
 

Abstract—This paper introduces a novel method for the 

prediction of chaotic time series using a combination of Hidden 

Markov Model (HMM) and Neural Network (NN). In this paper, 

an algorithm is proposed wherein an HMM, which is a doubly 

embedded stochastic process, is used for the shape based 

clustering of data. These data clusters are trained individually 

with Neural Network. The novel prediction approach used here 

exploits the Pattern Identification prowess of the HMM for 

cluster selection and uses the NN associated with each cluster to 

predict the output of the system. The effectiveness of the method 

is evaluated by using the benchmark chaotic time series: Mackey 

Glass Time Series (MGTS). Simulation results show that the 

given method provides a better prediction performance in 

comparison to previous methods. 

 
Keywords—Hidden Markov Models, Neural Networks, Time 

series prediction 

I. INTRODUCTION 

ost of the frequently encountered data in nature form 

chaotic time series. A very well-known and frequently 

encountered chaotic time series is the Mackey-Glass time 

series. Examples of great interest include psychiatric study 

data, weather data and stock market indices. Hence, the need 

arises for a robust and dependable method which can 

accurately analyze and predict future values for any such time 

series. The Mackey-Glass time series is a chaotic time series 

that is frequently encountered in real-world applications, 

ranging from the production of red blood cells and phenomena 

for glucose metabolism, to stock market indices. Hence, being 

able to analyze the behavior and thereby predict future values 

for such a series would be highly beneficial. For modeling a 

chaotic system, the traditional method is to use a stochastic 

process, since it is a well-established fact that their behaviors 

have many similarities, and that there exists an equivalence 

measure between a chaotic system and a stochastic system [1]. 

For prediction, a Hidden Markov Model that has excellent 

pattern-matching ability has been chosen. Our paper uses a 

novel approach to combine the modeling capabilities of an 

 
 

ANNs (Artificial Neural Networks) with the pattern-matching 

abilities of HMM. Earlier papers have created hybrid models 

of HMMs and ANNs/RNNs -cases in point would be [2] and 

[3]. However, in those papers, the neural network has been 

used for refining the parameters of the HMM. In this paper we 

present a method whereby the final output comes from trained 

Artificial Neural Networks. Our Work: The earlier papers 

which have used an HMM-NN hybrid have typically used the 

neural network to iteratively optimize the α, β and π values for 

the HMM. We propose an algorithm whereby we create one 

large HMM using the training data. The training data set is 

then divided into vectors of 5 values each. The first 4 values of 

the vector are treated as the input, and the fifth value is treated 

as the output. Depending on the log-likelihood values of the 

input (as obtained from the HMM), the training data is divided 

into clusters. For each cluster, a feedforward ANN is created. 

Training of the ANN is done using the vectors that fall into 

that particular cluster, with the ANN being required to predict 

the fifth value of each vector using the first four as its inputs. 

Thus, while the modeling still remains stochastic, the 

prediction is made deterministic to quite an extent. For 

prediction using test data, the same process is followed. The 4 

elements of the test data are taken, grouped into a vector, and 

the log-likelihood of that vector calculated. According to the 

log-likelihood, the appropriate cluster and hence the 

corresponding neural network is chosen. The output is then 

obtained from that trained network. The organization of the 

paper is as follows -section II presents an overview about the 

Mackey-Glass time series, and the use of HMMs in its 

analysis; sections III and IV discuss the modeling and 

prediction algorithms along with the respective flowcharts; 

section V presents our results and draws a comparison with 

the existing methods.  

II. OVERVIEW 

2.1The Mackey-Glass Time Series: 

 

The Mackey-Glass time series is a non-linear time delay 

differential system as shown in (1)  
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Where β, γ, τ and n are real numbers and xτ represents the 

value of the variable x at time (t-τ). Depending on the values 

of these parameters, the series displays a sequence of period-

doubling bifurcations and chaotic dynamics [4]. It is seen that 

for τ > 17, the chaoticity in the resulting system becomes 

highly noticeable.  

        This Mackey Glass Time Series is widely regarded as a 

benchmark for comparing the generalization abilities of 

various methods.  
 
2.2 Modeling Chaotic Systems 

 

The apparently random behaviors of chaotic dynamical 

systems and stochastic systems are similar in the fact that both 

are highly dependent on initial conditions. This seems to 

suggest that the methodology used for analyzing stochastic 

systems could also be used to study chaotic dynamical 

systems. An equivalence relationship between chaotic and 

stochastic systems, as given in [1], is that the systems are 

defined as equivalent if they both share an ergodic invariant 

measure. Hence, stochastic models are well-suited for 

analyzing chaotic systems. Thus, it makes sense to use a 
stochastic process, and even more sense to use a doubly-

embedded  stochastic process like an HMM, for the analysis of 

a chaotic system like the Mackey-Glass time series.  

 

2.3 Hidden Markov Models  

The Hidden Markov Model (HMM) is an extension of Markov 

Processes or Markov Chains. An observable Markov Process 

has been defined as a stochastic model where the state of the 

system at a particular instant of time corresponds to an 

observable change or output. Hidden Markov Model is a 

statistical method that uses probability measures to model 

sequential data represented by sequence of observation 
vectors. To understand the working of a Hidden Markov 

Model (HMM), consider the following example. There are 

three bags full of candy, say M&Ms. Each of the candy can be 

blue, green, orange, red, yellow or brown in color. A monkey 

picks (uniformly at random) any one of the three bags, and 

from that bag, picks out one M&M (again uniformly at 

random). This M&M is then shown to a human observer. The 

monkey has been trained to replace the M&M taken out by 

him in the very same bag from which he picked it out. He 

dutifully puts the M&M back in the corresponding bag, and 

repeats the process again, by picking another bag and taking 

out another M&M. The human observer therefore has a 
sequence of M&M colors noted down (only till the monkey 

starts eating the M&Ms he‟s taking out of the bags, but for 

argument‟s sake let us assume that never happens).  

The observation sequence formed by the colors noted down by 

the human may be modeled to be the output of an HMM, 

where the three bags may be thought of as states, and the six 

possible colors from each bag may be thought of as discrete 

outputs. The initial probability with which the monkey picks 

out the first bag in the sequence is given by π. The state 

transition matrix α denotes the probability with which he 

moves from one bag to another. For each bag, there is an 

observation matrix β which tells us the probability of each of 

the six colors appearing from that particular bag. Before 
addressing the major design problems of the HMM, the basic 

notations used are explained below. 

There is a finite number of states „n‟ in the model. At each 

time step, a new state is entered based upon a transition 

probability distribution which depends on the previous state .  

After each transition is made, an observation output symbol is 

produced according to a probability distribution, which 

depends on the current state. There are two types of HMMs 

depending upon the data; Discrete HMMs and Continuous 

Density HMMs. These are defined by the type of data that 

they operate upon. Discrete HMMs (DHMMs) operate on 

quantized data or symbols. On the other hand, the Continuous 
Density HMMs (CDHMMs) operate on Continuous data and 

their emission matrices are not matrices but are distribution 

functions. Some of the common distribution functions used for 

the emission matrices for each state are Gaussian, Poisson or a 

mixture of Gaussians. Since the data used here is continuous, 

CDHMMs have been used with a single Gaussian function for 

each state. The basic notations for first order discrete HMM 

are as follows. 

 

{O1,O2,O3,. . . . . ,On}         : Observation Sequence 

(A, B, )        : Model of the System 
A            : Transition Matrix 

B            : Emission Matrix/Function 

            : Initialization Matrix 
Q {q1, q2, .. . . . . ,qn}    : State Sequence 

 

If the Observations are continuous then discrete HMM cannot 

be directly applied on the data. For that quantization of data is 

required and this is usually done by Vector Quantization but 

vector quantization of these continuous signals can degrade 

the performance significantly if discrete probability density is 

used. Therefore, in the context of HMMs, continuous 

observation densities are used by placing some restrictions in 

the form of the probability density function (pdf), therefore, to 

ensure that the parameters of the pdf can be re-estimated in a 

consistent way. The most general representation of the pdf for 
which the re-estimation equations are applicable is the 

Gaussian density function.  

 

There are three major design problems that are associated with 

an HMM. They are mentioned as follows:  

 

1)  Given the Observation Sequence {O1, O2, O3,. . . ,On} 

and the Model (A,B,), computation of the probability of 

the observation sequence P (O|). 
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2)  Given the Observation Sequence {O1,O2,O3,. . . . ,On} 

and the Model (A, B, ), computation of the State 
Sequence Q {q1, q2, .. . . . . ,qn}, that is optimal or most 

probable. 

 

3) Tweaking of the Model parameters (A, B, ), such 

that the Probability of the Observation sequence, P(O|) is 
maximum. 

 

 

2.3.1 The Forward Algorithm 

 

 The forward algorithm [5] is the solution to the first problem 

of the HMM. Here a forward variable t(i), is the probability 
of the partial observation sequence to time t, given at the state 

i and time t, given the model (A, B, ), is defined as in (2) 
 

t(i) = P(O1, O2, . . . Ot,  qt= Si|)                   (2) 
 

The forward variable maybe computed with the help of  (3), 

(4) and (5). 
 

Initialization:   ),()( 11 OBi ii   Ni 1         (3)        
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The solution to problem 2 is given by the Viterbi Algorithm 

[5], [6] and the solution to Problem 3 is given by the Baum 

Welch/ Expectation Maximization Algorithm [5],[6],[7],[8] 

Once we have the solutions to the above problems, the tools to 

shape based clustering of HMMs are available. 

III. OUR ALGORITHM  FOR  MODELING  OF THE TIME SERIES 

 

Fig. 1 shows the flowchart for our algorithm used to model 

and thereby analyze the time series. 

The input test data is a one-dimensional continuous series:  

 

                              𝑋 =   𝑥𝑡 , 𝑡 = 1,2… . . , 𝑁                       (6) 

 

Where t is the time index and N is the total number of 
observations. For the shape based clustering process pre- 

processing of the time series is required. The basic steps for 

the preprocessing of time series data are as follows. As a first 

step the time series is converted into phase space to get the 

shape based clustering. The phase space of a time series is 

generated by using time delay embedding and embedding 

dimension. The conversion of time series into phase space and 

the time delay embedding is based upon “Takens Theorem”. If 

the value of time delay factor is τ and the embedding 

dimension is b, then the equation 6 in the phase space can be 

represented as shown in (7).  

 

𝑋𝑡 =   𝑥𝑡− 𝑏−1 𝜏 , 𝑥𝑡− 𝑏−2 𝜏 , …… … , 𝑥𝑡                   (7) 

 

Where X is a matrix whose row vector is a point in the phase 
space. This transformation preserves the nonlinear dynamics 

of the original time series. This series though one-

dimensional, is dependent on past values and the series is 

modeled in terms of predictor and dependent variables.  

 

If the value of τ = 4 and b = 4, then the phase space can be 

represented as  

 

        𝑋𝑡 =   𝑥𝑡−12 , 𝑥𝑡−8 , 𝑥𝑡−4 , 𝑥𝑡                                     (8) 

 
In SBBP approach the time series is examined in phase space 

and the method is based upon the time delay embedding τ and 

embedding dimension b. For constituting the required phase 

space, time delay embedding τ and embedding dimension b 

are the important parameters. In Table 1 it is important to note 

that each row of the table is a single point in a phase space. 

The datasets hence created are used in the shape based 

clustering process. The performance criterion for similarities 

in shape for input data used here is known as Log – 

Likelihood. Log-Likelihood is defined as the Log of the value 

of the Probability of observation sequence given the model; 

Log (P (O|)). 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig.1. Flow Chart: Our Algorithm for modeling of time series 

 



 

 

3.1 Training Data Input  

 

The input test data is a one-dimensional continuous series 

which cannot be used as such unless it is converted into 

Usable/Classical dataset where shape based clustering can be 

done. This series though one-dimensional, is dependent on 
past values and the series is modeled in terms of predictor and 

dependent variables.  

The choices of embedding dimension b and time delay τ were 

always based on user‟s experience with trial-and-error. Here, 

the time lag τ is determined using first minimum of mutual 

information technique or autocorrelation function and the 

embedding dimension b can be estimated using false nearest 

neighbor method. 

 

A. Estimation of Time Delay Embedding 

 

As has been explained before, for embedding dimension, we 

need to calculate the value of time delay τ for the required 

phase space. If the value of τ that we calculate is too small, the 

successive elements of the delay vector would end up being 

highly correlated. The two methods used for the estimation of 

τ are based on autocorrelation and mutual information 
respectively. In the first method of autocorrelation, for a time 

series given in (6), the time delay is estimated by calculating 

autocorrelation between 𝑋𝑡  and 𝑋𝑡−𝜏  as shown in (9). 

 

𝐶 𝑋𝑡 ,𝑋𝑡−𝜏 =  
𝐸 𝑋𝑡 , 𝑋𝑡−𝜏 −  𝐸 𝑋𝑡 

2

𝐸  𝑋𝑡 − 𝐸 𝑋𝑡  
2 

                         (9) 

 

If we plot values the values of 𝑋𝑡  versus the corresponding 

values a fixed time lag τ, the autocorrelation C quantifies how 

these points are distributed. If they spread out evenly over the 

plane, then C is zero. If they tend to crowd along the diagonal, 

then C becomes larger than zero. The value of τ can be 
estimated at time instance when the autocorrelation function 

first crosses zero as the time delay.  

 

B. Estimation of the Embedding Dimension 

Now comes the part of the actual estimation of the embedding 

dimension. One way to estimate the embedding dimension “b” 
is using the nearest neighbor method. This implies that a b-

dimensional phase space will have the same topological 

properties as the original phase space . A phase space is a b 

dimensional metric space into which a time series is unfolded. 

Taken‟s Theorem provides the theoretical justification for 

reconstructing state spaces using time-delay embedding. His 

Theorem proved that the state space of an unknown system 

can be reconstructed. If the embedding is performed correctly. 

the theorem guarantees that the reconstructed dynamics are 

topologically identical to the true dynamics of the system. The 

algorithm of finding false nearest neighbor is described as 
follows: For each data point we find the nearest neighbor in 

the b dimensional space which is given by the Euclidean 

distance between the two points. If the embedding dimension 

is changed from b to b+m, the Euclidean distance between the 

two points is calculated by (10) 
  

𝑅𝑖 =
|𝑥𝑖+1 −  𝑥𝑗+1|

|𝑥𝑖 − 𝑥𝑗 |
                                (10) 

 

If  𝑅𝑖 exceed a given threshold v, then b, 𝑋𝑖  is marked as 
having a false nearest neighbor. Therefore, the embedding 

dimension is decided as high enough if the fraction of data 

points for which 𝑅𝑖 >v is zero (or very close to zero). 

Now after selecting the appropriate value of time delay 

embedding and embedding dimension the data is converted 

into the phase space form as shown in Fig. 2. 

 

 

 
 

 
Fig. 2.  Whole  Training Data 

 

 

It can be seen from the figures that the structure of this data is 

very complex and to train this data is a tedious task. Hence the 

data is divided into shape based batches/ clusters to make 

training easier. 

 

The method for data representation is as follows.  

 

Input: O (t-12) O (t-8) O (t-4) O (t)  
Output: O (t+4) 

 

Each dataset consists of five elements, four input elements 

which are known as predictor variables, and one output 

element known as the dependent variable. Table I shows the 

one dimensional vs. classical form representation of the whole 

data set. 
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TABLE I 

ONE DIMENSIONAL VS. CLASSICAL FORM REPRESENTATION 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
The datasets hence created are used in the shape based 

clustering process. 

 

3.2 HMM Creation, Log-Likelihood & Clustering  

 

 

An HMM is created for the training data. From this HMM, the 

log-likelihoods of each of the training vectors is calculated. 

The log-likelihoods are then sorted, from minimum to 

maximum. Depending on the difference between minimum 

and maximum log-likelihood, a fixed log-likelihood range per 
cluster is set, and the clusters assigned to each such interval, 

going from minimum to maximum, much like in [10],[11]. 

This gives us a certain number of clusters (although some of 

these clusters could be empty). Now, depending on the log-

likelihood values of each of the training vectors, they are put 

into one of these clusters. Empty clusters are then deleted. By 

looking closely at the input datasets, it can be easily observed 

that data points which have similar values of Log-Likelihood 

have similar shape.  As in [11], it can be easily observed that 

after a certain value of Log-Likelihood, the shape of the input 

changes and hence cannot be classified into the same cluster. 

For the Mackey Glass time series this value was observed at 
being somewhere around 30. Another important observation 

was that, if the number of observations for each cluster were 

above a fixed value, then the training of the NN for each 

cluster would not yield precise results. This value was set to 

35. Using these basic criterions, an algorithm was developed 

which arranged the data elements into Shape Based clusters.  

The maximum size of the clusters was 35 and the maximum 

Log-Likelihood difference between two consecutive clusters 

was 30. Fig..3 shows the data before and after Shape Based 

Batching One important thing to observe here is that the 

number of batches is not fixed, and the SBB algorithm 
automatically decides the number of batches required. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Shape Based Batches / Clusters of data 
 

Pseudo Code for shape based Batching / clusters is as shown 

in figure 4 

 

 

Fig.4. Pseudo-code of Shape Based Batching Process 

 

 

3.3 Neural Network training  

 
Each cluster is then assigned a neural network Hence the 

number of neural network used are equal to the number of 

clusters.  The four values of each training vector are treated as 

inputs for the network, while the fifth „output‟ sample is used 

 

O1,O2,O3, .  .  .  .  .  .  .  .  .  .  .  .  .  . ,OT-3,OT-2,OT-1,OT 

 
 

DATASET INPUT OUTPUT 

1 O1,O5,O9,O13 O17 

2 O2,O6,O10,O14 O18 
3 O3,O7,O11,O15 O19 
4 O4,O8,O12,O16 O20 

 

Max LogLik Range =  

Max Data Range =  

StartLL = Minimum of Log Lik Values 

StartData = 1 

EndLL = Maximum of Log Lik Values 

EndData = Last Data element 

j=1 

For (LogLik within (StartLL and StartLL+) && Data within 

(StartData and StartData+)) 

 Batch (j).Data=Accepted Data 

 Batch (j).Range=Accepted Range 

 StartLL=StartLL+Accepted Range 

 StartData=StartData+Accepted Data 

 j+=1 

end 
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to iteratively improve the weights of the network, such that the 

actual output of the network for the input vector matches the 

fifth sample The network used is a two layer feedforward 

network, with back propagation being used for updating the 

weights.  

 
 

 3.3 Neural Network training  

 

Each cluster is then assigned a neural network Hence the 

number of neural network used are equal to the number of 

clusters.  The four values of each training vector are treated as 

inputs for the network, while the fifth „output‟ sample is used 

to iteratively improve the weights of the network, such that the 

actual output of the network for the input vector matches the 

fifth sample The network used is a two layer feedforward 

network, with back propagation being used for updating the 

weights.  
 

III. OUR ALGORITHM FOR THE PREDICTION OF TIME SERIES 

 

Fig. 5 shows the flowchart for our algorithm used to predict 

future values of the time series.  

 

For the process of prediction the test data is also grouped 
into usable/ classical form. The row vectors of input test 

datasets are assumed to be observation sequences for the 

Hidden Markov Model that was previously trained during the 

shape based batching process Using problem 1 we find out the 

value of Log-Likelihood for the set of predictor variables and 

hence determine what its shape is. Using the value of the Log-

Likelihood, we can assign a cluster to the dataset and use it as 

an input to the Neural Network of that cluster. The output of 

the Neural Network of that cluster is the predicted 

output/dependent variable of the system. This predicted output 

is compared with other values and a error is drawn. 

 

IV. EXPERIMENTAL RESULTS & CONCLUSION 

 

The approach was applied to the Benchmark Data of the 

Mackey Glass Time Series. Here we have taken first 500 data 

points as training samples and next 500 data points as test 

samples to show the efficiency of the method.  

 
The test-data results of the predicted values are compared with 

the actual values and error plot for the learning and test data 

points are as shown in the Fig.6 and Fig.7 respectively. We 

have compared our results with other methods. For Time 

series prediction that have been performed in the past. In case 

of ANN the number of batches formed was 16 while keeping 

the log-likelihood difference in each batch 30 and the size of 

each batch was 35.  

 

Table II shows the root mean square error comparison method 

of various approaches and the results reported here are very 

encouraging 

 
 

Fig.5. Flowchart: Our algorithm for prediction of  time series 

 

Fig.6 learning data prediction 
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TABLE II 

COMPARISON OF PREVIOUS METHODS 

 

Learning algorithm Results 

Liner Predictive Model , [12] 0.55 

Auto Regressive Model , [12] 0.19 

Wang  and Mendel , [12] 0.091 

Cascade Correlation N N , [13] 0.06 

6
th
 Order Polynomial , [13] 0.04 

Kim and Kim , [13] 0.026 

EPNet , [14] 0.02 

DENFIS (Offline) ,  [15] 0.016 

Data-Driven Linguistic Modeling Using Relational 

Fuzzy Rules  , [17] 
0.009 

ANFIS , [17] 0.007 

GEFREX  , [18] 0.0061 

Md. Rafiul Hassan[10] 0.0055 

HMMSBB+FIS[11] 0.0018 

Hidden Markov Model + Neural Nets 0.0017 

 

 

 
 

Fig.7. Test Data Prediction 
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