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Abstract: This article presents a hierarchical clustering 

algorithm aimed at creating groups of stems with similar 

characteristics. The resulting groups (clusters) are expected to 

comprise stems belonging to the same inflectional paradigm (e.g. 

verbs in passive voice) in order to support the creation of a 

morphological lexicon. A new metric for calculating the distance 

between the data objects is proposed, that better suits the specific 

application by addressing problems that may occur due to the 

limited amount of information from the data. A series of 

experimental results are provided, that demonstrate the 

performance of the algorithm, compare different distance 

metrics in terms of their effectiveness and assist in choosing 

appropriate approaches for a number of parameters. 

 
Keywords: Agglomerative clustering, Hamming distance, 

inflectional paradigm, cluster proximity, cluster validity.  

 

I. Introduction 

A morphological lexicon is a lexicon that contains all different 

word-forms (words) that are generated for each lemma of a 

language. The main goal of the research presented in this 

article is to automatically create such a lexicon based on the 

terms that are found in a corpus. These terms refer to the 

results of the analysis of the word forms within a given text 

into stems and endings. The manual creation of a 

morphological lexicon is a tedious task that becomes more 

difficult for languages such as Modern Greek because of their 

highly inflectional morphology. Morphological lexica are of 

particular importance since they can be exploited in several 

natural language processing applications [1] such as search 

engines, information retrieval, machine translation systems, 

etc.   

As an initial step, a stemmer has already been created for 

Greek, based on the concept of genetic algorithms ([2], [3]). 

This stemmer manages to recognize the stem of a word and 

distinguish it from its inflectional suffix with a high level of 

accuracy (namely 96% for 213,000 words). This level of 

accuracy has been calculated by comparing the experimental 

results of a GA-based approach to the contents of a 

handcrafted morphological lexicon created by a team of 

specialized linguists over a period of approximately 5 years at 

ILSP [4].  

Most of the stemmers described in literature are used for 

information retrieval; therefore they achieve their purpose 

once they succeed in reducing a word to its stem. On the other 

hand, when trying to automatically create a morphological 

lexicon, one should be able to discover the underlying 

connection between different stems (i.e. stems belonging to 

the same grammatical category, gender, tense, etc.) and form 

groups, each of which contains a collection of stems with 

related characteristics and the same set of associated suffixes. 

These groups are referred to in literature as inflectional 

paradigms.   

Linguistica, developed by Goldsmith [5], is one of the 

morphological analyzers proposed that in an effort to identify 

stems and other inflectional morphemes, groups together 

certain stems that share the same signature i.e. the same set of 

suffixes. Even though Linguistica doesn’t ultimately obtain a 

single partition of the input data (i.e. the set of stems), the 

approach is similar to the creation of clusters. Table 1 

illustrates the aim of clustering stems for the Greek language: 

 

Table 1. Example of words and their inflectional suffixes 

Lemma English 

translation 

Inflectional Suffixes 

βάφω paint (verb) -ω, -εης, -εη, -ουμε, -ετε, -ουν 

παίδω play (verb) -ω, -εης, -εη, -ουμε, -ετε, -ουν 

βοεζώ help (verb) -ώ, -άς, -ά, -άμε, -άτε, -άν 

μηλώ speak (verb) -ώ, -άς, -ά, -άμε, -άτε, -άν 

 

All four stems belong to the general grammatical category 

of verbs; however the first two are attributed to a different 

inflectional paradigm (which represents one cluster) than the 

third and the fourth stem (which represent a second cluster) as 

indicated by the corresponding suffixes. Additionally, the 

example illustrates that such a clustering of stems is only 

necessary in highly inflectional languages, i.e. the 

corresponding English stems are all combined with the same 

set of suffixes and therefore should be grouped together.   
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To address the task, the system developed must perform a 

clustering of the stems (data objects) identified. A general flow 

chart indicating the processes that are applied for the creation 

of a morphological lexicon from a given corpus are illustrated 

in Figure 1. 

 

 
Figure 1. The main processing steps required to automatically 

generate a morphological lexicon from a corpus 

 

There exist two main groups of clustering algorithms: 

partitional methods and hierarchical methods [6]. Partitional 

methods divide a set of data into smaller subsets, called 

clusters, by assigning each data object to exactly one subset. 

The simplest and most commonly used representative of this 

kind of clustering is the K-means algorithm [7]. K-means starts 

by choosing K initial centroids, where K is the desired number 

of clusters. Each object is thereafter assigned to its closest 

centroid and thereby K clusters are created. The centroids of 

the clusters are updated and the process of assigning objects to 

centroids is repeated iteratively until the centroids settle and 

all objects remain assigned to the same clusters in subsequent 

iterations. The main limitation that prohibits the use of 

K-means in the current application is that it requires the 

number of clusters to be specified a priori, which in this case 

cannot be predicted reliably. Moreover, even if the number of 

clusters was known, the K-means algorithm would not be 

suitable for this kind of data object because, as will be detailed 

in the following sections, there is no straightforward notion of 

a centroid in the given pattern space. Even though the 

K-medoid algorithm [8], which is related to K-means, is 

designed to overcome this restriction, it is not clear how it can 

process the data objects under study. Finally, any partitional 

clustering algorithm would fail to recognize and sufficiently 

represent the structure of the data, such as clusters containing 

subclusters which in turn can be further divided.   

Therefore the search for methods for clustering together 

stems has focused on hierarchical clustering methods. This 

group of clustering methods is able to represent the taxonomy 

of the data in a tree-like structure called dendrogram. 

Hierarchical clustering methods don’t require any priori 

knowledge of the number of clusters, other than setting a 

threshold value in order for the algorithm to reach a final 

clustering result. 

II. Stemming Based on Genetic Algorithms 

The system described in this article further processes the 

results of a stemmer that has been developed for highly 

inflectional languages [3]. This stemmer divides each word in 

two parts, a stem and a suffix. The stemmer has been based on 

the concept of genetic algorithms [9] [10], by defining 

individuals that when combined with the original list of words, 

produce the solution proposed. These individuals are arrays of 

integers, each integer depicting a segmentation boundary of a 

specific word, i.e. the number of letters that comprise the stem 

[11]. The remainder of the word represents the suffix.  

The objective function that has been experimentally found 

to give the best results utilizes a set of training data, 

comprising correctly segmented words. The fitness of each 

individual is determined by comparing the frequencies of 

appearance of the suffixes in the training set with those in the 

solution proposed by that individual. The higher the 

resemblance between the two sets, the higher the fitness of the 

specific individual. The training set comprises a limited 

number of words that are arbitrarily selected and provide a 

prototype according to which all other words will be 

processed. The reason that this function is effective is that 

macroscopically the frequency of appearance of a certain 

suffix in a given set of words remains to a large degree 

unaltered, irrespectively of the corpus chosen.   

A novel approach was adopted, to address the problem of 

high-dimensionality, that occurs when large corpora are 

examined, according to which each individual is segmented 

into smaller equally sized parts. Each of these parts evolves 

through a number of generations independently. Thereby, 

instead of one high-dimensional individual the GA is 

“decomposed” to processing many smaller ones. These 

smaller subsets are combined at regular intervals, every μ 

iterations, updating the values for all the elements of the 

individual. Next the individuals are randomly disassembled 

once more in subsets different than the original ones, and this 

procedure is repeated until the GA meets a termination 

criterion.  

One of the main advantages of the GA-based stemmer lies in 

its ability to learn by example using only limited 

language-specific knowledge. Thereby it is easily adaptable to 

different languages. Moreover, by setting a standard according 

to which the system will perform the segmentation via the 

training set, the system becomes easily customizable by a 

linguist without serious alterations to its main structure. 

  

III. Hierarchical Clustering 

The main reason for selecting a hierarchical instead of a 

partitional clustering algorithm is the lack of apriori 

knowledge about the specific number of clusters in the ideal 

partition. Moreover, the nested structure of hierarchical 

clustering reveals connections and interdependencies between 

different clusters, a feature that is desirable when examining 

natural languages. For example a verb in passive voice and a 

verb in active voice belong to different clusters (inflectional 

paradigms), they are however relevant since they both belong 

to the general category of verbs.   

There are two general approaches regarding hierarchical 

clustering. The most commonly used is agglomerative 

clustering, where each data object is initially assigned to its 
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own singleton cluster. At each step, the closest pair of clusters 

is merged, until all objects are combined in an all-inclusive 

cluster. The second approach is called divisive. It starts off 

with an all-inclusive cluster and progressively splits one 

cluster at each step, until only singleton clusters remain. In 

both approaches, a notion of cluster proximity must be defined 

in order to decide which clusters should be merged or split, 

respectively. Depending on the metric adopted to calculate 

distances, different clustering methods, and thus results, are 

defined.  

In this paper agglomerative clustering methods will be used. 

In the initial step, where only singleton clusters exist, cluster 

proximity depends solely on the appropriate distance between 

the vectors of the objects’ representations. Moreover, when 

calculating the proximity of clusters comprising more than one 

object, there are several alternatives. The complete-link or 

MAX agglomerative clustering assumes that the distance of a 

pair of clusters is the maximum pairwise distance between the 

objects of the two clusters. Likewise, in the single-link or MIN 

alternative the distance between two clusters is defined as the 

minimum pairwise distance between the objects of the two 

clusters. Finally, in the average-link version, cluster proximity 

is the average pairwise distance between all objects of the 

clusters. There is also the alternative of representing all data 

objects of each cluster with a centroid, and whenever cluster 

proximity needs to be calculated it refers to the distance of the 

two centroids.  

 

IV. Clustering Algorithm Description 

Agglomerative clustering initially assigns each data object to 

its own cluster and proceeds by merging the pair of clusters 

with the smallest pairwise distance until all clusters are 

merged. In order to efficiently process a large amount of data, 

the algorithm proposed here is allowed to merge more than one 

pair of clusters in each step, if the distances between them are 

equal to one another and equal to the minimum distance 

between any clusters. The only constraints involve preventing 

clusters that have already participated in a group, from being 

merged again into more groups in the same step. For example, 

if cluster pairs (CA, CB) and (CB, CC) have the same smallest 

distance, the algorithm merges only one of them, i.e. the first 

that is recognized, leaving the other unchanged. That’s 

because once the two clusters (e.g. CA and CB) have been 

merged they are perceived as one united cluster and therefore 

all the other distances that have been calculated prior to the 

merge are no longer valid. The major steps of the algorithm 

implemented are presented in Figure 2.  

 

A. Data Objects 

The clustering system makes use of a list of words that are 

segmented into stems and suffixes. As mentioned in the 

introduction, the main goal is to recognize morphological 

analogies between pairs of stems and to group each such pair 

into the same cluster, the characteristics that will be used to 

identify those analogies are the distinct suffixes that are linked 

to each stem. Using the suffixes as characteristics, every stem 

is a single data object and its representation is a vector of 

binary values, the dimension of which equals the number of 

different suffixes that have been identified in the corpus. If a 

stem is linked to a certain suffix then the value of the 

corresponding element in its vector becomes “1”, otherwise it 

becomes “0”.   

 

 

1. Assign each data point to its own singleton. 

2. repeat 

 Determine the minimum pairwise distance between clusters 

 Create a group containing the pairs of clusters with the minimum 

distance. 

 Merge each of those pairs unless at least one of the clusters in it 

has already been merged in the same step. 

3. until only one cluster remains 

Figure 2. Steps of the agglomerative clustering 

 

One of the main difficulties facing this representation is 

that, although the value “1” clearly states that the 

corresponding suffix is part of the stem’s inflectional 

paradigm, a value of “0” cannot reject such a claim. On the 

contrary, a value of “0” may suggest either one of two possible 

events:  

- The corresponding suffix doesn’t belong to the stem’s 

inflectional paradigm, or 

- The corresponding suffix belongs to the stem’s 

inflectional paradigm but the specific word-form wasn’t 

included in the corpus being studied. In this case the “0” value 

will be hereafter mentioned as a “hidden 1”. 

This duality of the value “0” may necessitate modifications 

to the clustering approach selected, and more specifically to 

the distance metric, as shall be detailed in the next section. The 

second limitation is that due to the binary representation, a 

centroid has no actual meaning i.e. a suffix is either present or 

not present in an inflectional paradigm. Moreover, using a 

medoid to represent the objects of a cluster is also 

questionable, because elements with a value of “0” are not as 

significant as the elements with value “1”. Therefore, when 

calculating cluster proximity, the experiments will be 

restricted to MIN, MAX and average distances.  

 

B. Distance Between Data Objects 

Whenever the algorithm needs to determine the proximity of 

two clusters, it calculates the distances between all possible 

pairs of their objects.  

The first distance examined in this paper is City Block 

which in the case of binary data actually reduces to the 

Hamming distance. The Hamming distance corresponds to the 

number of elements for which the binary strings examined are 

different. Though this distance can inform about whether two 

data objects (stems, in the present application) are similar, it 

may lead to confusing results when it comes to determining the 

distance between two vectors with a large degree of 

dissimilarity. In the latter case, the absence of a suffix from 

one stem (denoted by “0” in the corresponding element of its 

vector) that is present in the other stem’s vector, does not 

necessarily indicate that the two stems belong to different 



inflectional paradigms. The absence of a suffix might be 

attributed to the fact that the corpus is not very extensive, and 

therefore does not include the word that is formed by the 

concatenation of the given stem and suffix, even though such a 

word actually exists.  

To overcome this problem, the system attempts to extract 

information from the data available, and utilizes this 

information to generate a distance that will better suit the 

specific data objects. This new distance, hereafter denoted as 

Morph_Stat distance, should still contribute a zero term when 

the corresponding elements have the same value among the 

two vectors being examined, but in the case of different values 

it must produce a term in the range of (0,1) instead of exactly 

1, which is what the Hamming distance assumes. The value of 

the term will reflect the likelihood that the zero value in a 

stem’s vector might actually be a “hidden 1”. The closer the 

term is to 0, the higher the possibility of an actual “hidden 1”. 

A mathematical formula for calculating the likelihood of a 

“hidden 1” is provided within this subsection.  

To clarify the above assumption, a numerical example is 

provided in Figure 3, presenting two vectors of 10 elements 

(corresponding to two stems with a total of 10 suffixes) and the 

distance between them as calculated by both the Hamming and 

the Morph_Stat distances. Figure 3 shows that, in contrast to 

the Hamming distance, which increases the total value by one 

each time the two vectors differ in an element value, 

Morph_Stat increases it by a quantity  1,0ir   which 

represents the likelihood that the zero is actually a “hidden 1”. 

 

 
Figure 3.  The results of two different distances (Hamming 

and Morph_Stat) between data objects. 

 

In the example of Figure 3, suffix_3 is present in stem_1 but 

not in stem_2. In this case, Morph_Stat needs to determine 

whether this absence is attributable to different inflectional 

paradigms, or to the specific corpus that didn’t include the 

existing word-form (i.e. a “hidden 1” event). The following 

equation is used to calculate ir : 
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In the nominator, the summation is made over the set STEM, 

which comprises all suffixes that are present in the vector from 

which suffix i  is missing (suffixes suffix_1, suffix_4 and 

suffix_8 for the case of 3r  in the example presented in Figure 

3). Each of the terms  ki sufsufP |  of the sum expresses the 

probability of appearance of suffix i given suffix k . The 

denominator expresses the same sum for all suffixes, whether 

their corresponding values are “0” or “1”, except for suffix i . 

The denominator remains the same for any given suffix i ; as a 

result the value of the fraction depends entirely on the 

nominator. In the example of Figure 3, 3r  is calculated as 

follows: 
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A large value of the nominator is translated into a high 

probability that the value zero in the stem’s vector is attributed 

to the absence of the word from the corpus and thus 

corresponds to a “hidden 1”, rather than to a different 

inflectional example. This assumption agrees with the fact that 

the fraction will tend to one and thus the value of the distance 

element ir  will tend to zero. In that case, even if the 

corresponding elements are different between the vectors 

compared, the overall distance between them will increase 

only by a small amount because of the “hidden 1”. 

The conditional probabilities for the specific example of 

Figure 3 have been calculated based on the experimental data 

and are shown in Table 2. 

 

Table 2. Conditional probabilities  li sufsufP |  of 

appearance of one stem 
isuf  given the appearance of 

another
lsuf . 

 li sufsufP |

 

i=3 i=4 

l=1 0.001 0.001 

l=2 0.002 0 

l=3 1 0 

l=4 0 1 

l=5 0 0 

l=6 0 0 

l=7 0 0 

l=8 0.001 0.001 

l=9 0 0 

l=10 0 0 

 

Using the conditional probabilities of Table 2, 3r  becomes 

equal to 0.5 while 4r  becomes equal to 1. The results indicate 

that according to the data there is a 50% probability that the 

zero value in the third element of stem_2 might be a “hidden 

1”. Therefore the overall distance is 1.5, which is slightly 

smaller than the corresponding Hamming distance. 

 

V. Experiments 

The experiments presented in the following subsections 

examine which of the main approaches for cluster proximity 

(MAX, MIN or average) is the most appropriate for the given 

data. Moreover, the two distance metrics (Hamming and 

Morph_Stat) are checked for a range of different sizes of data 

to determine which metric is the most suitable. To minimize 

the effects of the errors of the GA stemmer while evaluating 
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the effectiveness of the clustering schemes, the correct 

segmentation of the words, according to the morphological 

lexicon [4], is used instead of the actual outcome of the GA 

stemmer [3]. Moreover the morphological lexicon is also used 

as a reference when validating clustering results, providing the 

inflectional paradigm of each stem and thus its class label.  

A large set of 213,000 distinct words was used to acquire 

the data objects (i.e. the stems) needed for experimentation. 

These 213,000 words were extracted from various corpora by 

inserting each distinct word only once at the point of its first 

appearance. This set of words contains a total of 26,600 

distinct stems.   

Before presenting the experimental results, it would be 

useful to determine a measure of cluster validity that will allow 

comparisons between different experimental configurations. 

The agglomerative algorithm has been developed in C++ and 

the experiments have been executed on a PC with a single Intel 

Pentium processor operating at a frequency of 3.4 GHz. 

 

 

A. Cluster Validation 

A number of supervised measures can be used for evaluating 

the clustering results, since there exist external information 

from the manually-created morphological lexicon, in the form 

of class labels for each of the data objects (stems). The 

approach chosen for the experiments measures the extent to 

which two objects that have been assigned to the same cluster 

also belong to the same class and vice versa. The validity 

measures examined require the computation of the following 

four quantities: 

 00f , which corresponds to the number of pairs of objects 

that have been assigned to different clusters and indeed 

belong to different classes (indicating a correct clustering). 

 10f , which corresponds to the number of pairs of objects 

that have been assigned to different clusters even though 

they belong to the same class (indicating an incorrect 

clustering). 

 01f , which corresponds to the number of pairs of objects 

that have been assigned to the same cluster even though 

they belong to different classes (indicating an incorrect 

clustering). 

 
11f , which corresponds to the number of pairs of objects 

that have been assigned to the same cluster and indeed 

belong to the same class (indicating a correct clustering). 

The most frequently-used validity measures that are based on 

these four quantities are the Rand statistic [12] and the 

Jaccard coefficient [13]. The mathematical expressions of the 

two measures are provided in equations (3) and (4) 

respectively:   

11011000

1100_
ffff

ff
statisticRand




        (3) 

11011000

11_
ffff

f
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      (4) 

In both cases, the nominator is used to enumerate correct 

assignments of data objects into clusters and the denominator 

to enumerate both correct and incorrect assignments. The 

larger the value of equation (3) or (4), the more successful the 

corresponding clustering is. The results of an agglomerative 

clustering using the Hamming distance and the average-link 

approach are illustrated in Figure 4.  

As can be seen, both the Rand and the Jaccard metrics 

improve initially, as the number of clusters is reduced (e.g. 

from 180 to 60 clusters). For a relative wide range (between 90 

and 40 clusters) this remains virtually unchanged. Only when 

the number of clusters is reduced further (to less than 30 

clusters) do both cluster validity measures start to fall. 

Furthermore, both measures peak at approximately the same 

value, though the peak of the Jaccard coefficient is more 

marked. 

 

 
Figure 4.  Evaluation of a clustering algorithm for 1,000 stems 

using the Rand statistic and the Jaccard coefficient. 

 

These results refer to a set of 1,000 stems (data objects) 

where the algorithm has been evaluated according to both 

validity measures, to examine the ability of each validity 

measure to distinguish between different clusterings for the 

specific data.  

The main difference between the two validity measures is that 

in the case of the Jaccard coefficient the cases calculated 

in 00f  are not taken into account in either the nominator or the 

denominator. Since these are the most numerous instances 

(especially in a multi-class case such as the one examined in 

this paper), their removal from the calculation essentially 

removes a practically constant component and allows a more 

accurate definition of the clustering results. Therefore, even 

though the Jaccard coefficient leads to smaller absolute 

values, it depicts more clearly the peak of the algorithm.  

For the remaining examples presented in this paper, cluster 

validity is determined via the Jaccard coefficient to avoid any 

excess noise imposed by the 00f  cases. 

 

B. Cluster Proximity 

Three different variants, namely the MAX or complete-link 

(Eq. (5)), the MIN or single-link (Eq. (6)) and the average-link 

(Eq. (7)), are studied to determine which cluster proximity 

approach is better suited to the specific application. The three 

alternatives are examined for both distance functions on a set 

of 1,000 data objects (stems) and the results are illustrated in 

Figure 5. 
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where 
in  and 

jn are the number of elements comprising clusters 

iC  and 
jC  correspondingly and  bad ,  is the distance between 

two vectors, one selected from each cluster at a time. 

 

 
Figure 5.  Three concepts of cluster proximity using a) the 

Hamming distance and b) the Morph_Stat distance. 

 

The results of Figure 5 demonstrate that for both the 

Hamming distance (Fig. 5a) and the Morph_Stat distance (Fig. 

5b), average-link is the variant that leads to the highest 

clustering results. The explanation for the superiority of the 

average-link variant lies in the fact that the data objects are 

incomplete and therefore a single data object cannot be 

indicative of the whole cluster. In most cases, only a small 

portion of the available word-forms for a given stem appears in 

the examined corpus, and therefore the corresponding vector 

is not fully descriptive. In contrast, by applying average-link 

the missing information for each single data object is balanced 

to a certain degree by extracting relevant information 

regarding the cluster from all objects within the cluster. 

It is clear from Figure 5 that the Morph_Stat distance is 

better suited than the Hamming distance for the task at hand. In 

the case of MIN (single-link), the Hamming distance fails to 

find even a single better clustering than the initial singletons. 

This is attributable to the fact that the minimum distances are 

usually recorded between vectors with few “1” elements which 

as a rule correspond to stems that cannot provide credible 

information. 

 

C. Varying the Corpus Size 

The next series of experiments examines the effect of the 

number of stems that are processed by the clustering 

algorithm. For this reason, different numbers of stems (data 

objects) are selected for processing. Each stem is inserted in 

the list at the point of its first appearance in the corpus. 

Therefore, stems near the beginning are as a rule more 

frequent than stems near the end of the list.   

Five different sets of stems are examined, comprising from 

1,000 to 5,000 stems. Each set contains all previous stems plus 

an additional 1,000 that are next in line in the list of all stems. 

The results, which are obtained utilizing the average-link 

cluster proximity, are depicted in Table 3 where the validity of 

the best clustering is presented along with the number of 

clusters formed.   

 

Table 3. Clustering results for various numbers of stems 

 

  Number of Stems 

  1,000 2,000 3,000 4,000 5,000 

 Actual 

classes 
57 76 91 96 102 

H
am

m
in

g
 Validity  0.799 0.724 0.707 0.725 0.733 

Clusters 44 50 82 100 86 

Steps 74 126 150 170 225 

M
o

rp
h

_
S

ta
t Validity  0.834 0.774 0.763 0.779 0.754 

Clusters 42 65 61 83 96 

Steps 137 247 351 427 505 

 

 

The results in Table 3 indicate that the Morph_Stat distance 

is superior to the Hamming one for the given problem, 

regardless of the number of stems processed. The fact that the 

number of clusters formed in the optimal case is smaller than 

the actual classes is attributed to the fact that the vectors of the 

stems don’t include all the information needed to make a 

correct decision, i.e. all the suffixes linked to the stem in the 

morphological lexicon. Thus, the ability to differentiate 

between the actual classes is reduced. A typical example is a 

case where two stems belong to inflectional paradigms that 

differ only by one suffix. If the word-forms created by the 

concatenation of these stems and the corresponding suffix are 

not included in the corpus, then the algorithm will not be able 

to distinguish between the two and will thus group them in the 

same cluster.   

Moreover, when employing the Morph_Stat distance, the 

algorithm requires more steps to achieve the optimal clustering 

although the number of clusters resulting at this optimum is 

approximately the same. This observation reveals that in the 

case of Morph_Stat the algorithm becomes more “cautious” in 

terms of avoiding the grouping of multiple clusters at each 

step. The Morph_Stat distance provides a representation of 

cluster proximity characterized by a higher level of detail.  

The fact that the algorithm is sensitive to the information 

provided by the stems is illustrated by the following 

experiment. Two different sets comprising 1,000 stems each 

are examined; one using the first 1,000 stems encountered in 

the corpus and the other with stems 4,001 to 5,000. The second 

set contains less frequent stems, and therefore, in general, 

fewer word-forms corresponding to each of those stems are 

Detorakis and Tambouratzis 224  



 

present in the corpus. The results are illustrated in Figure 6.  

Although the number of stems is the same, clustering of the 

second set leads to less accurate results than for the first set 

when compared to the manually crafted morphological 

lexicon. This is due to the fact that the information provided by 

those stems is less thorough. More specifically the first set of 

1,000 stems (set a) is extracted from 6,358 words, resulting in 

an average number of 6.4 suffixes per stem while in the second 

set (set b) the corresponding number of words is 5,390 (5.4 in 

average).  

 
Figure 6. Agglomerative clustering for two different sets of 

stems : a) stems 1-1,000 and b) stems 4,001-5,000. 

 

Apart from the average number of suffixes per stem, one 

should also examine how they are distributed among the actual 

number of suffixes. In the experiments presented in this article, 

words are distinguished along three different grammatical 

categories, namely: verbs, nouns and adjectives. Each of these 

categories has a different number of suffixes assigned to their 

inflectional paradigm as shown in Table 4. 

 

Table 4. Average number of suffixes per grammatical category 

 Verbs Nouns Adjectives 

Average number of suffixes  / 

inflectional paradigm 
11.7 4.3 7.8 

 

 

Figure 7 illustrates the distribution of the number of stems 

per suffix for the two datasets examined in this specific 

experiment. 

Three peaks are prominent in both histograms of the two 

datasets. The first peak is around the value “4” suffixes per 

stem and mostly corresponds to inflectional paradigms of 

nouns. The second peak is around “6” and the third is around 

“10” referring to adjectives and verbs correspondingly. 

The difference between the two histograms is that the range 

around those center peaks is narrower on the first set of 1,000 

stems while in the second set the range appears wider. 

Moreover the silhouette surrounding the histogram of the first 

set tends to shift to the right and thus to more suffixes per stem, 

while in the second set that shift appears to point in the 

opposite direction. 

 

 
Figure 7.  Distribution of the number of suffixes per stem for 

two data sets : a) stems 1-1,000 and b) stems 4,001-5,000. 

 

These observations further support the original assumption 

that the second set, comprising rarer stems, contains less 

information and thus unavoidably leads to less accurate 

clustering results for the system. 

 

D. Validity among Grammatical Categories 

To further investigate the system performance, the results are 

examined according to the three grammatical categories 

mentioned above: verbs, nouns and adjectives. Three different 

sets were created for the three corresponding categories, 

comprising 1,000 distinct stems each. Table 5 depicts the best 

clustering accuracy achieved as well as the number of ideal 

classes and of the clusters that correspond to the best 

clustering. The metric used in this series of experiments is the 

Morph_Stat distance, since it leads to better clustering. 

 

Table 5. Clustering results per grammatical category 

 Verbs Nouns Adjectives 

Actual Classes 57 35 9 

Validity of the  

Best Clustering 
83.5 73.5 82.1 

Number of Clusters 

for the Best Clustering 
42 26 21 

 

The results of Table 5 illustrate that the most problematic of 

the three grammatical categories is that of nouns. The lower 

accuracy level of this specific category is mainly attributable 

to the fact that the inflectional paradigms of nouns contain 

fewer suffixes in Modern Greek and are therefore harder to 

distinguish. In fact there is a number of cases where different 

inflectional paradigms are assigned the same set of suffixes as 

in the example presented in Table 6. 

The stems presented in Table 6 are assigned to the same 

cluster early on in the clustering process, since the distance 

between them is zero according to both metrics (Hamming and 

Morph_Stat). The inflectional paradigms these two stems 

belong to are obviously different as the first one, “αλλαγή”, is 

a noun in feminine gender while the second one, “ηδηώτες”, is a 
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noun in masculine gender. It should be pointed out that the 

word form corresponding to nominative singular, for 

“αλλαγή” has the same suffix as the word form corresponding 

to genitive singular for “ηδηώτες”. 

 

Table 6. Example of different inflectional paradigms 

containing the same set of suffixes 

Stem English 

translation 

Inflectional Suffixes 

αλλαγ- change -ε, -ες, -ε, -ε, -ες, -ων, -ες, -ες 

ηδηώτ- private -ες, -ε, -ε, -ε, -ες, -ων, -ες, -ες 

 

Contrary to what is observed in nouns, verbs and adjectives 

have a greater number of suffixes assigned to their inflectional 

paradigms (as reflected in Table 4), making it easier to 

differentiate between the classes. Another interesting remark 

on the results of Table 5 is that even though data from the two 

grammatical categories belong to different numbers of classes 

(9 classes for the adjectives and 57 for verbs for the given 

datasets), the clustering accuracy is virtually the same. This 

observation indicates that in the implementation under study, 

clustering results are somewhat independent of the actual 

number of classes. 

VI. System Modification 

The way the clustering algorithm is implemented prohibits the 

simultaneous processing of large datasets. For instance, the 

system requires up to 10 days to process 10,000 stems. 

By thoroughly examining the dataset we come to the 

conclusion that many data objects have identical vectors. This 

was actually expected since there are a limited number of 

inflectional paradigms. Even though data objects with 

identical vectors are immediately grouped in the same cluster 

(since they have zero distance), they still increase the 

computational complexity, since the system utilizes the 

average-link approach to calculate distances between clusters. 

To overcome this problem and thereby decrease the execution 

times, a new approach was created in which each vector is 

selected once, forming a set of unique vectors that are 

thereafter clustered. Each unique vector is assigned to more 

than one stems, which in turn belong to the cluster the 

corresponding vector has been attributed to. The decrease in 

the dimensionality is even more profound for large data sets as 

illustrated in Table 7. 

 

Table 7. Number of unique vectors for various data sets 

Number of stems 1,000 2,000 3,000 4,000 5,000 

Number of unique vectors 184 316 420 521 613 

 

To maintain the information provided by the number of 

stems assigned to a single vector, each vector participates in 

the distance calculation with a different weight, corresponding 

to the number of stems assigned to it. With this new approach, 

equation (7) is transformed to equation (8). 
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where a  and b are the unique vectors of clusters 
iC  and 

jC  correspondingly and 
an  and 

bn are the number of stems 

attributed to each of those vectors. 

The clustering accuracy achieved by the implementation on 

this new approach is identical to the previous one while the 

execution times have been reduced substantially. 

Experimental results indicate that the reduction is up to 82% 

over the original execution times.  

 

VII. Conclusions 

In this article, the application of hierarchical clustering to 

grouping stems with similar characteristics has been reported. 

Experimental data indicate that agglomerative clustering can 

be successfully applied to the task of grouping stems in 

inflectional paradigms. Moreover, the Morph_Stat distance 

which utilises statistical information from all available stems 

manages to overcome, to a certain degree, the limitations 

caused by insufficient data and consistently outperforms the 

Hamming distance. Future work focuses on identifying 

automatically a threshold value for the distance for which the 

best clustering occurs so as to terminate the algorithm at that 

specific point. It is expected that this line of work can lead to a 

substantial reduction in the human effort needed to create a 

morphological lexicon in Modern Greek. 
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