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Abstract: This paper explores the use of a series of Graph Em-
bedding (GE) algorithms based on Neighborhood Discriminant
Embedding (NDE) as a means to improve the performance and
robustness of face recognition. NDE combines GE framework
and Fishers criterion and it takes into account the Individual
Discriminative Factor (IDF) which is proposed to describe the
microscopic discriminative property of each sample. The ten-
sor and bilinear extending algorithms of NDE are proposed for
directly utilizing the original two-dimensional image data to en-
hance the efficiency. The common purpose of our algorithms
are to gather the within-class samples closer and separate the
between-class samples further in the projected feature subspace
after the dimensionality reduction. Furthermore, another in-
formative feature extraction method called Circular Pixel Dis-
tribution (CPD) is applied to enhance the robustness of the 2-D
algorithm. Experiments with the Olivetti Research Laboratory
(ORL) face dataset are conducted to evaluate our methods in
terms of classification accuracy, efficiency and robustness.
Keywords: Pattern Recognition, Biometrics, Face Recognition,
Graph Embedding, Neighborhood Discriminant Embedding.

I. Introduction

Face recognition has been studied since the past few decades
in the field of computer vision and pattern recognition. Face
patterns are subject to changes in illumination, pose and fa-
cial expression, their distribution in the high dimensional
face space is nonlinear and highly complex [29]. Therefore,
the way how to extract the effective discriminative features
from the original image (i.e. feature extraction) is the key is-
sue of face recognition. And many algorithms have been pro-
posed to attempt to solve this problem. Among them, Princi-
pal Component Analysis (PCA) [1] and Linear Discriminant
Analysis (LDA) [2] are two classical linear appearance-based
methods. PCA is an unsupervised method which attempts to
preserve the global structure of the dataset in subspace by
preserving the maximum variance of data vectors. While
LDA takes the class labels into consideration and searches
for optimal projection directions to maximize the between-

class scatter and minimize the within-class scatter at same
time. Then, the kernel trick is applied to enhance the classi-
fication ability of a certain linear method (e.g. KPCA [3]
and KLDA [4]). Using these methods and other derived
methods [5, 6], the original 2-D face image matrices must
be transformed into 1-D image vectors at first. As a re-
sult, there are two inherent limitations in these algorithms:
one is that the stretching destroys the geometrical property
of image space which may include some essential features
for classification; the other one is that the stretched vectors
lie in a high dimensional space whose value far exceeds the
number of samples (high dimension but small sample size -
SSS [7, 8]). Furthermore, it takes much more time to extract
features from such high dimensional data which results in the
considerable computational complexity.
In order to solve above problem, an algebraic feature ex-
traction idea that directly use the image matrix to construct
the image scatter for optimal discriminant analysis is pro-
posed by Liu [9]. Inspired by this idea, Yang [10] proposes
the Two-dimensional PCA (2D-PCA) to improve the per-
formance and computational efficiency. Two-Dimensional
LDA (2D-LDA) [11, 12, 13, 14] is proposed on the base of
LDA. Generalized Low Rank Approximations of Matrices
(GLRAM) [15, 16, 17] bears a strong resemblance to 2D-
PCA in principle. The difference is GLRAM using the bi-
linear transportation which seeks both the left and the right
projection matrices in the process of dimensionality reduc-
tion.
In 2007, a general framework [18] has been devoted to unify
the dimensionality reduction algorithms over the past few
decades by a general formulation known as Graph Embed-
ding (GE). Each algorithm can be considered as the direct
graph embedding or its linear/kernel/tensor extension. Two-
dimensional algorithm can be considered as a 2D tensor ex-
tension. For example, Two-Dimensional Maximum Margin
criterion (2D-MMC) [19] is extended from Maximum Mar-
gin criterion (MMC) [20] and Two-dimensional discrimi-
nant locality preserving projections (2D-DLPP) [21] is based
on locality preserving projections (LPP) [22]. These matrix-
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based approaches decrease the computational complexity in
the process of feature extraction and achieve better perfor-
mance than classical methods.
Recently, the sparse representation of the high dimensional
mass data has been introduced into the field of pattern recog-
nition by researchers. And the classification problem is con-
sidered as a multi-class linear regression model which can be
figured out by the sparse signal representation method [23].
University of Illinois Professor Y. Ma has proposed that even
more discriminant information is implicit in the sparse ma-
trix elements [24]. So with a sparse representation more im-
portant discriminant information can be extracted from this
part of matrix.
In this paper, we propose a series of Graph Embedding
algorithms based on Neighborhood Discriminant Embed-
ding [25] for face recognition, which are Two-Dimensional
Neighborhood Discriminant Embedding (2D-NDE), Two-
Dimensional Robust Neighborhood Discriminant Embed-
ding (2D-RNDE) and Bilinear Neighborhood Discriminant
Embedding (BLNDE). 2D-NDE is a specific tensor exten-
sion of NDE which is based on graph embedding and Fisher’s
criterion. Individual Discriminative Factor (IDF) is intro-
duced to give extra weightings to the critical sample points.
The geometrical information of image space can be pre-
served during the dimensionality reduction as the original
images are directly used as the input of our algorithm. Fur-
thermore, in order to enhance the robustness of the algorithm,
Circular Pixel Distribution (CPD) of face image is applied,
which is a kind of description of pixel distribution of image
and is considered as containing a certain two-dimensional
features of the original image. And the new algorithm is
called 2D-RNDE.
The rest of this paper is organized as follows: NDE and
BLNDE algorithms are reviewed in Section 2 and 2D-NDE
is described in Section 3. The experimental results and dis-
cussions are presented in Section 4. Finally, we conclude this
study in Section 5.

II. Review of Neighborhood Discriminant Em-
bedding (NDE) and Bilinear NDE

Given n d-dimensional samples which belong to c classes,
we construct two nearest-neighbor graphs based on these n
samples. They are the within-class nearest-neighbor graph
Gw and the between-class nearest-neighbor graph Gb. Ni

is the set consisting of k-nearest neighbor samples of the i-
th sample xi, it can be separated as the within-class set Nw

i

and the between-class set N b
i (Nw

i ∩N b
i = Φ, Nw

i ∪N b
i =

Ni). The Individual Discriminative Factor (IDF) is defined
as follow:

ui =

∑
j,xj∈Nb

i

exp(−‖xi − xj‖2/δ2)

∑
j,xj∈Ni

exp(−‖xi − xj‖2/δ2)
(1)

where δ indicates the spread of the Gaussian.
It can be observed from this definition that: when the sam-
ple is surrounded by within-class samples and none between-
class ones, the value of ui is 0 which means the sample has
almost none contribution to classifying againist other classes
in a certain sense and in practical situation these samples are

easy to classify and identify; when the sample is close to
the border, its k-nearest neighbor samples are not all from
same class, the value of ui is nonzero. Furthermore, with
the number of between-class samples increases and the dis-
tance of between-class samples decreases, the value of ui

becomes larger and the contribution to classification of these
samples are greater. An extreme condition is that the value
of ui is equal to 1, which means all the k-nearest neighbor
samples are from other classes and the sample is consider-
able far away from the within-class samples. If this kind of
samples can be classified correctly that means the algorithm
is very effective and robust. In summary, the value of ui is
able to represent the sample’s contribution to classification in
certain extent. Therefore, ui is functional and reasonable as
an individual property of each sample.
The connecting weight between two samples in Gw and Gb

are sw
ij and sb

ij , they can be defined as follows:

sw
ij =

{
exp(−‖xi − xj‖2/δ2) xj ∈ Nw

i or xi ∈ Nw
j

0 others
(2)

sb
ij =

{
exp(−‖xi − xj‖2/δ2) xj ∈ N b

i or xi ∈ N b
j

0 others
(3)

A. Neighborhood Discriminant Embedding

In order to gather the within-class samples and separate the
between-class samples after the dimensionality reduction,
the following within-class and between-class objective func-
tions are defined as:

Jw(W ) =
∑

ij

‖yi − yj‖2uiujs
w
ij (4)

=
∑

ij

‖WTxi −WTxj‖2twij

= tr{WT(
∑

ij

(xi − xj)twij(xi − xj)T)W}

= tr{WT(
∑

ij xit
w
ijx

T
i +

∑
ij xjt

w
ijx

T
j

−∑
ij xit

w
ijx

T
j −

∑
ij xjt

w
ijx

T
i

)W}

= 2tr{WTX(Dw − Tw)XT)W}
= 2tr{WTXLwXTW}
= 2tr{WTSwW}

Jb(W ) =
∑

ij

‖yi − yj‖2uiujs
b
ij = 2tr{WTSbW} (5)

where W ∈ Rd×D is the transformation matrix (d, D are
the dimensions of the original sample and the reduced space,
respectively) and yi = WTxi is corresponding point of xi

after projection. Tw, T b are the within-class and between-
class discriminant penalty matrix , the elements of them are
twij = uiujs

w
ij , tbij = uiujs

b
ij . The symbol “tr” denotes the

operation of trace of matrix; X is the original samples matrix,
X = [x1, x2, . . . . xn]; Lw = Dw − Tw, Lb = Db − T b

are the within-class and between-class laplacian discriminant
penalty matrices; Dw, Db are the within-class and between-
class diagonal matrices, dw

ii =
∑

j twij , d
b
ii =

∑
j tbij ; Sw =

XLwXT, Sb = XLbXT are the within-class and between-
class scatter matrices.
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To minimize Jw(W ) and maximize Jb(W ) at the same time,
W will be a functional and effective transformation matrix.
It is equivalent to the following function:

W ∗ = arg max
W

tr(
WTSbW

WTSwW
) (6)

which is the final objective function model of neighborhood
discriminant embedding (NDE).

B. Bilinear Neighborhood Discriminant Embedding

For BLNDE [26], the optimal left-multiplied and right-
multiplied matrices of image matrix are derived for bilinear
transformation which can preserve the geometrical property
of image space and extract the row and column correlations
from image matrix. After dimensionality reduction, the lo-
cal within-class samples gather closer and the between-class
samples separate farther. As a result, the high recognition
rate is derived in the dimension-reduced feature subspace.
Therefore, we define the following within-class and between-
class matrix-based objective functions:

min Jw(Wl, Wr) =
∑

ij

‖Yi − Yj‖2twij (7)

max Jb(Wl,Wr) =
∑

ij

‖Yi − Yj‖2tbij (8)

where Wl is the left-multiplied matrix and Wr is the right-
multiplied matrix, Yi = WT

l XiWr (Xi is the i-th image sam-
ple matrix, Yi is the projected matrix of Xi), the within-class
discriminant penalty twij = uiujs

w
ij and the between-class

discriminant penalty tbij = uiujs
b
ij . They can give the bor-

der samples extra weighting to gather the same class samples
closer and separate the different class samples farther during
the transformation from sample space to low-dimensional
feature space.
The original image size is h × l pixels, so Xi ∈ Rh×l. Sup-
pose the dimension of matrix after projection is hy×ly , there-
fore Wl ∈ Rh×hy ,WT

l Wl = Ihy ; Wr ∈ Rl×ly ,WT
r Wr =

Ily .
The basic idea of BLNDE is to find two optimal matrices W ∗

l

and W ∗
r for Eqn. (7, 8).

min Jw(Wl,Wr)

=
∑

ij

‖Yi − Yj‖2twij (9)

=
∑

ij

‖WT
l XiWr −WT

l XjWr‖2twij

=
∑

ij

‖WT
l (Xi −Xj)Wr‖2twij

= tr{WT
l

∑

ij

[(Xi −Xj)Wrt
w
ijW

T
r (Xi −Xj)T]Wl}

−→ (a)

= tr{WT
r

∑

ij

[(Xi −Xj)Wlt
w
ijW

T
l (Xi −Xj)T]Wr}

−→ (b)

max Jb(Wl,Wr)

=
∑

ij

‖Yi − Yj‖2tbij (10)

= tr{WT
l

∑

ij

[(Xi −Xj)Wrt
b
ijW

T
r (Xi −Xj)T]Wl}

−→ (a)

= tr{WT
r

∑

ij

[(Xi −Xj)Wlt
b
ijW

T
l (Xi −Xj)T]Wr}

−→ (b)

where the symbol “tr” denotes the operation of trace of ma-
trix. Then the final objective function is presented as follow-
ing:

(W ∗
l ,W ∗

r ) = arg max
Wl,Wr

J(Wl,Wr) (11)

= arg max
Wl,Wr

{Jw(Wl,Wr)−1Jb(Wl,Wr)}

1) Iterative Solution Algorithm

As both Jw(Wl,Wr) and Jb(Wl,Wr) have two forms: (a)
and (b), so the final objective function also has two forms.
Generally, the Iterative Solution Algorithm is widely adopted
to solve this problem. The solution can be separated as fol-
lowing two steps:
First Step: Given W ∗

r = (Ily , 0)T (where Ily is ly-
dimensional identity matrix and 0 is ly×(l−ly) zero matrix),
then according to the form (a) of the final objective function,
solve the optimal left-multiplied matrix W ∗

l .
Second Step: As W ∗

l is already known from the first step,
according to the form (b) of the final objective function, solve
the optimal right-multiplied matrix W ∗

r .
Then, do iterative operation on above two steps, until stabil-
ity results of W ∗

l and W ∗
r are obtained.

Observation on this algorithm, each step conducts Eigen-
Decomposition on h-dimensional or l-dimensional matrix (h,
l is the height and width of original image), therefore the
computational complexity of each step is much lower than
other vector-based approaches. Thus the times of iteration
become the principal factor to the efficiency of algorithm.
For this reason we give another Non-Iterative Solution Algo-
rithm.

2) Non-Iterative Solution Algorithm

According to the experiments on the iterative solution of
BLNDE, the highest recognition rate is obtained generally
at 2 to 5 times. Afterwards with the increasing of loops, the
recognition rate does not increase correspondingly but be-
comes irregular oscillation which means the optimal results
are not convergent. Therefore Non-Iterative Solution Algo-
rithm can be fulfilled and its key point is the choice of the
initial condition.
In Iterative Solution Algorithm, W ∗

r = (Ily , 0)T is used
as the initial condition generally. Therefore the generalized
within-class scatter matrix MR

w can be written as following:

MR
w =

∑

ij

(Xi −Xj)W ∗
r twijW

∗T
r (Xi −Xj)T

=
∑

ij

Xij(Ily , 0)Ttwij(Ily , 0)X
T

ij
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=
∑

ij

[
X

1

ij |h×ly , X
2

ij |h×(l−ly)

]
h×l

[
Ily×ly

Φ(l−ly)×ly

]
twij

[
Ily×ly , Φly×(l−ly)

]

[
(X

1

ij)T|ly×h

(X
2

ij)
T|(l−ly)×h

]

l×h

=
∑

ij

X
1

ij |h×lyIly×ly twijIly×ly (X
1

ij)
T|ly×h

=
∑

ij

twijX
1

ij |h×ly · (X
1

ij)
T|ly×h (12)

where Xij = Xi −Xj =
[
X

1

ij |h×ly , X
2

ij |h×(l−ly)

]
h×l

.

According to Eqn. (12), MR
w is just relevant to the first part

of image matrix Xij . As a result, the input of original image
information is incomplete. The rest part information is added
in later through iteration. Therefore it is not the most efficient
approach.
In this paper, we break the dimensional limitation of the ini-
tial value of Wr ∈ Rl×ly , and offer an expanded matrix for
the initialization of W ∗

r .

W ∗
r = Il×l =

[
Ily×ly Φly×(l−ly)

Φ(l−ly)×ly I(l−ly)×(l−ly)

]

l×l

(13)

Consequently, MR
w is written as following:

MR
w =

∑

ij

(Xi −Xj)W ∗
r twijW

∗T
r (Xi −Xj)T

=
∑

ij

XijIl×lt
w
ijI

T
l×lX

T

ij

=
∑

ij

[
X

1

ij |h×ly , X
2

ij |h×(l−ly)

]
h×l

[
Ily×ly Φly×(l−ly)

Φ(l−ly)×ly I(l−ly)×(l−ly)

]

l×l

twij

[
Ily×ly Φly×(l−ly)

Φ(l−ly)×ly I(l−ly)×(l−ly)

]

l×l[
(X

1

ij)T|ly×h

(X
2

ij)
T|(l−ly)×h

]

l×h

=
∑

ij

[
X

1

ij |h×ly , X
2

ij |h×(l−ly)

]
h×l

twij

[
(X

1

ij)
T|ly×h

(X
2

ij)T|(l−ly)×h

]

l×h

=
∑

ij

twijXij |h×l·XT

ij |l×h (14)

According to Eqn. (14), using the expanded matrix as the ini-
tial value of W ∗

r , shown in Eqn. (13), all the elements of the
original image matrix are involved which means the one-time
input of overall image information at the initiation. Accord-
ing to the above improved initiation, the results of one-time
iteration are used as the final optimal W ∗

l and W ∗
r . Thus the

computational complexity is significantly lowered. In addi-
tion, the experiments result in [26] demonstrate that the im-
age features extracted by Non-Iterative Solution Algorithm
have more effective ability to classification than the ones of
Iterative Solution.

III. Two-Dimensional Robust Neighborhood
Discriminant Embedding

A. 2D Neighborhood Discriminant Embedding

NDE stretches the orignal image data into a vector at the be-
ginning. In this situation the geometrical property of image
space does not be taken into consideration, therefore some
crucial information maybe lost during the transformation.
In order to avoid the loss, Two-dimensional Neighborhood
Discriminant Embedding (2D-NDE) is proposed as an im-
age matrix-based algorithm which utilizes the similar idea of
NDE.
Given n image matrix training samples and they belong to c
classes. The original image size is h × l pixels. Xi is the
i-th samples, Xi ∈ Rh×l. The projection is fulfilled through
the right-multiplied transformation matrix Wr, Wr ∈ Rl×ly ,
where ly is the column number of the extracted image feature
matrix after the projection, and Yi = XiWr ∈ Rh×ly .
First, we give the expanded within-class objective function
as follows:

Jw(Wr) =
∑

ij

‖Yi − Yj‖2twij (15)

=
∑

ij

‖XiWr −XjWr‖2twij

=
∑

ij

‖(Xi −Xj)Wr‖2twij

= tr{WT
r [

∑

ij

(Xi −Xj)Ttwij(Xi −Xj)]Wr}

where twij is the within-class connected weight defined in
NDE, twij = uiujs

w
ij .

Here in order to facilitate the solution, we define the ex-
panded within-class discriminant penalty matrix Tw

E , the
expanded within-class diagonal matrix Dw

E and the ex-
panded within-class laplacian discriminant penalty matrix
Lw

E . Tw
E , Dw

E , Lw
E ∈ Rhn×hn.

Tw
E =




Tw
11 · · · Tw

1n
...

. . .
...

Tw
n1 · · · Tw

nn


 =




tw11· Ih · · · tw1n· Ih

...
. . .

...
twn1· Ih · · · twnn· Ih




(16)

Dw
E =




Dw
11 0

. . .
0 Dw

nn


 (17)

Lw
E = Dw

E − Tw
E (18)

where Dw
ii = dw

ii· Ih, dw
ii =

∑
j twij which is the element of

Dw defined in NDE.
Then equation (15) can be written as:

Jw(Wr) =
∑

ij

‖Yi − Yj‖2twij (19)

= tr{WT
r (2XEDw

EXT
E − 2XETw

E XT
E)Wr}

= 2tr{WT
r (XE(Dw

E − Tw
E )XT

E)Wr}
= 2tr{WT

r (XELw
EXT

E)Wr}
= 2tr{WT

r SI
wWr}
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where XE = [XT
1 , XT

2 , . . . , XT
n ], SI

w = XELw
EXT

E which
is the within-class scatter matrix.
Likewise, we can define the expanded between-class objec-
tive function as:

Jb(Wr) =
∑

ij

‖Yi − Yj‖2tbij (20)

=
∑

ij

‖XiWr −XjWr‖2tbij

where tbij = uiujs
b
ij , and we define the expanded matrices:

T b
E , Db

E , Lb
E ∈ Rhn×hn.

T b
E =




T b
11 · · · T b

1n
...

. . .
...

T b
n1 · · · T b

nn


 =




tb11· Ih · · · tb1n· Ih

...
. . .

...
tbn1· Ih · · · tbnn· Ih




(21)

Db
E =




Db
11 0

. . .
0 Db

nn


 (22)

Lb
E = Db

E − T b
E (23)

and equation (19) can be written as:

Jb(Wr) =
∑

ij

‖Yi − Yj‖2tbij (24)

= tr{WT
r (2XEDb

EXT
E − 2XET b

EXT
E)Wr}

= 2tr{WT
r (XELb

EXT
E)Wr}

= 2tr{WT
r SI

b Wr}

where SI
b = XELb

EXT
E which is the between-class scatter

matrix.
Hereby, the within-class and between-class scatter matri-
ces have the same form with the ones in NDE which bases
on the image vector. The final objective function model
of two-dimensional neighborhood discriminant embedding
(2D-NDE) is as follows:

W ∗
r = arg max

Wr

J(Wr)

= arg max
Wr

tr
WT

r SI
b Wr

WT
r SI

wWr
(25)

The solution of equation (25) is equivalent to the solution of
Generalized Characteristic Equation [27]:

SI
b wr = λSI

wwr (26)

where wr is the column vector of Wr.
Usually SI

w is a nonsingular matrix, we can work out di-
rectly by the Eigen-Decomposition of (SI

w)−1SI
b . We use

the eigenvectors from the first to the ly-th largest eigenvalue
to compose a matrix, which is the optimal right-multiplied
transformation matrix W ∗

r . As the dimension of SI
w and SI

b

are much lower than Sw and Sb constructed by vector-based
methods, the computational complexity is decreased signifi-
cantly.

Figure. 1: Here the process of CPD characterization is
shown. The red large circle is the smallest circle which is
able to cover eyebrows, eyes, noise and mouth. The integer
R is an approximation of the radius of the smallest circle. The
green small circle presents the centre. We sum the pixel value
of the points of each circular to construct a R-dimensional
vector.

B. Two-Dimensional Robust Neighborhood Discriminant
Embedding (2D-RNDE)

Observed in the later experiments, 2D-NDE can achieve a
considerable and comparable recognition accuracy at certain
dimensional feature subspace, but cannot keep this accuracy
across different dimensionality of the projected subspace.
One of the reason maybe that 2D-NDE just considers the col-
umn correlation of the original image data. So that more ge-
ometrical property of the original image should be involved.
Inspired by Circular Pixel Distribution (CPD), an improved
algorithm, named as Two-Dimensional Robust Neighbor-
hood Discriminant Embedding (2D-RNDE), has been pro-
posed to enhance the robustness of 2D-NDE.
Every face image being analyzed has its own Circular Pixel
Distribution which contains another kind of geometrical
property and can be directly used as an additional feature.
Fig. 1 shows the process of calculating CPD of face image.
Circles were drawn around a certain centre of the face im-
age, which is also the centre of the smallest circle that is able
to cover eyebrows, eyes, noise and mouth. And an integer
R is an approximation of the radius of the smallest circle.
Around the centre we can build R circulars with the radius
increasing one by one. We sum the pixel value of the points
of each circular to construct a R-dimensional vector. In this
way, all the pixels inside the smallest circle which covers
main part of the face are involved into the vector construc-
tion. And this vector is directly applied as a supplement to
the features extracted by 2D-NDE, then the new feature is
used for classification. Combining 2D-NDE and CPD, 2D-
RNDE can achieve better performance of robustness.

IV. The experimental results and discussions

A. Compare 2D-NDE, 2D-RNDE with 2D-PCA

In this section, we compare our proposed methods with 2D-
PCA on ORL [28] database. The ORL (Olivetti Research
Laboratory) face database consists of 400 face images (total
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Figure. 2: Example of the ORL database, 2 persons and each has 10 images.

40 people and 10 samples per person). The images contain
a certain amount change of light, different facial expression,
facial details (glasses or no glasses), as well as a range of in-
depth rotation. An example of ORL is shown in Fig. 2. For
each individual, ξ(= 3, 4, 5) images are randomly selected
for training and the rest are used for testing. Nearest Neigh-
bor Classifier is applied in this paper for classification. In
order to reduce the random error and give a more objective
evaluation of the performance of the algorithms, for each ξ
we do 50 times random selection of the training set of sam-
ples and take the average accuracy as the final results. The
radius of the smallest circle R = 35 in our experiments.
Fig. 3 illustrates the comparison among 2D-PCA, 2D-NDE
and 2D-RNDE on ORL in three cases (ξ = 3, 4, 5). Then
the highest recognition rate and the corresponding number of
image feature’s column of them in each case are made into a
table, shown in Table 1.

Table 1: Comparison of top recognition rate of 2D-PCA, 2D-
NDE and 2D-RNDE on ORL

Method ξ = 3 ξ = 4 ξ = 5
2D-PCA 88.57%(6) 91.67%(6) 93.00%(7)
2D-NDE 92.14%(3) 93.75%(5) 94.00%(8)
2D-RNDE 92.86%(8) 93.75%(5) 94.00%(9)

In Fig. 3, it is very obvious that our proposed 2D-NDE and
2D-RNDE outperform 2D-PCA almost across all the values
of dimensionality of the reduced space. 2D-PCA only uses
the global geometric information of Euclidean space besides
the column correlation. While 2D-NDE and 2D-RNDE in-
herit directly from NDE which is derived as the projected di-
rections that preserve the local neighborhood structure on the
data manifold of the face space. Meanwhile, benefiting from
Graph Embedding and Fisher’s criterion, NDE can gather
the within-class samples closer and separate the between-
class samples farther in the projected space. As a specific
2D tensor extension of NDE, 2D-NDE takes into account the
column correlation information and utilizes the image ma-
trix directly, as a result the computational complexity and
time-consuming are decreased and the classification accu-
racy is kept at the considerable level. However, 2D-NDE can
achieve the high recognition accuracy at certain dimensional
feature subspace, but cannot keep this accuracy across dif-
ferent dimensionality of projected subspace. Utilizing CPD,
another kind of geometric property of face image is involved
in our algorithm, 2D-RNDE can get the same accuracy as
2D-NDE but better robustness across the dimensionality of

subspace.

B. Comparison among the NDE algorithms

We conduct a comprehensive comparison among NDE,
BLNDE, 2D-NDE and 2D-RNDE on ORL face database,
and compare NDE algorithms with other face recognition
methods, based on these comparisons we can draw an ob-
jective evaluation on NDE algorithms.

Table 2: Comparison of top recognition rate of NDE algo-
rithms on ORL

Method ξ = 3 ξ = 4 ξ = 5
NDE 91.5%(83) 94.6%(45) 96.2%(56)
2D-NDE 92.14%(3) 93.75%(5) 94.00%(8)
2D-RNDE 92.86%(8) 93.75%(5) 94.00%(9)
Iterative BLNDE 86.79%(13,10) 91.92%(13,10) 94.50%(13,10)
Non-Iter. BLNDE 92.03%(12,8) 94.08%(12,8) 96.00%(12,8)

Note: Values in parentheses are the corresponding feature dimension that
the highest accuracy achieved, the maximum value of each column is in

bold.

NDE and other four derived algorithms are compared on the
ORL face database in three cases of the training sample set,
shown in Table 2. In the case of insufficient training samples
(ξ = 3), three samples of each class are randomly selected
as the training sample set, 2D-RNDE achieved the highest
correct recognition rate (92.86%). With the increase in the
number of training samples (ξ = 4, 5), i.e. randomly select-
ing 4 or 5 samples from each class as the training sample set,
NDE achieved the highest recognition rate, which are 94.6%
and 96.2%. With the increase in the number of training sam-
ples, the accuracies of NDE algorithms have a corresponding
increase, which is also consistent with the intuitive idea that
the greater number of training samples can enhance the algo-
rithm’s ability to classification.
In the case of insufficient training samples, the introduction
of the column or bilinear correlation of face image matrix
can enhance the correct recognition rate, therefore 2D-NDE,
2D-RNDE and Non-Iterative BLNDE have achieved better
results than NDE. The introduction of CPD is even more
helpful to improve the performance of 2D-NDE, including
the accuracy and robustness. This shows that in case of the
inadequate training samples, the method based on image ma-
trix is more effective than image vector-based approach.
With the increase in the number of training samples, NDE
the method based on image vector can construct more com-
plete high-dimensional manifold data structure of the local
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Figure. 3: Comparison among 2D-PCA, 2D-NDE and 2D-
RNDE on ORL

neighborhood, while the image matrix-based approaches do
not stretch the original image data to a high-dimensional vec-
tor, so they are not fully benefited from the more complete
of manifold structure. Therefore the accuracy of these ap-
proaches are not better than the image vector-based method.
However, to compare the efficiency of algorithm’s imple-
mentation, the advantage of image matrix-based methods
will be very obvious. For example, each sample of ORL is
112×92 face image, the vector for NDE to process will reach
104, and if we do 50 times randomly sample selecting ex-
periment, the time consumption is calculated measured with

hours. Meanwhile, the image matrix-based approaches can
fulfill the same calculations in a few minutes. Specifically,
the average time consumption of each algorithm is shown in
Table 3.

Table 3: Comparison of average time of 2D-NDE, 2D-RNDE
and BLNDE (Unit: seconds)

Method 2D-NDE 2D-RNDE It. BLNDE Non-It. BLNDE
Time 6.87 8.36 12.52 7.07

C. Compare the NDE algorithms with other 6 methods

We compare NDE algorithms with other face recognition ap-
proaches. In ORL face database, using five randomly se-
lected samples of each class as the training sample set is con-
sidered as the compromise strategy between computing time
and recognition rate, so we also used the same way to execute
the following experiments. Comparison of NDE algorithms
and six other algorithms is shown in Table 4.

Table 4: Comparison of average time of 2D-NDE, 2D-RNDE
and BLNDE (Unit: seconds)

PCA LDA LPP NDE
91.5%(49) 92.2%(39) 95.5%(46) 96.2%(56)
2D-PCA 2D-LDA 2D-LPP 2D-NDE BLNDE
93.0%(7) 94.0%(12,8) 95.5%(40) 94.0%(8) 96.0%(12,8)

Note: Percentages express the highest recognition rate of algorithms, and
the value in parentheses represent the corresponding feature dimension, in
which the two values mean the corresponding row and column of feature

image. The maximum is in bold. BLNDE takes the Non-Iterative
algorithm.

Actually, the nine methods in Table 4 can be classified ac-
cording to different principles.

1. Classification according to prototype
PCA, LDA, 2D-PCA and 2D-LDA are based on Eigen-
faces; LPP and 2D-LPP are based on LPP; NDE, 2D-
NDE and BLNDE are based on NDE.

2. Classification according to 1D or 2D method
PCA, LDA, LPP and NDE are 1D methods based on
image vector; 2D-PCA, 2D-LDA, 2D-LPP, 2D-NDE
and BLNDE are 2D methods based on image matrix,
in which 2D-LDA and BLNDE are bilinear methods.

3. Classification according to using Discriminant Analysis
or not
PCA, LPP, 2D-PCA and 2D-LPP are without discrim-
inant analysis, i.e. the algorithms do not use the class
label of samples; LDA, NDE, 2D-LDA, 2D-NDE and
BLNDE take use of the class label of samples and so
that they are with discriminant analysis.

The nine methods can be compared according to the above
three categories. For comparison, we use the inequality to
compare two algorithms, for example, a ≥ b means the ac-
curacy of Algorithm a is greater than or equal to Algorithm
b. Comparison results are as follows:

1. NDE ≥ LPP ≥ LDA ≥ PCA; BLNDE ≥ 2D −
LPP ≥ 2D − LDA ≥ 2D − PCA
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2. 2D − PCA ≥ PCA; 2D − LDA ≥ LDA; 2D −
LPP ≥ LPP ;NDE ≥ 2D −NDE

3. NDE ≥ LPP ; LDA ≥ PCA; BLNDE ≥ 2D −
LPP ; 2D − LDA ≥ 2D − PCA

The above comparison can be summarized as:

1. Algorithm based on NDE≥ Algorithm based on LPP≥
Algorithm based on Eigenfaces

2. 2D methods ≥ 1D methods, except NDE

3. Algorithm with label ≥ Algorithm without label

Eigenfaces methods can retain the global structure of the
training samples; LPP methods are to find the local geomet-
ric properties of the training samples; NDE methods com-
bine graph embedding framework and the Fisher criterion to
deal with within-class and between-class discriminative in-
formation separately. In the face recognition field, the local
geometric properties may be more influential than the global
structure, and the distinction within-class and between-class
discriminant information of the local geometry can further
improve the algorithm’s discriminative ability.
1D methods need to stretch the original face image matrix
into vector, which often leads to high dimensional vector
space, and the geometric properties of face image will be de-
stroyed, a lot of information about the spatial structure will
lost in the process as well. However those information may
play a more important role in the search of the most opti-
mal projection direction. By comparison, 2D methods can
effectively avoid these shortcomings, thereby enhancing the
ability of classification. NDE does not fully meet this princi-
ple, only in the case that the training sample is not sufficient
(ξ = 3), 2D −NDE ≥ NDE.
Using discriminant analysis with class label is very effective
for recognition problem, because the discriminant analysis
methods are based on known class labels of training samples
to construct the projection model, this approach can max-
imize the distance of between-class samples and minimize
the distance of within-class samples, thereby enhancing the
ability of the discriminant algorithm.
According to the above analysis, the reason that higher
recognition rate can be obtained by NDE algorithms is sim-
ple and intuitive. NDE methods combine graph embed-
ding and Fisher criterion, take full use of within-class and
between-class discriminant information of the local geome-
try, and consider the class labels using discriminant analysis.

V. Conclusions

In this paper, 2D-NDE was developed based on three tech-
niques, i.e. Neighborhood Discriminant Embedding (NDE),
matrix-based projection and discriminant analysis. Experi-
mental results and comprehensive comparisons demonstrated
that the above three techniques play active roles in enhanc-
ing the performances of algorithms for face recognition.
Firstly, NDE is the foundation of 2D-NDE, which incorpo-
rates Graph Embedding and Fisher’s Criterion as well as in-
cluding an Individual Discriminative Factor (IDF) as an in-
dividual property of each sample to describe the contribution
to discriminant. Moreover, NDE is more effective than LPP

and Eigenfaces in searching the optimal projection direction.
Secondly, matrix-based projection does not need to stretch
the original face image matrix into vector, so that it can avoid
the destroying of the geometric properties of image and small
sample size (SSS) problem. Thirdly, discriminant analysis is
utilized to deal with the within-class and between-class dis-
criminant information of local geometry separately, which
can further improve the algorithm’s discriminative ability.
Additionally, 2D-RNDE is proposed by employing Circular
Pixel Distribution (CPD) to include extra geometric property
of face image, and it leads to the enhancement of the robust-
ness of 2D-NDE. The local information of underlying mani-
fold structure, the between-class scatter and the within-class
scatter, the column correlations of image matrix and circular
pixel distribution are taken into consideration all-in-one. As
a result, face recognition can be better conducted in the pro-
jected feature subspace after the dimensionality reduction.
Experimental results on ORL face database demonstrate the
effectiveness and robustness of our algorithms.
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