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Abstract: Recognition by Indexing and Sequencing (RISq) is
a general-purpose example-based method for classification of
temporal vector sequences. We developed an advanced ver-
sion of RISq and applied it to speech recognition, a task most
commonly performed with Hidden Markov Models (HMMs) or
Dynamic Time Warping (DTW). RISq is substantially differ-
ent from both these methods and presents several advantages
over them: robust recognition can be achieved using only a few
samples from the input sequence and training can be carried
out with one or more examples per class. This enables much
faster training and also allows to recognize speech with a va-
riety of accents. A two-step classification algorithm is used:
first the training samples closest to each input sample are iden-
tified and weighted with a parallel algorithm (indexing). Then a
maximum weighted bipartite graph matching is found between
the input sequence and a training sequence, respecting an ad-
ditional temporal constraint (sequencing). We discuss the ap-
plication of RISq to speech recognition and compare its archi-
tecture and performance with that of Sphinx, a state-of-the-art
speech recognizer based on HMMs.
Keywords: example-based speech recognition; recognition by in-
dexing and sequencing; RISq; compounded examples

I. Introduction

Hidden Markov Models (HMMs) are one of the most popu-
lar techniques for classification of temporal sequences, such
as speech [1], gestures [2] and human actions [3]. HMMs are
a parametric technique which uses statistical models to rep-
resent the underlying process. They need to maintain a very
large number of parameters, which in turn leads to a long and
complicated Expectation-Maximization (EM) training algo-
rithm that requires a large amount of data. In most HMM-
based state-of-the-art speech recognizers, such as Sphinx [4],
the acoustic model for a word is composed of smaller models
of the phonemes in the word. Phonemes in turn are composed
of three states, an on-set, a middle, and an end, and each
of these states is modeled with a Gaussian mixture model
(GMM). When D dimensions (i.e. features) and G Gaus-
sians are used, O(D2 × G) parameters are needed for each
state if full covariance matrices are used. This can be reduced
toO(D×G) when only elements on the main diagonal of the
covariance matrices are retained. In Sphinx, D = 39 and G

varies between 8 and 32, which represent typical values for
this kind of system. A complex and data-intensive training
procedure is needed to reliably estimate these parameters.
Dynamic Time Warping (DTW) is a simpler non-parametric
technique to align sequences that was also applied to speech
recognition. In its original formulation, DTW can only be ap-
plied to two mono-dimensional vectors: first a matrix is built
to measure the distance from each element of one sequence
to each element of the other one; then a minimum-cost path
is found with a dynamic programming algorithm. Only re-
cently DTW has been extended to multi-dimensional vectors
[5] and multiple sequences [6].
Recognition by Indexing and Sequencing (RISq) [7, 8, 9] is
also a non-parametric technique that takes a classical pat-
tern recognition example-based approach modified for vec-
tor sequencing and presents some advantages with respect
to both HMMs and DTW. RISq uses a simple training proce-
dure and can achieve robust recognition even when training is
performed with only one example sequence from each class.
However, it is possible to train RISq with many independent
example sequences for the same class. In this case, classifi-
cation uses a compounded example approach, where parts of
different example sequences can be combined to optimally
match the input sequence. These advantages are particularly
critical for applications where only a few sequences are avail-
able for training and where significant differences are present
among data of the same class, such as in a multi-modal ef-
fective communication interface for the elderly [10] that we
are developing.
While RISq has some resemblance to DTW, it also has signif-
icant improvements over it. Both methods match sequences
while allowing warping and use dynamic programming to
find the optimal matching score. However RISq and DTW
are different in many respects:
1) Distances: DTW minimizes the distance between se-
quences, whereas RISq maximizes the total similarity, which
leads to different outcomes. Moreover, RISq can also penal-
ize dissimilarity, while DTW can only use distance penalties.
2) Segmentation: With DTW the beginning and end of the
sequence must be defined. When applying DTW to continu-
ous data streams, such as speech, this requires segmentation,
a very error-prone process. RISq does not need boundary-
aligned sequences as it can match only parts of a sequence.
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3) Matching-1: With DTW a continuous monotonic path
must be built to match each sample in one sequence to a sam-
ple in the other sequence. This also means that DTW has dif-
ficulties handling incomplete sequences due to signal noise
and interference. By performing bipartite graph matching,
RISq allows partial matching of sequences in any sequential
configuration.
4) Matching-2: indexing in RISq allows partially parallel
recognition, whereas DTW is entirely serial.
In principle, RISq can recognize any kind of spatial or tem-
poral sequence, such as human activities, to which it was
already successfully applied [7]. The original formulation of
RISq is described in [8], which also suggests its possible ap-
plication to speech. However, it neither clearly describes the
methodology nor gives all the necessary details for a working
application for speech. The major contributions of this paper
are improvements to the basic methodology and the appli-
cation of RISq to both isolated-word and continuous speech
recognition. The performance of RISq is compared to that of
Sphinx on a standard speech database.

II. Related work

The only application of RISq [8] so far was in the activity
recognition domain [7, 11]. In this work 8 different activities
were used for training and testing reaching an accuracy of
100% in ideal conditions. In order to improve robustness to
occlusion, the human body was decomposed in 5 parts: head
and torso, arms and legs. The position and speed of head and
torso, upper and lower arms and upper and lower legs were
tracked, using a total of 18 dimensions. Votes were collected
independently for each body part, so that recognition rates
of 70% to 97.5% were obtained even with up to 3 out of 5
occluded body parts.
Sphinx is a speech recognition system based on HMMs, de-
veloped by Carnegie Mellon University over the last two
decades, and is currently considered the state-of-the-art; an
overview of the most recent version, Sphinx-4 is given in [4].
Recently, there has been renovated interest in example-based
systems for speech recognition. One of the main reasons
that initially lead to the development of HMMs was the very
limited available computational power. As computers grow
more powerful, example-based techniques become feasible
even for medium and large vocabulary applications.
The example-based system presented in [12] drops modeling
but keeps the Bayesian approach that is typical of HMMs.
The main characteristics of this system are a new class-based
distance measure, a bottom-up template selection algorithm,
the use of costs based on meta-information and an improved
DTW decoder. While this approach does not outperform
HMMs alone, it improves on state-of-the-art results when
combined with HMMs.
Another interesting method is based on sparse representa-
tion [13], i.e. representing a signal by a linear combination
of example units. The authors investigate several alterna-
tive ways of incorporating sparse representation in classical
HMM systems. They show how one of the proposed tech-
niques, dubbed sparse classification, outperforms HMMs es-
pecially in conditions of very noisy speech by separately ac-
counting for speech and noise.

III. Methodology

RISq is a non-parametric technique, so it does not make any
attempt at building a model for each class to be recognized.
Instead, training is performed by simply storing one or more
example sequences per class in an underlying data structure.
Each sample in a sequence is a vector, whose kind and di-
mensionality varies with the application. For some applica-
tions it might be possible to directly use raw data, whereas
with other ones, such as speech, preprocessing is necessary
to extract features.
After training is performed, an unknown input sequence can
be classified using a two-step algorithm. The first step is
indexing, which consists in identifying the training samples
closest to each input sample and assigning them a vote de-
pendent on their distance. The second step is sequencing,
which finds a maximum weighted bipartite graph matching
between the input sequence and a training sequence, respect-
ing an additional temporal constraint.

A. Training procedure

With RISq, similarly to DTW, the training procedure sim-
ply consists of storing all the samples from the training se-
quences in an underlying data structure, along with its tim-
ing, class and a sequence identifier. This training procedure
can be performed with one or more multiple independent
sequences per class, an approach that cannot be used with
HMMs or DTW.
With our approach, in the classification stage we retrieve
the training samples that are closest to some of the sam-
ples from the input sequence, according to some distance
function. This task is known in computational geometry as
a range search and it is related to nearest-neighbor search.
When operating in more than a few dimensions, the feature
space is sparse and the most efficient known data structure
for this task is a kd-tree (k-dimensional tree). If n points are
stored in a balanced kd-tree, the computational complexity
of a range search is O(n1−1/d + p), where p is the number
of points returned [14]. This result holds if n � 2D, where
D is the number of dimensions, otherwise most of the tree
needs to be searched and the complexity is no better than ex-
haustive search. Despite suffering from the so-called “curse
of dimensionality”, the kd-tree still provides a modest im-
provement with respect to exhaustive search and is the best
known exact method for nearest neighbor retrieval in a high-
dimensional space.

B. Classification procedure

The classification procedure comprises three main steps:
downsampling the input sequence, indexing and optimal se-
quencing.
Supposing that the input sequence is initially sampled at the
same frequency as the training sequences, we can resample
it at a much slower rate, reducing the computational burden
of the subsequent stages without significantly compromising
the recognition rate [7]. The re-sampling can be performed
with uniform sampling or with random sampling from a uni-
form distribution. The second case is more interesting, as
it simulates the situation of an input sequence with missing
data.

  359 Franzini and Ben-Arie



In the next step each input sample is indexed in the kd-tree: a
nearest-neighbor search is performed to retrieve a fixed num-
ber of its nearest training samples and each of them is as-
signed a vote which is an inverse function of the Euclidean
distance from the corresponding input sample. This consti-
tutes a difference with our previous approach of performing a
range search, where a range is specified and a variable num-
ber of neighbors is returned at each sample. The search with
a fixed number of neighbors provides a better recognition rate
and less variability in the time needed for recognition. This
stage is parallel since it considers all of the samples from
each example sequence and class at the same time, ignoring
the class labels and timing attached to each sample that will
be taken into account during the sequencing stage. We assign
a vote to each retrieved neighbor proportionally to a Gaus-
sian function of the distance d: vote = e−d

2/2×σ2

where σ
is a parameter selected with statistical analysis. This leads to
votes between 0 and 1.
The last step in the classification is to find an optimal se-
quence of votes for each class, that is a maximum weighted
bipartite graph matching between the samples of the input se-
quence and the retrieved samples of each training sequence,
a problem efficiently solvable by the Hungarian method [15].
However, we apply an additional temporal sequencing con-
straint that imposes the same ordering on the matched train-
ing sequence as that of the input sequence. Thus, the stan-
dard weighted bipartite graph matching no longer applies and
we need to develop a novel algorithm to efficiently solve this
problem. Let us show an example.
We will first consider the case where training is performed
with only one example sequence for each class. Assume that
we are computing an optimal sequence for class i and let us
define an input sample as tp and a training sample as ni,q ,
where p and q represent timing. Then the constraint is: if ta
votes for ni,c and tb votes for ni,d and a < b, then c ≤ d. An
example of this procedure is shown in Figure 1.

… t3 …

n1,3 n1,5

0.8

n1,8

0.3

t9 …

0.7

n1,9

0.5

… …

Figure. 1: Sequencing example

Suppose that we are computing the matching score between
the input sequence and class 1. At the top of the figure we see
two samples from the input sequence, t3 and t9. At the bot-
tom of the figure we see training samples voted by the two
input samples from the example sequence for class 1. The
numbers on the edges represent the corresponding votes. The
maximum matching is {t3, n1,5}, {t9, n1,3}, yielding a score
of 1.5. However, this is not allowed because t3 precedes
t9, but n1,5 follows n1,3. Therefore, the optimal matching
that respects the temporal constraint is {t3, n1,5}, {t9, n1,9},
yielding a score of 1.3.
When classifying an input sequence, we need to compute
an optimal sequence for each trained class, with the follow-
ing algorithm: at each training sample for that class voted

by each input sample, we save the optimal sequence end-
ing at that training sample. In order to efficiently find op-
timal sequences, we can apply a dynamic programming ap-
proach, since this problem exhibits optimal substructure. The
optimal sequence ending at some training sample ni,d is
formed by the vote towards that training sample and the op-
timal sequence ending at some previous training sample ni,c
that does not violate the temporal constraint (if one exists).
Therefore at each training sample, we can save the optimal
sequence ending with that sample and look it up later (mem-
oization). This greatly simplifies the process of obtaining op-
timal sequences. Pseudocode of the classification procedure
is in Figure 2.

1: {C: number of trained classes}
2: {S: number of samples selected from input sequence}
3: {Ni: number of different training times among all sam-

ples voted for with class i}
4: Initialize neighbors data structure, with size C × S
5: for j = 1 to S do
6: sampleNeighbors = kd-

treeQuery(tj , numNeighbors)
7: for k = 1 to length(sampleNeighbors) do
8: Compute vote from tj to sampleNeighbors(k)
9: Add sampleNeighbors(k) to

neighbors(sampleNeighbors(k).class, j)
10: end for
11: end for
12: for i = 1 to C do
13: Initialize classSeq data structure, with length Ni
14: for j = 1 to S do
15: myNeighbors = neighbors(i, j)
16: Initialize sampleSeq data structure, with length k
17: for k = 1 to length(myNeighbors) do
18: {Following loop finds maximum sequence end-

ing at a training time less than the training time
of this retrieved sample}

19: maxSeq.vote = 0
20: for w = 1 to Ni do
21: if classSeq(w).lastTrainT ime <

myNeighbors(k).trainT ime then
22: if classSeq(w).vote > maxSeq.vote

then
23: maxSeq.vote = classSeq(w).vote
24: end if
25: else
26: Exit loop
27: end if
28: end for
29: sampleSeq(k).vote = maxSeq.vote +

myNeighbors(k).vote;
30: end for
31: for k = 1 to length(myNeighbors) do
32: Add sampleSeq(k) to classSeq
33: end for
34: end for
35: Save optimal sequence for this model
36: end for

Figure. 2: Pseudocode of indexing and sequencing
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Once this process is completed, the final vote for each class
is given by the sum of votes in the optimal sequence and the
input sequence is classified according to the class with the
highest vote.
The analysis of the algorithm in Figure 2 reveals that the
greatest contribution to time complexity comes from the se-
quencing stage. The execution time is directly proportional
to the number of trained classes C, the number of samples
S selected from the input sequence, the number of retrieved
neighbors per sample T and the number of different train-
ing times among all samples voted for with class i. There-
fore the worst case temporal complexity of the algorithm is
O(C × S × T × maxiNi). In order to further reduce the
average case time complexity when we will extend RISq to
a much larger number of classes, we will need to limit the
sequencing stage to the most likely classes. This could be
done based on the information collected in the voting stage,
such as number and magnitude of votes collected per class,
and domain knowledge, such as a language model for speech
recognition.
When training with multiple examples per class, a com-
pounded example approach is used. Sequencing works as
just described, however it is performed separately for each
example for that class. Subsequently, an additional step
is performed to merge matchings from different examples
into an optimal sequence. This procedure must take care
of preserving the timing information since different example
sequences for the same class might have different lengths.
Therefore the timing of the input sequence is used to guar-
antee synchronization. If the same sample from the input
sequence voted for two or more samples from different train-
ing examples, then the one with the highest vote is selected
to belong to the final sequence for that class.

C. RISq for continuous data streams

So far we have described the RISq methodology as applied to
isolated events, such as single words or gestures. However,
it is useful for many domains to be able to apply RISq to a
continuous data stream, such as video, audio or some other
kind of signal. This adds complexity, since we also need
to parse out individual events from the data stream before we
can classify them. The main idea to adapt RISq to continuous
data streams, such as continuous speech, consists of three
major steps: segment the data stream; score each segment
using the methodology for isolated sequences; post-process
the votes from each segment to decide when to emit class
labels.
The first step consists in segmenting the data stream. Ide-
ally, each segment would correspond to a single event and
the classification on the data stream would not be more com-
plicated than in the isolated case. However, this does not
happen in practice as the segmentation task itself is often ex-
tremely difficult. In the case of speech, for example, this is
due to the fact that many parts of the speech have very low
energy, so that an energy-based approach is not optimal, and
also to the fact that words are often uttered very close to each
other, often with no pause between them. In fact, one task at
which humans excel is being able to parse out single words
from the stream, a significant challenge when learning a new
language.

However, RISq is not particularly susceptible to the seg-
mentation algorithm, because it can easily match parts of
an event, without needing the whole event for classification.
This allows the use of a simple segmentation algorithm, with-
out a large degradation in performance. We are currently em-
ploying a technique where the stream is segmented in fixed-
length overlapped segments.
After segmentation, each segment is scored against the train-
ing classes using the methodology for isolated sequences as
described in the previous section.
Finally, it is necessary to post-process the votes from each
segment to decide when to emit class labels. This is neces-
sary because many subsequent segments can be part of the
same event, so we cannot just insert in the recognized stream
many occurrences of the same event, as this would lead to a
so-called insertion error. On the other hand, if two (or more)
events are covered by only one segment, we will miss one of
them, causing a deletion error. Finally, a substitution error
happens when an event is misclassified.
This post-processing phase is currently performed with a
simple peak detection technique. This is motivated by the
fact that as a segment “slides” through the event, the over-
lap between the segment and the event will increase up to a
maximum and then decrease. Therefore, if we plot the votes
from subsequent segments for the corresponding class, the
chart will exhibit a peak. When this peak is reached, we will
then emit a corresponding class label. Some work remains to
be done in this area as well, as we might try to find a more
efficient post-processing technique. An example of the seg-
mentation and post-processing for speech is in Section V.

IV. Results on isolated speech

In order to evaluate results with RISq and Sphinx we per-
formed tests with part of the data from the Center for Spoken
Language Understanding (CSLU) Speaker Recognition cor-
pus [16], which includes 8KHz telephone speech recorded
from 91 speakers. Each speaker called an automated system
12 times over 2 years, answering free-speech questions and
pronouncing predefined words.
From this corpus, we chose 2 predefined 5-digit sequences
that each speaker pronounced 4 times during each call: “five
three eight two four” and “six one oh nine seven”. Thus our
dictionary consists of these 10 different digits, the same as in
a digit recognition demo provided with the Sphinx system.
Each sequence was manually segmented to isolate the single
digits. Given that we used only the data from the first call
for each speaker, our dataset consisted of 91 speakers, each
pronouncing 10 digits for 4 times, for a total of about 3,500
digits, since a few data are missing from the database.
In order to assess the performance of both methods, input se-
quences were classified and results were collected in a multi-
class confusion matrix, where rows corresponded to actual
classes and columns to estimated classes. However, com-
puting statistics from the confusion matrix and performing
Receiver Operating Characteristic (ROC) analysis with mul-
tiple classes is significantly harder than in the binary case,
generally leading to a complexity exponential in the number
of classes for an exact solution. Only recently a good approx-
imation has been proposed in the form of a pairwise analysis
[17].
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Since this kind of analysis is not significant for our appli-
cation, we follow a more direct approach by computing the
number of true positives (TP), true negatives (TN), false pos-
itives (FP) and false negatives (FN) on a per-class basis [18].
Suppose that we have 3 classes and we want to compute the
statistics for class 1; we would then regard the values in the
confusion matrix as follows: TP FP FP

FN TN TN
FN TN TN


Similar considerations hold for class 2 and 3. On the basis of
these values, we compute four statistics, again on a per-class
basis: hit rate (TP / TP+FN), false alarm rate (FP / FP+TN),
positive predictive value (TP / TP+FP) and negative predic-
tive value (TN / TN+FN). This allows to plot one point in
ROC space for each class. In order to compute full ROC
curves on a per-class basis, we first collect the final votes to-
wards each class for each input sequence and then regard all
of the sequences whose real class is the class we are consid-
ering as positive examples and all of the sequences whose
real class is different as negative examples, as shown above.
Full ROC curves for each class are computed using a stan-
dard algorithm [19] and averaged to yield one ROC curve for
the classifier.
The Real Time Factor (RTF), defined as the ratio of the time
needed to process an input sequence to the duration of the
sequence, was measured on a MacBook Pro with a 2.4 GHz
Intel Core 2 Duo CPU and 4 GB RAM. We used the Sphinx
4 standard Java version and our Matlab implementation for
RISq. The kd-tree implementation is in C. We made no major
attempt at optimizing the RTF yet.

A. Preprocessing of speech data

In speech recognition, preprocessing of data is necessary to
extract significant features from the audio stream. In order
to have a fair comparison with Sphinx, we used the prepro-
cessor included in Sphinx to extract Mel-Frequency Cepstral
Coefficients (MFCCs), the most widely used kind of feature.
The MFCCs extracted from each sequence were used as in-
put data for both RISq and Sphinx. In the preprocessing,
the original utterance is processed with sliding overlapped
Hamming windows and 13 MFCCs coefficients are extracted
from each window, along with their first- and second-order
derivatives, leading to a total of 39 features. This constitute
a vector that corresponds to a sample in our sequence, i.e.
a 39-dimensional vector. The typical duration of a word in
our tests varies from 0.5 seconds to 1 second, which trans-
lates to about 50 to 100 samples per word when using the
recommended parameter of 25.625 ms for a window and a
gap of 10 ms between windows. The full procedure is shown
in Figure 3.

B. Results with RISq

RISq is using a subset of 24 features of the 39 extracted by
the Sphinx pre-processing engine. We excluded the first fea-
ture (a DC component) and the second derivatives, since we
did not observe any significant improvement on the recog-
nition rate when also using them. Training was performed

FFT …

Mel filter bank

 FFT coefficients (129)

FFT FFT

preemphasizer

 signal (8 KHz)

windower

 preemphasized signal

 window 
 (205 samples)

log

 Mel coefficients (31)

DCT

CMN

 MFCCs (13)

 normalized MFCCs (13)

Figure. 3: Extraction of MFCCs from speech data. The
acronyms are respectively: Fast Fourier Transform (FFT),
Discrete Cosine Transform (DCT) and Cepstral Mean Nor-
malization (CMN).

as described in Section II.A. RISq is very flexible with re-
spect to the size of the example sequences to use. In all
the experiments mentioned in this paper, we trained the al-
gorithm using full words, also given the limited size of the
dictionary. Alternatively sub-word units such as syllables or
phones could be used. Classification was performed as ex-
plained in Section II.B, using compounded examples.
In Table 1 we show sample results obtained with both uni-
form and random sampling depending on the percentage of
samples used from the original sequence. These results are
obtained from training with 1 example digit per speaker for
10 speaker, and testing on 10 different speakers.

Samples HR (unif.) HR (rand.) Seq. time (ms)
10% 77.6% 76.7% 113
25% 81.7% 79.8% 163
50% 90.9% 89.9% 244
75% 91.4% 90.5% 326
100% 92.0% 91.2% 408

Table 1: Results when varying sampling rate

It can be seen that the recognition rate improves significantly
only until 50% of the samples are used, while the time in-
creases about linearly. Based on this result, we use 50% of
the samples in all the subsequent experiments. Also, the hit
rate for the random sampling is on average only 1.1% lower
than with the uniform sampling. This is an important result,
as the random sampling simulates the situation of missing
data in the input sequence.
The other main parameters involved in the classification are
the number of returned nearest neighbors k and the voting σ.
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Optimal values of these parameters, determined by statistical
analysis, allow to greatly reduce the time needed for classifi-
cation, while maintaining a high recognition rate. In particu-
lar we used k = 20 for each sample and σ = 0.5.
We setup three different experiments. In the first experiment,
we trained RISq with some data from one speaker and tested
with different data from the same speaker. In this experiment
we tested the effect of increasing the number of examples
in the training. When using one, two or three examples per
speaker we obtained 97.7%, 98.1% and 98.5%. We consider
a very noticeable achievement to reach such a high recogni-
tion rate even with only one example per speaker.
This procedure was repeated for each speaker and the aver-
age ROC curve obtained with the process described earlier
is shown in Figure 4. To improve the visibility of the dif-
ferences in the average ROC curves, which are difficult to
discern in the full ROC curve in Figure 4, the top left quad-
rant of the same chart is magnified in Figure 5. Also, Table
2 shows the per-class and average true positive rates when
the false positive rate is 0.1. The RTF using the values of the
parameters indicated earlier was 0.14.
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Figure. 4: Average ROCs
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Figure. 5: A magnified version of the top left quadrant of
Figure 4

RISq1 RISq2 RISq3 Sphinx
0 .95 .99 .99 .89
1 .99 .99 .99 .73
2 .99 .99 .99 .98
3 .99 .99 .99 .96
4 .99 .99 .98 .95
5 .99 .99 .91 .87
6 .99 .99 .90 .67
7 .99 .98 .98 .99
8 .99 .99 .99 .93
9 .99 .99 .99 .99

avg .99 .99 .97 .89

Table 2: Per-class TPR with FPR=0.1

In the second experiment, we trained RISq with multiple ex-
amples for each word from multiple speakers and tested with
different sequences from the same speakers. Results given
in Figure 4 and Table 2 are very similar to those obtained
in experiment 1. In particular, the recognition rate for the
digit “oh” improved from 95% to 99% thanks to the multiple
training sequences. The RTF was 0.22.
In the third experiment, we trained RISq with data from a
varying number of speakers and tested with data from 10 dif-
ferent speakers. For a fair comparison, the testing set remains
the same. We obtained respectively 90.9% recognition rate
with 10 speakers in the training set, 91.9% with 20 speakers,
92.4% with 30 speakers and 93.9% with 40 speakers. Again,
it is remarkable that we obtained 90.9% when training using
only one example per word from 10 speakers.
The ROC curve in Figure 4 is for 40 speakers in the training
set and it shows that RISq outperforms Sphinx even in this
more challenging task. The RTF was 0.30.
Note that the flexibility of the training procedure eas-
ily allows both speaker-dependent and speaker-independent
speech recognition. Experiment 1 is an example of speaker-
dependent recognition, whereas experiments 2 and 3 perform
speaker-independent recognition and they show excellent re-
sults with this small dictionary.

C. Results with Sphinx

The training procedure with Sphinx is more elaborated than
it is with RISq and requires a much larger amount of train-
ing data. Therefore, we used the standard acoustic mod-
els trained with 8KHz speech from the Wall Street Journal
(WSJ) provided with Sphinx and we adapted them to the
same 40 speakers used for training in RISq.. The dictio-
nary consisted of the 10 digits and the language model was a
simple grammar with each sentence formed by only 1 of the
digits. The system was configured with a flat linguist and a
simple breadth first search manager, the suggested architec-
ture for this kind of task. Even if the WSJ database contains a
large number of acoustic models, only those for the 10 words
in the dictionary are considered during classification.
Testing was performed on the same 10-speaker dataset as for
RISq. The average ROC curve shown in Figure 4 proves
slightly worse than that obtained with the third experiment
performed with RISq. Results in Table 2 show significant
differences in the recognition rate among classes. In partic-
ular, recognition of “one” and “six” was significantly worse
with Sphinx, possibly due to silence assumptions in the WSJ
acoustic models. The RTF was 0.02.
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V. Results on continuous speech

Tests on continuous speech were also performed using
the CSLU database. Evaluating the recognition rate of a
continuous-word speech recognizer is not straightforward,
because the number of words in the utterance and in the
recognized string can differ. Therefore it is necessary to
first align the reference text and the automatic transcription.
Subsequently, it is possible to compute the Word Error Rate
WER = S+D+I

N and Word Accuracy WAcc = N−(S+D)
N .

S is the number of substitutions, i.e. words which has been
misclassified. D is the number of deletions, i.e. words
present in the reference text but not in the automatic tran-
scription. I is the number of insertions, i.e. words present in
the automatic transcription but not in the reference text.

A. Results with RISq

Training and classification were performed as explained in
Section II. Figure 6 shows example results of applying RISq
to continuous speech.
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Figure. 6: Example of RISq applied to continuous speech
on the input sequence “five three eight two four” uttered by
speaker 38 in the CSLU database. In the upper part, the
speech waveform is in gray in the background. The over-
lapped segments are in black. The matching scores are de-
picted as circles with different colors and diameters. The
colors represent the words (classes). The diameters are pro-
portional to the matching scores of the input samples used in
RISq. In the lower part we show the total matching scores
for the words where colors identify words as above. The cir-
cles here are automatically identified by our peak detection
algorithm and represent recognized words.

In the example results from Figure 6, the training data con-
sisted of a different utterance of the same five words by the
same speaker. The figure shows overlapped segments with
duration of 0.4 seconds and 0.1 second gap. The circles on
each segment represent the testing samples from the input se-
quence matched to the winning training class. Colors iden-
tify the class for each segment. Therefore we can see that
each segment has been correctly classified.

The bottom part of Figure 6 shows the votes corresponding
to each segment. For easier reference, the votes are plotted
aligned with the middle of the segment in the top part of the
figure. It is possible to clearly see the peaking behavior of
votes as described in the previous section. In order to detect
peaks we adopt the following algorithm. At each time step,
we consider the maximum vote. If the vote is greater than all
the other votes at the previous and following time steps, then
a peak is detected and the corresponding class label is emit-
ted. In this example, the automatic transcription is “five three
eight two four” so we do not have any insertion, deletion or
substitution error.
We setup the same experiments as for isolated speech. In the
first experiment, we trained RISq with some data from one
speaker and tested with different data from the same speaker,
obtaining a 96% word accuracy. In the second experiment,
we trained RISq with multiple examples for each word from
multiple speakers and tested with different sentences from
the same speakers, obtaining a 94% word accuracy. In the
third experiment, we trained RISq with data from several
speakers and tested with data from different speakers. This
yielded a 91% recognition rate with a RTF of 0.5.

B. Results with Sphinx

For tests on the CSLU database, the dictionary consisted of
the 10 digits and the language model was a simple grammar
with each sentence formed by only 1 of the digits. Even if the
WSJ database contains a large number of acoustic models,
only the models for the words in the dictionary are consid-
ered during classification. The system was configured with
a flat linguist and a simple breadth first search manager, the
suggested architecture for this kind of task. We obtained a
word accuracy of 91%.

VI. Conclusions and future work

We have described an improved methodology for RISq and
its application to both isolated-word and continuous speech
recognition. By following a sequenced pattern recognition
approach, RISq eliminates the need to maintain a very large
number of parameters and a complicated training procedure
to estimate them. We have compared RISq to Sphinx, a state-
of-the-art speech recognizer based on HMMs. The results
that we obtained with RISq proved promising and better than
those obtained with Sphinx, despite the fact that RISq is a
much simpler and younger method. However, the compari-
son holds so far only for such a small task as has been dis-
cussed in this paper. Sphinx is currently a large vocabulary
continuous speech recognizer and RISq cannot yet handle the
same complexity.
We showed that RISq is able to perform well on independent-
speaker speech recognition just by training with a limited
number of multiple independent example sequences from
different speakers, instead of building acoustic models. We
are currently working on improving recognition especially
for continuous speech, as well as on increasing the size of
our dictionary. Our method has the potential for a significant
impact on state-of-the-art speech recognition, especially in
those domains where fast adaptation to new users is required,
such as assistive technology for the elderly.
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