

A Framework for SPARQL Query Processing,
Optimization and Execution with Illustrations

Sanjay Kumar Malik1 , SAM Rizvi2

1 University School of Information Technology, GGS Indraprastha University, New Delhi
sdmalik@hotmail.com

2 Deptt. of Computer Science,Jamia Millia Islamia, New Delhi
 samsam_rizvi@yahoo.com

 Abstract: The vision of Semantic web is to allow intelligent
description and interchange of integrated data from various
distributed web resources. A structure for this metadata on web
is known as Resource Description Framework (RDF) where
data is in the form of XML (Extended Markup Language). A
query language is used to retrieve such large RDF data
effectively and efficiently which is known as SPARQL
(Standard Protocol and RDF Query Language) which involves
Query Processing, Optimization and Execution. In this paper,
we propose a framework for SPARQL Query Processing,
Optimization and Execution with various SPARQL illustrations
in Twinkle and Jena ARQ. A “Furniture RDF” has been
illustrated with “Filtering RDF using Twinkle” and “Filtering
RDF using Jena ARQ on Eclipse” based on Java source code
obtained after executing Eclipse.

 Keywords: RDF, SPARQL, Query Processing, Optimization,
Execution, JENA ARQ, TWINKLE, Eclipse

I. Introduction
Sir Tim Berner’s LEE, inventor of WWW(World Wide Web)
and his W3C(World Wide Web Consortium) team along
with others are working hard towards taking the current web
to semantic web. The objective of the semantic web is to
provide a better platform for the knowledge representation of
linked data to allow machine processing on a global scale by
adding logic,inference and rule systems to the web which
allows data to be shared across different applications and
boundaries[1].

 Two important technologies for semantic web are
XML(Extended Markup Language) and RDF(Resource
Description Framework) where RDF was developed to
extend XML which tends to make work easier for automated
services and autonomous agents by providing semantic
capability[1]. Therefore, information on web should be
expressed in a meaningful way accessible to machines which
may be achieved by Resource Description Framework (RDF)
as a basic data format aiming to represent information about
resources on the web[2].

 Semantic Web requires much more expressive power than
using ontology languages like XML,XMLS(XML Schema),
RDF, RDFS(RDF Schema) and OWL(Web Ontology
Language) used to describe the semantics and reasoning of
resources/metadata which are available on the web and also
identify the relationship between them.

There are a number of RDF query languages available, but
Connected Services Framework (CSF) Profile Manager only
supports queries written in SPARQL. A query language is
used for querying RDF graphs known as SPARQL which
stands for “Simple protocol and RDF query
Language” ,which is basically an RDF query language that
defines a data access protocol and standard query language
to be used with the RDF data model.

 SPARQL works for any RDF mapped data
source. SPARQL query language has some similarity with
SQL constructs and there are some tools available as open
source like TWINKLE 2.0, Jena Framework with ARQ [3,4]
processor on which SPARQL can be executed and tested.
SPARQL Query can also be used to retrieve data from RDFS
as well as from OWL[5] which can be created and executed
on Ontology tool like Protégé which involves Query
processing, Optimization and Execution. “Query Processing”
is the internal steps taken by the Query Engine for the
evaluation of the Query and requires some transformation
and rewriting methodologies for the execution without
changing the outcome of the query. Query engine executes
the query but there is a requirement to have optimization
concepts so that the query can retrieve data efficiently as it
affects the execution performance. “Query optimization”
defines some of the rules for rewriting query which
transform execution structure of query. “Query Execution”
is the step in which query engine evaluates the SPARQL
query by generating the QEP (Query Execution Plan).

 In this paper, Section 2 presents a framework for Query
Processing, Optimization and Execution and steps for
SPARQL Query Engine Evaluation. Section 3, 4 and 5
discusses about Query processing, Query Optimization and
Query Execution respectively with various SPARQL
illustrations using Twinkle and Jena ARQ in Section 6.
Section 7 refers to a “Furniture RDF” illustrated with
“Filtering RDF using Twinkle” and “Filtering RDF using
Jena ARQ on Eclipse” based on Java source code obtained
after executing Eclipse.

II. Proposed framework for query
processing, optimization and query execution

We propose framework for Query Processing, Optimization
and Query Execution as shown in figure1.

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 4 (2012) pp. 208 -218

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Figure 1. A Framework for SPARQL Query Processing,
Optimization and Execution

It focus on the internal structure and transformation of the
SPARQL query during the evaluation. It first shows the
processing step in which Parsing and validation is done for
the query and then equivalent transformation takes place in
form of operator tree which is further passed to next
transformation of Query optimization and then emphasise on
the rewriting rule of the query for the better performance.

 SPARQL Query Engine evaluation steps accomplishes
many tasks for the evaluation of the SPARQL query. These
steps are shown below:

1) SPARQL Query is written and passed to the Query
Engine for the evaluation.

2) Query Engine then scans and parses for the
SPARQL syntax and order of the semantic like
keywords as SELECT, WHERE etc and then
Validate for the RDF attributes.

3) Query Engine then Transform it into equivalent
form.

4) After transformation into equivalent form,
Rewriting of query is done by first logical
optimization and then with physical optimization.

5) After performing optimization steps, it generates an
QEP (Query Execution Plan) to execute the
optimized execution for RDF data [6].

6) After all these steps, if all the steps are performed
error free then engine take RDF file which is passed
with SPARQL query for the evaluation step. Finally
it returns the result. (Many Execution tools also
provide the feature for storing the results which is
represented as Result storage.

III. Query Processing

A high level query expressed in any high level query
language is first being scanned, parsed and validated. The
role of scanner is to identify the language tokens like
keywords, attribute name and relation name, parser checks
the syntax of the query to make sure that the query is
formulated according to the grammar, then validated check
attributes and relation names are valid or not. The query is
converted into a tree data structure called query tree, which
is internal representation of the query.

 Another way of representing the query is using graph data
structure called query graph. For the query execution the
processor apply some optimization techniques on query
graph or tree and optimize that graph for processing and
produces an execution plan. Then, further the code to
execute the plan is generated by query code generator. The
runtime DB processor runs the query code to generate the
result of the query[7].

 SPARQL Query has a processing cycle to retrieve the data.
In SPARQL query processing, SPARQL query is firstly
parsed by the parser for any syntax error in which the
keywords of SPARQL are identified. It also verifies the
SPARQL query order e.g. SELECT, where FILTER option
is in order or not. Validation is performed where RDF
attributes are checked within SPARQL query.

 Query Processing transforms this SPARQL then into its
equivalent operator tree as shown in figure 4. This operator
tree presents the execution sequence of the queries and is
used further for the optimization purpose which is based on
the SPARQL algebra.

IV. Query Optimization

Query optimization is the process of selecting the most
suitable strategy for processing a query. Due to declarative
nature of SPARQL(SPARQL Protocol and RDF Query
Language), a query engine has to choose an efficient way to

evaluate a query. All RDF repositories provide querying
capabilities, but some of them do require manual interaction
which minimizes the query execution time.

 Query engines for ontological data based on graph models
execute user queries without considering any optimization
and especially for large ontologies, optimization techniques
are required to ensure that query results are delivered within
reasonable time.

 Query optimization is the core concept of reordering /
rewriting of SPARQL using some approach as selectivity
estimation, which demonstrate how triples pattern reordering
according to their selectivity affects the query execution
performance[8]. The SPARQL query graph model and the
transformation rules to rewrite a query into a semantically
equivalent one, was proposed to find an efficient query
execution plan.

 One of the significant rule for optimization is rewriting
FILTER variables.

209 Malik and Rizvi

V. Query Execution

As for the evaluation of SPARQL, its Engine requires QEP
to be generated, which is the code of execution of optimized
operator tree. To Execute SPARQL Query, we have different
tools available as open source on which SPARQL query can
be executed. Among these tools TWINKLE and Jena ARQ
is most popular. One sample SPARQL Query and its
execution is demonstrated on JENA ARQ.

Query 1:- The below query will find the name and email of
all employees.

Query syntax:-

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person rdf:type foaf:Person .
?person foaf:name ?name .
OPTIONAL { ?person foaf:mbox_sha1sum ?email }
}

The Execution Output with Jena ARQ and Twinkle Tool is
as shown below:

Figure 2. Execution with Jena ARQ

Figure 3. Execution with TWINKLE tool.

Figure 4. Operator Tree Equivalent to SPARQL Query

An operator tree (query tree) corresponds to the above
SPARQL query which shows the execution of operators in
SPARQL[9].

 210 A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

VI. SPARQL Illustrations

In this section, we present the SPARQL queries execution in
which Projection, Selection, and then one example of
rewriting rule (rewrite Filter variable) is demonstrated.

A. Applying Projection
Query 1: The below query will find the name, course,
subject and marks of the student.

Syntax:-
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student_name ?course ?subject ?marks
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:studentname ?student_name .
 ?x foaf:course ?course .
 ?x foaf:subject ?subject .
 ?x foaf:marks ?marks .
}
order by ?student_name

The Execution Output with Jena ARQ and Twinkle Tool is
as shown below:

Figure 5. Execution Output with Jena ARQ

Figure 6. Execution Output with Twinkle

B. Applying Selection using Filter
Query 2: The below query will find the detail of student will
marks greater than equal to 70.

Syntax:-
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?student_name ?course ?subject ?marks
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:studentname ?student_name .
 ?x foaf:course ?course .
 ?x foaf:subject ?subject .
 ?x foaf:marks ?marks .
FILTER(?marks >= "70")
}
order by ?student_name

The Execution Output with Jena ARQ and Twinkle Tool are
as shown below in figure 6 and 7:

Figure 7. Execution Output with Jena ARQ

211 Malik and Rizvi

Figure 8. Execution Output with Twinkle

C. Applying Selection with more condition in Filter
Clause

 Query 3: The below query will find the detail of student
will marks greater than equal to 70 and course is M.Tech(IT).

Syntax:-
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student_name ?course ?subject ?marks
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:studentname ?student_name .
 ?x foaf:course ?course .
 ?x foaf:subject ?subject .
 ?x foaf:marks ?marks .
FILTER(?marks >= "70" && ?course = "M.Tech(IT)") }

The Execution Output with Jena ARQ and Twinkle Tool is
as shown below :

Figure 9. Execution Output with Jena ARQ

Figure 10. Execution Output with Twinkle

 D. Applying Rewrite Filter Variable Rule of
optimization

Query 4: The below query will find the detail of student
with marks greater than equal to 70 and course is
M.Tech(IT).

Syntax
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student_name ?course ?subject ?marks
WHERE {
 ?x rdf:type foaf:Person .
 ?x foaf:studentname ?student_name .
 ?x foaf:course ?course .
 ?x foaf:course "M.Tech(IT)" .
 ?x foaf:subject ?subject .
 ?x foaf:marks ?marks .
 FILTER(?marks >= "70")
}

 212 A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

The Execution Output with Twinkle Tool is as shown below:

Figure 11. Execution Output with Twinkle

In this illustration, we apply the filter “M.Tech(IT)” clause
before with the foaf:course.

This is known as rewriting filter variable rule in which first,
engine will execute “filter” condition to reduce the internal
processing.

VI. SPARQL Illustration: “Furniture RDF”

We take another example of a “Furniture RDF” with
“furniture_name” and “furniture_type”. SPARQL is a
query language which is used to retrive data from RDF. We
create a “Furniture RDF” with “name” and “property” triples
with fields “name” and “type”. Sparql Query Syntax for
filtering data from RDF file is shown below:

SYNTAX :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?type

WHERE {
?x rdf:type foaf:Furniture .
?x foaf:name ?name .
?x foaf:property ?type
}
order by ?name

The above query is using the namespace “rdf” which will
filter the data using the “foaf :Furniture”. It Further executes
over the said “Furniture RDF” file with two fields, “name”
and “type”

 A. Filtering RDF using Twinkle
When we execute the above SPARQL in TWINKLE Tool
which is an open source editor for executing SPARQL, the
following result output is obtained with “furniture name”
and “furniture type”.

213 Malik and Rizvi

Figure 12. SPARQL Query Execution in TWINKLE

Output:-

Figure 13. Data Retrieved from Furniture RDF

 B. Filtering RDF using Jena ARQ on Eclipse

 We create an RDF which describes the Furniture of
different types with their properties using Jena (a toolkit for
parsing RDF using Java). Now, using Eclipse (open source
java editor), Jena and ARQ tool, the source code of java will
be compiled into “TestFurniture.class” file. Using java

interpreter, when the class file will be executed, it will fire
the sparql query over the furniture RDF file and generate the
result which is ordered by the “name” field in the said
Furniture RDF, in alphabetical order. Following are the
source code and output which demonstrates the filtering of
data from the Furniture RDF file:

 C. Java Source Code : (obtained after executing Eclipse)
Following source code is written in Java on Eclipse:
public class TestFurniture {
public static void main(String[] args)throws Exception {
InputStream in = new FileInputStream(new
File("FurnitureRdf.rdf"));
Model model =
ModelFactory.createMemModelMaker().createModel(null);
model.read(in,null);
in.close();
String queryString ="PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>" +
"PREFIX foaf: <http://xmlns.com/foaf/0.1/>"+
"SELECT ?name ?type"+
" WHERE {"+
"?x rdf:type foaf:Furniture . "+
" ?x foaf:name ?name . "+
" ?x foaf:property ?type "+
" }"+
"order by ?name";
Query query = QueryFactory.create(queryString);
QueryExecution qe = QueryExecutionFactory.create(query,
model);
ResultSet results = qe.execSelect();
ResultSetFormatter.out(System.out, results, query);
qe.close();
 } }

The following output is obtained after executing the above
code:

OUTPUT

Figure 14. Data retrieved from “Furniture RDF” using Jena
and ARQ with Eclipse

From the above output, we infer from the furniture RDF file,
the different “names” of the furniture and their “types”.

 214 A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

VII. Executing SPARQL on OWL in Protege
Following is the OWL Code Snippet obtained while creating
the Ontology of IP University(IPU) using Protégé. We
would execute a SPARQL Query on this code in protégé and
obtain the output of ontology class hierarchy(subject/object).

IPU OWL FILE SNIPPET
<?xml version="1.0"?>
<rdf:RDF
 xmlns:xsp="http://www.owl-
ontologies.com/2005/08/07/xsp.owl#"
xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns="http://www.owl-
ontologies.com/Ontology1277277573.owl#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/prot
ege#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.owl-
ontologies.com/Ontology1277277573.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Vice_Chancellor">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Vice Chancellor</rdfs:label>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="GGS_IP_University"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="USCT">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >USCT</rdfs:label>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Univ_School_of_Studies_USS_"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Academics">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="IPU_Campus_Administration"/>
 </rdfs:subClassOf>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Academics</rdfs:label>
 </owl:Class>
 <owl:Class rdf:ID="Asst_Registrars">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Asst Registrars</rdfs:label>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Dyp_Registrar"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="USBT">

 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >USBT</rdfs:label>
 <rdfs:subClassOf>
 <owl:Class
rdf:about="#Univ_School_of_Studies_USS_"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Dyp_Registrar">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Dyp Registrar</rdfs:label>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Controller_of_Examination"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Data_Entry_Operators">
 <rdfs:subClassOf rdf:resource="#Asst_Registrars"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Data Entry Operators</rdfs:label>
 </owl:Class>
 <owl:FunctionalProperty rdf:ID="Id">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Id of COE</rdfs:comment>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Id</rdfs:label>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Qualification">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Qualification</rdfs:label>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Intake">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Intake</rdfs:label>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 </owl:FunctionalProperty>

215 Malik and Rizvi

 <owl:FunctionalProperty rdf:ID="IGIT_Class10029">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >ID of COE which is Unique</rdfs:comment>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >IGIT_Class10029</rdfs:label>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Year">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Year</rdfs:label>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Add">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Add</rdfs:label>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Sal">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/
>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Sal</rdfs:label>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Roll_No.">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Roll No.</rdfs:label>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Designation">

 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Designation</rdfs:label>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:Class
rdf:about="#Controller_of_Examination"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="DOJ">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >DOJ</rdfs:label>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:Class
rdf:about="#Controller_of_Examination"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Program">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Program</rdfs:label>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Ph._No.">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Ph. No.</rdfs:label>

 216 A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:Class
rdf:about="#Controller_of_Examination"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="Name">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:Class
rdf:about="#Controller_of_Examination"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Name</rdfs:label>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="NAME">
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >NAME</rdfs:label>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="ID">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >ID</rdfs:label>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.w3.org/2002/07/owl#Thing"/>
 <owl:Class
rdf:about="#Controller_of_Examination"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>

 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string
"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#DatatypePro
perty"/>
 </owl:FunctionalProperty>
 <Controller_of_Examination
rdf:about="IGIT_Class10032">
 <ID
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >1</ID>
 <Designation
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Professor , COE</Designation>
 <DOJ
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >2006</DOJ>
 <Name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string
"
 >Prof. Yogesh Singh</Name>
 <Ph._No.
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >23900400</Ph._No.>
 </Controller_of_Examination>
</rdf:RDF>
<!-- Created with Protege (with OWL Plugin 3.4.1, Build
536) http://protege.stanford.edu -->

Executing a SPARQL query on IPU Ontology
(already created before) Using Protégé

Steps for executing SPARQL in Protégé 3.3.1 are:

1. Select ‘Open SPARQL Query Panel’ from OWL menu
from the menu bar in protégé tool. (Version 3.3.1)

Figure 15. “Open SPARQL Query panel” of OWL Menu

2. Write the Following Query in the Query Panel and Press
the ‘Execute Button’ at the bottom of the panel and the result
will be displayed on the Right Side Section of the Query
Panel.

217 Malik and Rizvi

SPARQL Syntax:-
SELECT ?subject ?object
WHERE { ?subject rdfs:subClassOf ?object }

Figure 16. Query written in the Query Panel

When the above SPARQL Query is executed on the OWL
file of IPU Ontology created in Protégé , following result
is obtained:

Figure 17. Output generated in Protégé

The above output snapshot displays the results of the
SPARQL executed using Protégé which displays
‘Subject’ and ‘Object’ showing the subclass and
superclass relationships. Eg; “Vice Chancellor(subject) is
the subclass of “GGS_IP_University(object)”

VIII. Conclusions and future work

In this paper, we have presented a framework of SPARQL
Query Processing, Optimization and Execution and
SPARQL Execution using various tools like Twinkle and
Jena ARQ illustrated with various examples which may
be useful for better query information processing and
retrieval. It also illustrates Filtering RDF using Jena ARQ
on Eclipse and executing a SPARQL Query on OWL
Code to obtain the relationship hierarchy output.

References

[1] Berners Lee, Godel and Tuning.“Thinking

on the web”, Wiley, Preface, pp xvii-xviii

[2] Groppe Sven, Groppe Jinghua, Kukulenz
Dirk, Linnemann Volker, M. Clerc, M. “A
SPARQL Engine for Streaming RDF Data”,
Proceedings of Third IEEE International
Conference on Signal-Image Technologies
and Internet-Based System, SITIS’07
Pages(s): 167-174

[3] http://jena.sourceforge.net/ARQ/
[4] http://jena.sourceforge.net/ARQ/Tutorial/qu

ery1.html.
[5] Jerome Euzenat,“Processing Ontology

Alignment with SPARQL” 2006.
[6] Olaf Hartig and Ralf Heese, “The SPARQL

Query Graph Model for Query
Optimization”, Humboldt-University zu
Berlin.

[7] Eliase M. Navathe, “Fundamentals of
DBMS” : Query Processing and
Optimization”.

[8] Abraham Bernstein, Christoph Keifer,
Markus Stocker, “A SPARQL Optimization
Approach based on Triple Pattern
Selectivity Estimation” , A Techinal Report.
March 2007

[9] Richard Cyganiak, Digital Media Systems
Laboratory, “A Relational Algebra for
SPARQL”, HPL-2005-170, HP
Laboratories, Bristol, 2005.

Author Biographies

Sanjay Kumar Malik has more than 14
years of experience in academics and
industry in India and abroad(Dubai & USA)
and is presently working as Asst Professor
in University School of Information
Technology of Technology, GGS
Indraprastha University(Delhi Govt.), Delhi.
He is MCA and acquired MTech(IT) from
GGS Indraprastha University, Delhi and
presently pursuing PhD from GGS IP
University and published various research
papers in National/International Journal/Con-
ferences of repute and attended conferences
in USA.

Dr. S.A.M. Rizvi is a Ph.D. in Computer
Science & Engineering, presently working as
an Associate Professor at the Department of
Computer Science, Jamia Millia Islamia
(Central Government University), New
Delhi, INDIA having more than 26 years of
experience in India and abroad. An Expert in
Software Engineering, who has published
numerous papers in the field of Software
Engineering, MIS, Mathematical
Modeling,Bioinformatics and Web based
applications

 218 A Framework for SPARQL Query Processing, Optimization and Execution with Illustrations

