1)

L

Check consistency .. [
d |5—’| Classify taxonormy. ..]
|£—*| Compute inferred types...
]
0IG

Reasaner inspectar ... 1

B2l Cpen SPARGL Suery panel...

Edit owvl: AllDifferents ...

%_, Ortology repositaries. .

' @ Fun ontology tests. .
[e2] Showe TODO izt

] Preferences...
Figure 15. “Open SPARQL Query panel” of OWL Menu

2. Write the Following Query in the Query Panel and Press
the ‘Execute Button’ at the bottom of the panel and the result
will be displayed on the Right Side Section of the Query
Panel.

A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations 218

SPARQL Syntax:-
SELECT ?subject ?object

WHERE { ?subject rdfs:subClassOf ?object }

Query E.i:'—_l E?'—_l

SELECT 7=ubject Tohject
WHERE { ?subject rdfs aubClass0f Tobject

}

ﬂ Execute Guery

| ¥E] spamaL

Figure 16. Query written in the Query Panel

When the above SPARQL Query is executed on the OWL
file of IPU Ontology created in Protégé , following result
is obtained:

Results
Subect et
Data Entry Cerdrs kst Reshars
SET Uiy Schaol of Sudes 53
Dy Regtrar Cartroler of Examington
LT Uiy Schaol of Sudes 53
Yiea Crancelor G063 P Lniversty
Asat Retietrars Dyp Recktrar
Acaeics U Campus_ Beiminishation

Figure 17. Output generated in Protégé

The above output snapshot displays the results of the
SPARQL executed using Protégé which displays
‘Subject’ and ‘Object’ showing the subclass and
superclass relationships. Eg; “Vice Chancellor(subject) is
the subclass of “GGS_IP_University(object)”

VIIl. Conclusions and future work

In this paper, we have presented a framework of SPARQL
Query Processing, Optimization and Execution and
SPARQL Execution using various tools like Twinkle and
Jena ARQ illustrated with various examples which may
be useful for better query information processing and
retrieval. It also illustrates Filtering RDF using Jena ARQ
on Eclipse and executing a SPARQL Query on OWL
Code to obtain the relationship hierarchy output.

References

[1] Berners Lee, Godel and Tuning.“Thinking
on the web”, Wiley, Preface, pp xvii-xviii

[2] Groppe Sven, Groppe Jinghua, Kukulenz
Dirk, Linnemann Volker, M. Clerc, M. “A
SPARQL Engine for Streaming RDF Data”,
Proceedings of Third IEEE International
Conference on Signal-Image Technologies
and Internet-Based System, SITIS’07
Pages(s): 167-174

[3] http://jena.sourceforge.net/ARQ/

[4] http://jena.sourceforge.net/ ARQ/Tutorial/qu
eryl.html.

[5] Jerome Euzenat,“Processing
Alignment with SPARQL” 2006.

[6] Olaf Hartig and Ralf Heese, “The SPARQL
Query Graph Model for Query
Optimization”, Humboldt-University zu

Ontology

Berlin.

[7] Eliase M. Navathe, “Fundamentals of
DBMS” : Query Processing and
Optimization”.

[8] Abraham Bernstein, Christoph Keifer,
Markus Stocker, “A SPARQL Optimization
Approach based on Triple Pattern
Selectivity Estimation” , A Techinal Report.
March 2007

[9] Richard Cyganiak, Digital Media Systems
Laboratory, “A Relational Algebra for
SPARQL”, HPL-2005-170, HP
Laboratories, Bristol, 2005.

Author Biographies

Sanjay Kumar Malik has more than 14
years of experience in academics and
industry in India and abroad(Dubai & USA)
and is presently working as Asst Professor
in University School of Information
: Technology of Technology, GGS

= Indraprastha University(Delhi Govt.), Delhi.
Ve }'] He is MCA and acquired MTech(IT) from
A GGS Indraprastha University, Delhi and
presently pursuing PhD from GGS IP
University and published various research
papers in National/International Journal/Con-
ferences of repute and attended conferences
in USA.

Dr. SAA.M. Rizvi is a Ph.D. in Computer
Science & Engineering, presently working as
an Associate Professor at the Department of
Computer Science, Jamia Millia Islamia
(Central Government University), New
"o Delhi, INDIA having more than 26 years of
experience in India and abroad. An Expert in
Software Engineering, who has published
numerous papers in the field of Software

Engineering, MIS, Mathematical
Modeling,Bioinformatics and Web based
applications

