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Abstract: Decision making is indispensable to any optimiza-
tion in intelligent computing. In this study, we discuss a math-
ematical foundation for bilateral decision making under syn-
chronous and asynchronous time constraint. The problem on
time constraint is to evaluate the cost of time or the value of
the entire duration of certain decision process. We propose a
formula to compute the cost of time by introduction of opportu-
nity cost to its evaluation. We also propose two formulas on the
strategic points to minimize the cost of time for decision pro-
cess. under synchronous or common time constraint and asyn-
chronous or uncommon time constraints. The proposed formu-
las contribute to accelerating time-sensitive decision making, in-
stead of the heuristic point of the half time.
Keywords: optimization, intelligent computing, decision making,
cost of time, time constraint, asynchronous.

I. Introduction

In this study, we discuss a mathematical foundation for bilat-
eral decision making under synchronous and asynchronous
time constraint. Decision making is indispensable to any
optimization in intelligent computing. A generally accepted
point for decision making ishalf time or the half entire dura-
tion of decision process as a heuristic point for decision mak-
ing. The concept ofcost of time or value of the entire dura-
tion of certain decision process allows us to locate astrategic
point or a point or timing for decision making to minimize
the cost of time. Strategic points accelerate time-sensitive
decision making, instead of the heuristic point of half time.
The community of optimization decision making in a variety
of implementations,e.g., human-machine intelligent systems
for decision making [18, 29, 2, 5, 11]. Not a large number of
researches have examined decision making undertime con-
straint or time stress [16]. Time constraint is, however, dis-
cussed in information search strategies [30] and real-timede-
cision making of multi-agents [15]. We have also discussed
bilateral decision making under synchronous time constraint
in our introductory studies [21, 22, 23, 24]. This study is mo-
tivated to give a general formula on bilateral decision making
under not only synchronous but also asynchronous time con-
straint [25, 26]. The problem on time constraint is to evaluate
the cost of time as the value of the entire duration of certain
decision process [20]. Its well-known concept of computa-
tion is opportunity cost which is the value of the next-best

alternative use of that time [19]. We propose a formula to
compute the cost of time under both synchronous and asyn-
chronous time constraint by introduction of opportunity cost
to its evaluation.
Opportunity cost allows us to discuss strategic points under
time constraint from the viewpoint of not heuristics but ratio-
nality. The subjects to time constraint rather than other fac-
tors often choose irrational strategies in their decision mak-
ing [14]. A typical irrationality under time constraint is found
in a priori acceptance of the heuristic point of half time, but
not a strategic point for decision making to minimize cost
of time. A number of solutions for optimization of decision
making explicitly or implicitly include the heuristic point in
their constraint management mechanisms [27].
Instead of the heuristic point, we propose two formulas on
strategic points under synchronous and asynchronous time
constraint. First, we propose a formula on strategic points
undersynchronous or common time constraint among deci-
sion makers. The strategic points under synchronous time
constraint are always located at the one-third entire duration
and the one-third remaining duration of decision process, in-
stead of the heuristic point of half time. Second, we propose
a formula on strategic points underasynchronous or uncom-
mon time constraint among decision makers. Strategic points
under asynchronous time constraint are located at the one-
third shorter entire duration and/or at the one-third shorter re-
maining duration or at the one-third longer entire durationof
decision process in certain specific cases,i.e., specific ranges
of the ratios of shorter duration to longer duration of decision
process.
We give brief definitions to following concepts which are in-
troduced in this study, as below: First, decision makers inbi-
lateral decision making have only two options to leave from
or to stay in decision process [6]; Second, bilateral decision
making has two types of games, among which arepeated
game consists of some number of repetitions of some base
game but asingle stage game is a non-repeated game [12];
Third, the value ofgain in a game is subject to a certain hy-
pothetical wage rate of possible works which are taken by
decision makers instead of their current tasks [1]. The hypo-
thetical wages are substitutable with prices of the individual
items which are available as objects of transaction or nego-
tiation during certain decision process [3]. The gain takesa
form of linear curve on its function [13]; And, Fourth,free
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access to information regarding any gain or the prices of indi-
vidual items in decision process is indispensable to the com-
putation of cost of time [3].
The cost of time in a repeated game is computed on the basis
of opportunity cost, because a single stage game always takes
unique values on prices of its individual items, however, a re-
peated game does not [19]. Figure 1 describes the basic idea
on the computation of opportunity cost in a repeated game by
using the prices of individual items in a single stage game:
Suppose that Group A gained $100 at 50 minutes during its
entire 150 minutes in a repeated game; Group B gained $200
at 100 minutes during its entire 200 minutes in a single stage
game; Thus, Group A dismissed its opportunity of the larger
gain, here $200, so that its remaining time, here 100 min-
utes, was evaluated as equivalent to the same amount of that
monetary value, $200, as its opportunity cost. Thus, any op-

50

200

Group B

Group A

Possible Switch to Other Game

Opportunity Cost ($200)$ 100 

$ 200 
100

150

t (minutes)

Figure. 1: The computation of opportunity cost

portunity cost of time for acquiring certain gain is equivalent
to the additive of prices of individual items which are avail-
able during certain decision process.
We rely on following findings in behavioral sciences, espe-
cially, cognitive science, which are introduced as the limi-
tations to this study, as below: First, we introduce the find-
ings intransitional games or the games of the decision mak-
ing under time constraint. Decision makers under time con-
straint do not always behave rationally in transitional games,
but behave more like real people to sometimes select irra-
tional strategies [4, 17, 7]; Second, decision makers under
time stress are risk averse or conservative at lower risk levels
[8]; And, Third, people under time stress face only two out-
comes,i.e., all or nothing, here, leave or stay, and are always
to account for certain equilibrium across any stage of their
games [9].
We also apply an assumption onreinforcement learning as a
limitation to this study, as below: Decision makers are to be
aware of the information regarding the works of their envi-
ronments, such as the gain and the cost of time through their
first decision making, however, they are to only carry it out
to their succeeding or future decision process [28].
This study contributes to the computation of cost of time and
the formulation of strategic points under both synchronous
and asynchronous time constraint, instead of the heuristic
point. Especially, the proposed formulas are to minimize
cost of time and to accelerate time-sensitive decision mak-
ing which is indispensable to any solutions for optimization
in intelligent computing.
The remaining of this study is organized as follows. In Sec-
tion II, we give a formula to evaluate cost of time, and deduct
from it two formulas on strategic points under synchronous
and asynchronous time constraint, respectively. In Section
III, we conduct a feasibility check on those formulas in their
applications to a case study. In Section IV, we give various
analyses of the case study with the contributions and limita-
tions of the proposed formulas. In Section V, we conclude

this study with our future work.

II. Formula

In this section, we give a formula to evaluate cost of time, and
then deduct from it two formulas on strategic points to min-
imize cost of time for decision process under synchronous
and asynchronous time constraint, respectively.

A. Cost of Time

Any cost of time is equivalent to the additive of prices of
individual items which are available during certain decision
process. Here, we simply define the cost of time under syn-
chronous time constraint, though its definition is applicable
to the cost of time under asynchronous time constraint with-
out any limitation. We introduce two assumptions, as below:

Assumption 1 Any price of an individual item is always
given as a certain static value in a single stage game;

Assumption 2 Any cost of time is in proportion to the ra-
tio of elapsed time to the entire duration of certain decision
process.

Assumptions 1 and 2 assure that prices of individual items in
single stage games and the entire duration of decision process
are given as static values, respectively.
We give a formula to evaluate cost of time in single stage
games asCs

(t), as below:

Definition 1

Cs
(t) ≡

t

τ
·

n
∑

k=1

pk. (1)

s.t. t represents elapsed time in certain decision process, t ∈
R; τ is given as a certain static value to the entire duration
of certain decision process, τ ∈ R; pk represents a price of
the k-th individual item from 1 to n in a single stage game, p
∈ R, k, n ∈ N .

Definition 1 assures that any cost of time is equivalent to the
gain or the additive of prices of individual items which are
available in single stage games. The gain in a repeated game
does not have its unique value in a variety of its next-best al-
ternatives so that we use opportunity cost for its computation
to identify the unique value.
We introduce two more assumptions, as below:

Assumption 3 Any repeated game is to be expected to spend
at least the same duration of its previous game in its next
game;

Assumption 4 Any function on the cost of time always takes
a certain equivalent value in its transition from a repeated
game to a single stage game.

Suppose that a repeated game transits into a single stage
game at the half time or the half entire duration; The new sin-
gle stage game takes that same half time again so that both
the repeated game and the single stage game face a certain
equivalent value at the half time,t = τ

2 . Assumptions 1 to 4
allow us to deduct a lemma on the gain in a repeated game
which is to be a certain static value,P r.
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Lemma 1

P r =
1

2

n
∑

k=1

pk. (2)

τ
2

τ

n
∑

k=1

pk = ⌊ ττ
2

⌋ ·
τ
2

τ
· P r. ∵ Cs

( τ

2 )
= Cr

( τ

2 )
.

s.t. ⌊·⌋ is the floor function;⌊ τ
t
⌋ represents the possible times

of repetitions of some base game to acquire the next-best al-
ternatives as opportunity cost.
We give a formula to evaluate cost of time in repeated games
using the lemma 1 asCr

(t), as below:

Definition 2

Cr
(t) ≡ ⌊τ

t
⌋ · t

τ
· 1
2

n
∑

k=1

pk. (3)

B. Strategic Point Under Synchronous Time Constraint

Here, we give a formula on strategic point under synchronous
time constraint. Suppose that a repeated game transits into
a single stage game at the heuristic point of half time, dis-
cussed as above. Decision makers in this gamea priori ac-
cept half time as their point for decision making. In this case,
we give a function on the ratio of gain to cost of time,P

C(t)
,

as below:

Definition 3

P

C(t)
=











P r

Cr

(t)
= 2τ

⌊ τ

t
⌋·t if 0 ≤ t

τ
≤ 1

2 ,

P s

Cs

(t)
= τ

t
else if 1

2 ≤ t
τ
≤ 1.

(4)

0

Time (minute)

Entire Duration
1/ 3 160

Half Time

3

2

Figure. 2: The function on the ratio of gain to cost of time,
P

C(t)
: a repeated game transits into a single stage game at half

time

Figure 2 describes that the function always takes its largest
value 3.00 at the one-third entire duration of decision process
before the heuristic point, half time. Its peak is the strategic
point to minimize cost of time. We prove this finding as a
theorem, as below:

Theorem 1

arg max
[0≤t≤ τ

2 ]

P

C(t)
= lim

t→ τ

3 +0

P r

Cr
(t)

= 3.00. (5)

arg max
[0≤t≤ τ

2 ]

P

C(t)
= lim

t→ τ

3+0

P r

Cr
(t)

= 2 · τ

⌊ τ
( τ

3+0)⌋ · τ
3

= 3.00

> lim
t→ τ

4+0

P r

Cr
(t)

= 2.67 > lim
t→ τ

5 +0

P r

Cr
(t)

= 2.50 > · · · .

∵ lim
t→ τ

3+0
⌊τ
t
⌋ = 2; lim

t→ τ

4 +0
⌊τ
t
⌋ = 3; lim

t→ τ

5 +0
⌊τ
t
⌋ = 4; · · · .

Therefore, any strategic point under synchronous time con-
straint is always located at the one-third entire duration of
decision process before the heuristic point of half time. Af-
ter half time, decision makers have two options: leave from
or stay in the current decision process. The former option
allows them in the new process to scale down by half on the
duration of their decision process and to apply the function
on the ratio of gain to cost of time as described in Equation
(4). In this option, its function takes the following equation:

Definition 4

P

C(t)
=











P r

Cr

(t)
= τ

⌊ τ

2t−τ
⌋·(t− τ

2 )
if 1

2 ≤ t
τ
≤ 3

4 ,

P s

Cs

(t)
= 1

2t
τ
−1

else if 3
4 ≤ t

τ
≤ 1.

(6)

The upper of Figure 4 describes that the function in the sec-
ond repeated game always takes its largest value 3.00 at the
two-thirds entire duration or the one-third remaining duration
of decision process. Its peak is a strategic point to minimize
cost of time.

Function - P / C : Ratio of the Gain to the Cost of Time

0

Time (minute)

Entire Duration
160

3

2
STAY REVERSE FORM OF

PREVIOUS CURVE

1/2 2/3 (NEW 1/3)

LEAVE

2

SCALE DOWN
OF PREVIOUS CURVE

3

2/3 (NEW 1/3) Remaining Duration

Figure. 3: Strategic points after leave and stay

On the contrary, decision makers select the strategy to stay
in the current decision process and face two types of func-
tions: One function is the same with the above equation (6);
The other function takes reverse or backward move from half
time to the point of the one-third entire duration of decision
process. In this option, its function takes the following equa-
tion:

Definition 5

P r

Cr
(t)

=
2τ

⌊ τ
τ−t

⌋ · (τ − t)
(
1

2
≤ t

τ
≤ 1). (7)
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The lower of Figure 4 describes that the function in the sec-
ond repeated game always takes the largest value 3.00 at the
two-thirds entire duration or the one-third remaining duration
of decision process. Its peak is a strategic point to minimize
cost of time. We prove this finding as a theorem, as below:

Theorem 2

arg max
[ 12≤t≤1]

P

C(t)
= lim

t→ 2τ
3 +0

P r

Cr
(t)

= lim
t→ 2τ

3 −0

P r

Cr
(t)

= 3.00.

(8)

arg max
[ 12≤t≤1]

P

C(t)
= lim

t→ 2τ
3 +0

P r

Cr
(t)

=
τ

⌊ τ

2( 2τ
3 +0)−τ

⌋ · ( 2τ3 − τ
2 )

= 3.00

> lim
t→ 5τ

8 +0

P r

Cr
(t)

=
8

3
= 2.67 > · · ·

> lim
t→ 3τ

5 +0

P r

Cr
(t)

= lim
t→ 3τ

5 +0

P s

Cs
(t)

=
5

2
= 2.50;

arg max
[ 12≤t≤1]

P

C(t)
= lim

t→ 2τ
3 −0

P r

Cr
(t)

=
2τ

⌊ τ

τ−( 2τ
3 −0)

⌋ · (τ − 2τ
3 )

= 3.00

> lim
t→ 5τ

8 −0

P r

Cr
(t)

=
8

3
= 2.67 > · · ·

> lim
t→ 3τ

5 −0

P r

Cr
(t)

= lim
t→ 3τ

5 −0

P s

Cs
(t)

=
5

2
= 2.50.

∵ lim
t→ 2τ

3 +0
⌊ τ

2t− τ
⌋ = lim

t→ 2τ
3 −0

⌊ τ

τ − t
⌋ = 2.00.

Therefore, another strategic point under synchronous time
constraint is always located at the one-third remaining dura-
tion of decision process after the first heuristic point of half
time and before the other heuristic point of half time in both
single stage games and repeated games.

C. Strategic Point Under Asynchronous Time Constraint

Here, we give a formula on strategic point under asyn-
chronous time constraint. Suppose that each decision maker
has his or her individual uncommon entire duration of deci-
sion process. We introduce an assumption for simplification
of the computation on cost of time under asynchronous time
constraint, as below:

Assumption 5 Any synchronization of the respective dura-
tion of decision process is not to be expected or executed
during any process of decision making.

Assumption 5 assures that the function on the ratio of gain
to cost of time under asynchronous time constraint takes the
following equation on the basis of Equations (4), (6) and (7),
Pa

Ca

(t)
:

Definition 6

P a

Ca
(t)

=
1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=























2τ
⌊ τ

t
⌋·t (0 ≤ t

τ
≤ 1

2 ),
τ

⌊ τ

2t−τ
⌋·(t− τ

2 )
( 12 ≤ t

τ
≤ 3

4 ),
1

2t
τ
−1

( 34 ≤ t
τ
≤ 1),

2τ
⌊ τ

τ−t
⌋·(τ−t) ( 12 ≤ t

τ
≤ 1).

(9)
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* (120, 2.40)

* (26.7, 2.70)

* (13.3, 2.59)
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Figure. 4: Strategic point under asynchronous time con-
straint (τ

1

τ2 = 1
4 )

Figure 4 describes that the function of a specific case, here
τ1

τ2 = 1
4 , takes its single largest value 2.70 at the one-third

shorter remaining duration of decision process. Its peak isa
strategic point to minimize cost of time. A strategic point is
always located at the one-third shorter remaining durationof
decision process in the following range of the ratios of the
shorter duration to the longer duration of decision process,
0 < τ1

τ2 < 2
3 , but for the two exceptions, as below. First,

the function of the specific case, hereτ1

τ2 = 1
3 , takes its two

largest values 2.63 at the one-third shorter entire duration and
the one-third shorter remaining duration of decision process,
respectively. Those two peaks are strategic points to mini-
mize cost of time. Those points are always located at the
one-third shorter entire duration and the one-third shorter re-
maining duration of decision process in the following range
of the ratios of shorter duration to longer duration of deci-
sion process,0 < τ1

τ2 = 1
2n+1 , n ∈ N ≤ 1

3 . Second, the

function of other specific case, hereτ
1

τ2 = 7
24 , takes its sin-

gle largest value 2.60 not at but close to the one-third shorter
remaining duration of decision process. Its peak is a strate-
gic point to minimize cost of time. A single strategic point
is always located not at but close to the one-third shorter re-
maining duration of decision process in the following only
three cases of the ratios of shorter duration to longer dura-
tion of decision process,τ

1

τ2 = 7
24 ,

7
20 ,

7
19 . We provide this

finding as a theorem as below:

Theorem 3

arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→2 τ1

3 ∓0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=
3

2
+

3

2
· τ

2

τ1
1

⌊ 3τ2

2τ1+0⌋

(0 <
∀τ1

∀τ2
6= 7

24
,
7

20
,
7

19
<

2

3
); (10)
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arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→ τ1

3 +0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=
3

2
+ 3 · τ

2

τ1
1

⌊ 3τ2

τ1+0⌋

(0 <
τ1

τ2
=

1

2n+ 1
, n ∈ N <

2

3
); (11)

And,

arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→2 τ1

3 +α∓0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=
τ1

⌊ τ1

τ1−{(2 τ1

3 +α)−0}
⌋ · {τ1 − (2 τ1

3 + α− 0)}

+
τ2

⌊ τ2

{(2 τ1

3 +α)+0}
⌋{(2 τ1

3 + α) + 0}
(
τ1

τ2
=

7

24
,
7

20
,
7

19
).

(12)
s.t. τ1 < τ2; 0 < α ∈ R is given as a certain proper static
value.

Other two cases on the function follow similar theorems. In
another range of the ratios of shorter duration to longer du-
ration of decision process,23 ≤ τ1

τ2 ≤
√
6
3 , a single strategic

point is always located at the one-third shorter entire duration
of decision process but for two exceptions. First, the function
at τ1

τ2 =
√
6
3 takes its two largest values 2.72 at the one-third

shorter entire duration and the one-third longer entire dura-
tion of decision process, respectively. Second, the function
at τ1

τ2 = 2
3 takes its single largest value 2.67 not at but close

to the one-third shorter entire duration of decision process.
The single strategic point is always located not at but close
to the one-third shorter entire duration of decision process in
the following range of the ratios of shorter duration to longer
duration of decision process,23 ≤ τ1

τ2 < 3
4 .

Theorem 4

arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→ τ1

3 +0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=
3

2
+ 3 · τ

2

τ1
1

⌊ 3τ2

τ1+0⌋

(
3

4
≤

∀τ1

∀τ2
<

√
6

3
); (13)

arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→ τ2

3 +0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= 3 · τ
1

τ2
1

⌊ 3τ1

τ2+0⌋
+

3

2

=
3 +

√
6

2
(
τ1

τ2
=

√
6

3
); (14)

And,

arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→ τ1

3 +β+0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=
τ1

⌊ τ1

{( τ1

3 +β)+0}
⌋{( τ1

3 + β) + 0}

+
τ2

⌊ τ2

{( τ1

3 +β)+0}
⌋{( τ1

3 + β) + 0}
(
2

3
≤

∀τ1

∀τ2
<

3

4
). (15)

s.t. τ1 < τ2; 0 < β ∈ R is given as a certain proper static
value.

In the other range of the ratios of shorter duration to longer
duration of decision process,

√
6
3 < τ1

τ2 < 1, a strategic point
of the one-third shorter entire duration of decision process
is exceptionally accompanied with another strategic pointof
the one-third longer entire duration of decision process at
τ1

τ2 = 6
7 .

Theorem 5

arg max
[0≤t≤1]

P a

Ca
(t)

= arg max
[0≤t≤1]

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

= lim
t→ τ2

3 +0

1

2

∑

τ∈τ1,τ2

P a
τ

Ca
τ(t)

=
3

2
(
τ1

τ2
+1) (

√
6

3
<

τ1

τ2
< 1).

Theorems 3 to 5 describe that strategic points under asyn-
chronous time constraints are located at or close to the one-
third shorter entire duration and/or at the one-third shorter re-
maining duration or at the one-third longer entire but not re-
maining duration of decision process in the respective ranges
of the ratios of shorter duration to longer duration of decision
process. In the next section, we apply the above formulas on
cost of time and strategic points to a case study.

III. Case Study

In this section, we apply the formulas on the cost of time
and the strategic point to the following case study for their
feasibility check.
Case: The Multisearch Software Case is an introductory
practice for decision making in American business schools
[10]. That case is a business alliance game on a certain soft-
ware development between a developer and a company.
Participant record : We have three different groups for their
trial sessions. All eight participants of A and B, C and D, E
and F, and G and H constitute three separate groups 1 (A, B),
2 (C-D, E-F) and 3 (G, H), respectively:

• Those participants are divided in three groups, two sin-
gle parties of one-to-one players and a multi-party of
two-to-two players; And,

• Respective groups negotiate over a single case once, re-
spectively.
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Table 1: The results on the case study.
Company side A & G C & D

Developer side B E, F & H

Prices of individual items (outcomes)

1. Royalty to developer 10%, 4 years 8%, 5 years

2. Advance to developer $250,000- $150,000-

3. Promotion for sales $1,000,000- $1,100,000-

4. The additional to developer N/A $1,000,000- (5 years)

5. Commitment by developer to company $300,000- (2 years) $750,000- (5 years)

6. Developer’s independent gain $150,000- /year after the 3rd year N/A

Additive of 1 to 6 P s1 = $2,400,000- P s2 = $3,700,000-

Entire duration (given) τ1 = 120 minutes τ2 = 160 minutes

Selection of strategy Stay Stay

Entire duration of decision process: The developer accepts
3 to 6 months and the company does 3 to 4 months for the
release of their final product. The individual duration of deci-
sion process is scaled down in practice to 120 minutes for A,
B and G and 160 minutes for C, D, E, F and H, respectively.
Elapsed time record: The sessions took 50 minutes in
Group 1 of A and B, 95 minutes in Group 2 of C-D and E-F
and 50 minutes in Group 3 of G and H.
Prices of individual items: Table 1 describes the prices
of individual items in detail which are their negotiated out-
comes. The estimated annual revenue from the sales of the
software product was given as $1,000,000 to those groups in
advance. The monetary value of stock option and pension
plan was negotiated and agreed as $300,000 in total among
those groups in practice.

IV. Discussion

In this section, we discuss the applications of the proposed
formulas on cost of time and strategics point with their con-
tributions and limitations. The primary issue is whether the
proposed formulas are to suggest any improvement in the de-
cision process of respective groups regarding the results of
the case study.
Group 1 passed the first strategic point at 40 minutes and
closed its game at the point of 50 minutes, which was even
before the heuristic point of half time, 60 minutes, as de-
scribed in Figure 5. The ratio at 50 minutes was 2.40 (

+ 3.00

+ 2.67

* [50, 2.4]
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3
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t

Figure. 5: Group 1’s ratio of gain to cost of time (X: t (min-
utes); Y: P 1

C1
(t)

): equation (4)

∵
P 1

C1
(50)

= 2·120
⌊ 120

50 ⌋·50 ). That ratio of 2.40 was smaller than

the ratio of 3.00 at the strategic point and even another ratio
of 2.67 at its previous second-best peak point.
Group 2 passed the first strategic point at 53.3 minutes and

+ 3.00

+ 2.67

[95, 2.13]

[95, 2.46] *

*

STAY

LEAVE

TWO THIRDONE THIRD HALF TIME

* [95, 1.68]
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Figure. 6: Group 2’s ratio of gain to cost of time (X: t (min-
utes); Y: P 2

C2
(t)

): equations (4), (6) and (7)

closed its game at the point of 95 minutes, which was lo-
cated before the second heuristic point of half time of its
remaining duration,i.e., 120 minutes, but quite close to an-
other strategic point of 107 minutes, as described in Figure
6. The ratios at 95 minutes were 1.68 (∵

160
95 ) on Equation

(4), 2.13 (∵ 160
⌊ 160
2·95−160 ⌋(95− 160

2 )
) on Equation (6) and 2.46

(∵ 2·160
⌊ 160
160−95 ⌋(160−95)

) on Equation (7), respectively. The ra-

tio of 2.46 was smaller than the ratio of 3.00 at the strategic
point and even another ratio of 2.67 at its previous second-
best peak point.

+ [40, 2.83]

* [50, 2.27]
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Figure. 7: Group 3’s ratio of gain to cost of time (X: t (min-
utes); Y: P 3

C3
(t)

): equation (9)

Group 3 passed the first strategic point at 40 minutes and
closed its game at the point of 50 minutes, which was before
the heuristic point of half time or the half shorter entire du-
ration, 60 minutes, as described in Figure 7. The ratio at 50
minutes was 2.27 (∵ P 3

C3
(50)

= 120
⌊ 120

50 ⌋·50+
160

⌊ 160
50 ⌋·50 ). That ratio

of 2.27 was the smaller than the ratio of 2.83 at the strategic
point.
The participants faced Equations (1) and (3) as their respec-
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Figure. 8: The differentiated ratio of gain to cost of time

before the half time (X: t (minutes); Y:
d P

C(t)

dt
): the differen-

tiation of Equation (4)
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Figure. 9: Cost of time (X: t (minutes); Y:C(t)): Equations
(1) and (3);P 1s is given as 1

tive functions on cost of time, as described in Figure 9. Here,
A, B and G’s gain as their negotiated outcomes or the addi-
tives of prices of individual items in their single stage games,
P 1s, was given as 1 so that C, D, E, F and H’s gain in their
single stage game was to be 1.54 (∵

3,700,000
2,400,000 ). The initial

value on C, D, E, F and H’s cost of time was evaluated as
larger than the initial value on A, B and G’s cost of time; C,
D, E, F and H’s realized gain in their single stage games was
larger so that their initial object for gain was evaluated asthe
larger than the initial object for A, B and G’s gain.
We discuss the elements on the selection of the strategic
points under synchronous and asynchronous time constraint.
First, the entire duration of decision process is to be long
enough. Second, larger gain to longer duration allows deci-
sion makers to face the more appropriate initial value in the
function on cost of time. C, D, E and F realized the larger
amount of gain in proportion to the longer duration (2.31
× 104 = $3,700,000

160 minutes) rather than A and B did (2.00×104 =
$2,400,000
120 minutes ) so that C, D, E and F enjoyed the appropriate
proportion of the realized gain to the cost of time. Third, bet-
ter timing allows decision makers to face a variety of options
from the first strategic point to the second strategic point,if
possible, even after the first heuristic point of the half time.
Fourth, decision makers are to improve their decision mak-
ing with their preliminary communication on their uncom-
mon time constraint. G and H were quite close to their single
strategic point. Finally, cost of time increases under asyn-
chronous time constraint rather than under synchronous time
constraint, ( Pa

Ca

( τ1
3

)

= 2.83 < P 1

C1

( τ1
3

)

= 3.00), as described

in Figure 7. The synchronization of time constraint allows
decision makers to always enjoy two strategic points and to
decrease the cost of time.
The contributions of the proposed formulas are found, as be-

low. First, the monetary evaluation of cost of time allows
transparent decision making under time constraint. Second,
strategic points allow decision makers to take advantages of
time resources more effectively, instead of the heuristic point
of half time. Third, strategic points allow decision makersto
mutually communicate on and to amicably synchronize their
duration of decision process for accelerating time-sensitive
decision making. The remaining limitations to this study
are found, as below: First, the proposed formulas still ac-
cept given initial values on prices of individual items; And,
Second, strategic point for multilateral decision making un-
der asynchronous time constraint is the next problem for our
future work.

V. Conclusion

In this study, we have proposed a mathematical foundation
for bilateral decision making under synchronous and asyn-
chronous time constraint. We discussed the problem on time
constraint and proposed formulas to compute cost of time by
introduction of opportunity cost to its evaluation under time
constraint. We found strategic points which always exist at
or close to the one-third shorter entire and/or at the one-third
shorter remaining duration or at the one-third longer entire
but not remaining duration of decision process in respective
ranges of the ratios of shorter duration to longer duration of
decision process. Strategic points accelerate time-sensitive
decision making which is indispensable to any solutions for
optimization in intelligent computing, instead of the heuristic
point of half time. We have conducted the feasibility check
on the proposed formulas in their applications to a case study.
In our future work, we would extend our proposed formulas
to the multilateral decision making under asynchronous time
constraint and implement it in agent-based intelligent sys-
tems.
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