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Abstract:  This article presents an approach for data associ-
ation in single camera, multi-object tracking scenarios using
feed-forward neural networks (FFNN). The challenges of data
association are object occlusions and changing features which
are used to describe objects during the process. The presented
algorithm within this article can be applied to any kind of ob-
ject which has to be tracked, e.g. persons and vehicles. This
approach arises within a project to detect critical behavior of
persons. Besides, person tracking is one of the most challeng-
ing scenarios. People have different velocities and often change
the moving direction. In addition, a variety of occlusions are
caused by the movement as a group. Also in most surveillance
scenarios the illumination conditions are not optimal. The us-
age of a feed-forward neural network is a mostly new approach
in this research field. The advantage is the lightweight com-
putational complexity and the fixed termination time in con-
trast to recursive neural networks like Hopfield networks which
are used for plot association during radar tracking. FFNN is a
non-probabilistic approach in contrast to common algorithms
within this filed. They deliver decisions not probability values.
The handling of the FFNN output will be presented in this arti-
cle. During the evaluation we will show that the developed ap-
proach is capable to handle completely different scenarios like
tracking people moving mostly straight forward but also com-
plex scenarios like a soccer game.

Keywords: single camera, multi-object tracking, data association,
feed-forward, neural network

1. Introduction

This article deals with the data association problem (DAP)
in multi-target single-camera tracking scenarios. Generally,
tracking is used to extract trajectories of objects. The ap-
plications differ from tracking merchandises in controlled
industrial environments, traffic analysis [1] up to sophisti-
cated scenarios like pattern recognition on trajectory data
or on selected images [2] to analyze behavior. This work
arose in the context of the latter application. In automated
and adaptive surveillance scenarios, recorded trajectories can
be used to reconfigure camera systems e.g. the change of
field of views. Therefore special demands arise on track-
ing algorithms. Multi-object tracking is a challenge of ob-
ject detection and consistent labeling (data association) of

objects. Due to the specialization of object detection like
the histogram of oriented gradients detector [3] or sophisti-
cated techniques using infrared images [4], it is necessary to
divide detection and labeling. The challenges of DAP are
on object occlusions and changing features which are used
to describe objects during the process. The focus of this ar-
ticle is on a generic approach for DAP. Besides the devel-
opment in a project with pattern recognition on people tra-
jectories, we also choose person tracking because it is one
of the most difficult applications. The objects have differ-
ent velocities (pedestrians strolling through a mall) which
changes over the time. Also, objects have different dimen-
sions which make distance estimation on object size delicate.
Using object-color is sophisticated because of the not opti-
mal illumination conditions in most surveillance scenarios.
In addition, a variety of occlusions are caused by the move-
ment as a group of people. The Usage of feed-forward neu-
ral networks (FFNNs) is a mostly new approach on this field.
The advantage is the light-weighted computational complex-
ity and the fixed termination time in contrast to recursive neu-
ral networks (NN) like Hopfield networks. FFNNs in data
association are a non-probabilistic approach. They provide a
decision. The data association bases on these results. There-
fore different realizations are possible as shown in the further
sections.

The remainder of the paper is structured as follows: In Sec-
tion II, we will investigate related work from the field of ob-
ject tracking. In Sec. III to Sec. IV the architecture of the
label distributor is deduced including the artificial neural net-
work architecture. The robustness of the approach is demon-
strated using two videos from a mall, two videos from the
PETS2001 data set and a soccer game in the evaluation. The
paper concludes with a summary and an outlook on future
work.

II. State of the Art

Common object tracking algorithms can be differentiated in
methods which interconnect detection and data association
to a unit, so that these parts cannot be divided e.g. CamShift,
and those approaches which use separate operations for ob-
ject detection and data association (DA). The algorithm pre-
sented within this article, is a DA algorithm for the latter
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class of object tracking approaches. The advantage of al-
gorithms interconnecting detection and labeling is, that both
can directly benefit from each other. The close coupling of
both parts may speed up algorithms. The disadvantage is
that most of these algorithms track a moving object without
knowing what kind of object it is. From our point of view
the interdependency of detection and labeling impedes the
separate improvement of both. Based on this class of DA
algorithms, it can be distinguished between methods which
interpret the scene entirely (joint association) and methods
based on the individual trajectory of objects (non-joint asso-
ciation). Often also the differentiation of probabilistic and
non-probabilistic algorithm can be found. This classifica-
tion is concurrent to the upper differentiation and also dif-
fers between joint and non-joint association. Our approach
can be classified as a non-joint, non-probabilistic data asso-
ciation algorithm. The classification is depicted in Fig. 1. A

Tracking Algorithm

Interconnection of Detection Data

Detection

and Data Association Association
Probabilistic Data ‘ \\No\n-ProbabiIistic Data
Association ~Association
Joint Data Association Non-Joint Data
Association

Figure. 1: Apportionment of different tracking-solutions.

well known algorithm for labeling objects using probability
is the also so called Probabilistic Data Association (PDA) al-
gorithm [5]. In PDA all candidates for association to a track
are combined in a single statistically most probable solution.
PDA premises that only one of the candidates is a trackable
object, other candidates are clutter. A common usage sce-
nario for PDA is plot association for radar tracker [6]. Joint
Probabilistic Data Association (JPDA) [7] is an extension of
the PDA algorithm which considers that more than one of
the candidates is an object. The JPDA is tainted with the
stigma of being computationally very intensive. The num-
ber of trackable objects has to be known a-priori [8], respec-
tively all possible combinations have to been proven. This
means the consideration of the assumption that all measure-
ments are clutter up to all measurements are objects. So the
computational effort increases very fast. An improvement
of this was offered by the usage of neural networks. The
problem of consistent labeling has similarities to the travel-
ing salesman problem (TSP) which Hopfield tried to solve by
neural networks [9]. In these Hopfield networks each neuron
is connected to each other neuron within the network, so it
is fully meshed. Our algorithm is based on a (progressive)
feed-forward neural network architecture without recursion.
Hopfield networks have to converge because of the recur-
sion. The FFNN computing time is fix and depends only on
the number of neurons. Hopfield networks perform well on
tracking particle in a clutter environment using the position
and the assumption of a nearly constant velocity. Because
we want to track objects like people we decided to use addi-
tional information like color and object size to enhance the
performance of the tracking result.
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In recent years, several studies have already been made on
object tracking algorithms using an artificial neural network
(ANN).In [10] a camera is controlled by an ANN. In the first
image an object is selected. This image is called master-
image. The next frames from the camera are called slave-
images. The master- and slave-image are compared pixel-
wise by calculating the differences of normalized greyscale-
values, gradient magnitude and gradient orientation. These
values are relayed to a feed-forward neural network. The
ANN provides information whether the camera should move
left, stay, or move right to follow the object. The master-
image is updated during the tracking process using the slave-
image. This approach is a sophisticated template matching,
whereas we work on only relevant feature data for multi-
object tracking. In [11] the authors use a trained neural net-
work. The system performs a foreground/background seg-
mentation. The pixel values of the blobs in foreground are
fed into a neural network, which outputs the probability of
the blob being a person. Hypotheses are stated to describe
the scene in a graph-structure. Each node represents an ob-
ject with probability (outcome of the detection), size, posi-
tion and appearance. Any connection between the nodes re-
spectively the probability of connectivity is calculated from
the weighted sum of similarity/density of the position, size
and appearance. The hypotheses management calculates the
likelihood of hypotheses and reduces their quantity to a lim-
ited number. The tracking result is passed to the detector in
order to advance the detection property. The ramification of
hypotheses models increases strongly with increasing num-
ber of objects which makes it practically not realizable in
scenes with many objects.

III. Object Labeling

As described in Sec. I object tracking is a challenge of ob-
ject detection and consistent object labeling. We propose a
generic approach for object labeling where the object detec-
tion is exchangeable. During the label assignment process
the algorithm holds two types of objects. The actual objects,
which are located by the object detector in the actual frame,
are denoted with of. Objects which have passed the labeling
process and are labeled with a unique identification number,
are held in the memory and are denoted with o'. Each de-
tected object of € Of in the image at time ¢ will be marked
with a label label(o!, ) with o! € O as labeled object. It is
our goal to supply every object with a consistent label during
the runtime T’.,.

Vol e Oty ty € Toeq : label(ol,tl) = label(ol,tg) (1

For the task of assigning labels to objects, we introduce the
label distributor as depicted in Fig. 2. The architecture of
the label distributor is designed with regard to consider the
scalability. The scalability is related to the number of ob-
jects which have been detected in the scene of and the ob-
jects in the memory o'. An ANN, which takes all labeled
objects o' and all actual objects of as input and delivers the
correct assignment for each object, is not manageable due to
the varying number of objects o' and of. Thus, we chose an
architecture where the ANN compares each actual object o
with each labeled one. A collator will aggregate the results
of the ANN.
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A. Architecture of Object Labeling

The object detector is assumed to detect the objects present
in the actual frames. The features describing the objects are
extracted afterwards. The object labeling consists of a pre-
processing element, an ANN and a collator, see Fig. 2. The
pre-processing element prepares the actual object features
and the features of labeled objects so that they can be han-
dled by the ANN. The ANN compares the object features of

Actual Objects 0
(features)

Label Distributor
Pre-Processi@—~ Arthcial | ’;‘ri“@—- Collator | }

Stored Objects O !
(features)

Figure. 2: Architecture of the label distributor, consisting of
a pre-processing element, an ANN and a collator.

each o! and of and evaluates the affinity of actual objects of
to tracked objects o'. The Collator aggregate the results of
the ANN.

B. Feature Extraction

The label distributor uses low level features, because we want
to design a generic label distributor which is independent
from a particular detector type. It can be assumed that the
following features are retrievable by almost every detector

type:
e position p; in frame coordinate system (fcs)
« object dimensions d; (width, height) in fcs

o color histogram in HSV color space (hue, saturation,
value)

The region on the object, which is used to create the his-
togram should contain mostly pixel of the object in each per-
spective. While a person is pictured at a sufficient size, a rep-
resentative color histogram can be extracted from the upper-
body, see Fig. 3. In cases with small objects it is reasonable
to choose the whole object size to calculate a representative
color histogram. The background in these cases conglomer-
ate additional context information. In applications with oc-
clusions and with a low object detection rate, using only the
position is not sufficient. For this purpose the color of the
object is an adequate supplemental information. In addition,
the object dimensions are useful, because it is related to the
object distance to the camera.

Known objects o' have a history of features which can be
considered as a First In - First Out Memory. Each time an ob-
ject has been recognized, the actual features are stored. The
history has to be set to a reasonable size /N. Pre-Evaluations
showed that a history of 10 slots per object provides good
results. Additionally, known objects o' have a time-to-live
(I'T'L). The TTL is used to cleanup objects which have not
been detected for a defined time. If the object o' has been
detected in the actual frame, the 7T L is set to a maximum
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Figure. 3: The object dimensions, position and the color his-
togram are sufficient to describe an object. If the objects
are pictured in a sufficient size, the marked upper-body (yel-
low) contains enough color values to create a sufficiently rep-
resentative color-histogram. Alternatively the whole object
size (blue) can be used. The background in these cases con-
glomerate additional context information.

value 7T L,,,,,.. Every time an object o cannot be assigned
to a detected object of, the TT'L will be decremented. When
reaching zero, the object will be removed from the list of
known objects O'.

C. Pre-Processing

The features of actual detected objects and the features of
already known (tracked) objects have to be pre-processed in
such way that they can be handled by the ANN. It makes
sense to operate on comparison metrics of actual and known
feature values, which means the difference of the positions,
dimensions and the normalized correlation coefficient of the
color-histograms.

There are various reasons why objects can be missed by the
detector, caused by occlusions or detection failures. So the
feature values of o' can be outdated compared to feature
values of actual objects of. The history is used to smooth
the feature values.

Position Using the object history, the object position of
o' is estimated by linear interpolation (time-base is frame-
count). The prediction is useful, because if an object has not
been detected for some frames, the position will be interpo-

lated in this way.

Vol € O : pyyi(oh) = pi(o)) + T (oh) - At (2)
with

N-1
1 Pr+1(0") — Pn(0')
— 1 n+1 n
Ti(0") = (3)
=iy X T

The predicted position of object o' compared to the position
of the detected object of, in relation to the maximum assum-
able deviation Peonst € {Xconsta 1/const}’ is used as iHPUt to
the ANN.

/

P : /
, Af AL < Peons
AP = Peconst p const (4)
1, else

Because the linear prediction is very sensitive, the distance
from the last known position is used as A, if the history N
is not filled.
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Dimension A prediction of the dimension in general is not
possible. The values vary frame by frame because of the in-
accuracy of most detectors. The detected object dimensions
alternate in a deterministic non-descriptive way. This makes
it reasonable to use the average.

N
- 1
l . l l
Vo €O :d(o) = Nnildn(o)

with
dn(0') € {width(o',n), height(o',n)} )
The dimensions of object o' compared to the dimensions of

the detected object of, in relation to the maximum assumable
deviation d.on st (see Eq. 6), is used as input to the ANN.

Ay
if A dcons
Ad = dconst, ' a< ! (6)

1, else

To compare the color histograms, the normalized correla-
tion coefficient p is used. The actual histogram is compared
to each stored histogram. This approach is more effective
than using only the last stored color-histogram. Between
the color-histogram of the actual detected object and the last
stored color-histogram of o' can be a gap of several frames,
because of missing detections by the detector. Also distur-
bances like light variations due to the missed detections can
be smoothed, by using the average.

1 N
Dp=p(o') =5 D pnlo) (7)
n=1

The average correlation of the color-histograms of object o'
and the detected object of is used as input to the ANN.

In the last step of pre-processing, the range of A’s has
to be adopted to the range of the used artificial neuronal
network library. We implemented the network using the
FANN library [12]. Because we used the symmetrical
tangent hyperbolic sigmoid function as activation function
we transformed the A’s input-values into a [-1, 1] range,
with -1 for bad match and 1 for good match.

€feature (8)

Afeature range
—

IV. Architecture of the Artificial Neural Net-
work

Artificial neural networks are part of the artificial intelli-
gence. In our application, we have chosen a feed-forward
neuronal network. The FFNN consists of neurons which can
be divided into three classes: input neurons, hidden neurons
and output neurons.

This is depicted in Fig. 4. The connecting lines represent the
weighted link of an output gate to the input gate of a neuron
of the following layer. The output value O is defined by an
activation function A. We chose the symmetrically tangent
hyperbolic sigmoid-function for the hidden and output neu-
rons as proposed in [13]. The parameters of A; of a neuron
j is the weighted sum of the output e; of a neuron ¢ of the
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Figure. 4: Architecture of a feed-forward neuronal network
with regard to the presented approach.

former layer. Additional a bias ©; has to be considered. A
formal description is depicted by Eq. 9.

Oj = Aj (—@j + ij,i . ejﬂ-) (9)

During the training the training-algorithm explores the
weighting values w; ; of each connection and the bias val-
ues O; to get the maximum performance. The parameters
and the performance constitute a fitness landscape. Common
training algorithms are able to find local maxima within these
landscapes. There are many training algorithms for disposal,
e.g. Backpropagation, Resilient Propagation, Quick Propa-
gation etc. During the training process we considered that
these algorithms did not have a significant effect on the qual-
ity of the results of the training, rather on the time required
for training. The training of neuronal networks is a trial and
error process based on experience. We selected Backprop-
agation as online variant, which means the network will be
adapted after each training datum. The training is done on
three self-made videos. Two of them display a floor with
two persons. The other one shows a mall. These videos in-
clude difficult scenes with persons who move through the
camera’s field of view (FoV) in different directions and tem-
porary occlusions. This ensured that many difficult situa-
tions could be presented to the network such as occlusions,
position jumps, as well as objects which are positioned very
close. The training-dataset consists of comparisons of all de-
tected objects with all known objects. The used three self-
made videos deliver approx. 10.000 entries to the dataset.

A. Evaluation of Different Architectures of Feed-Forward
Neural Networks

59 99

In the following annotations, the layer will separated by
and the hidden layer will be marked by [ ]”. Several archi-
tecture models for the ANN were analyzed differing in the
number of hidden layers and the neurons per layer. For the
evaluation of the chosen architectures we used two bench-
mark videos [14] and [15] which display a scene of a parking
area. The different network architectures which we evaluated
are listed on the left in Tab. 1.

Tab. 1. The corresponding number of failures for each ar-
chitecture is listed on the right. The networks 5-[8]-1, 5-1
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ANN Number of Failures in
video [14] | video [15]
5-1 11 3
5-[8]-1 9 3
5-[15]-1 17 5
5-[3]-1 12 7
5-[5]-[2]-1 31 14

Table I: Different network types depicted against their num-
ber of failures in video [14] and [15]. The used parameters
are listed in Tab. 2.

and 5-[15]-1 provide the highest accuracy. Network 5-1 is a
good indicator for a performance estimation of this approach.
The architecture without hidden-layer is only capable to use
linear separation for classification. But during the training
it is easier to find the maximum performance, because the
fitness landscape is only determined by six parameter (five
input weights and one bias), whether the fitness landscape
of the 5-[8]-1 network is determined by 49 parameters. The
fact that the 5-1 network can achieve better results than 5-
[8]-1 in other videos shows that the performance of 5-[8]-1
could be increased even further by training. The result of
network 5-[15]-1 shows that an increasing number of hid-
den neurons does not correlate with an increasingly correct
classification rate. That one hidden layer is sufficient, corre-
sponds to the design recommendations for continuous func-
tions in [13]. We chose network 5-[8]-1 for the following
evaluations.

V. The Collator

The ANN calculates based on the input efcqiure the deci-
sion if a detected object of has similarity to a known ob-
ject o', Each detected object will be compared with each
known object in the memory which 77'L has not expired.
The result is a two-dimension ranking matrix R of assign-
ments 7, i € R.

l ! l d ANN
o' € {0 € O'|TTL > 0}, 0] —— 1oa o

(10)
An example for a ranking matrix is R, see Equation 11. The
rows are the detected objects and the columns are the known
objects. In this example the system knows three objects and
detected four. The fourth object e.g. could have currently
entered the scene. A high similarity is represented by a ’1’
and a mismatch by ’-1’, so the decision-margin of the trained
artificial neural network is binary.

+1 -1 -1 +1 +1 -1
-1 +1 -1 -1 +1 -1
Bi=1_4 +1 Ra=1_1 3 +1
-1 -1 -1 -1 -1 -1

(11)

Because of the symmetrically tangent hyperbolic sigmoid-
function the output of the FFNN is not binary in that strict
way. The results of the neural network can be interpreted as
determination, which means that they can draw conclusions
about the “credibility”.

The credibility indicates the degree of trust, which can be as-
sumed if an association is correct in the ranking matrix. It
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Figure. 5: The result of the FFNN can be classified into three
rough different credibility levels

should be pointed out again that the results of the neural net-
work do not reflect absolute probability-values. Rather, it can
be assessed based on these values if an association 7,4 . is
more likely than a comparable assignment. The credibility-
validation includes the elements of the ranking matrix and
whether there are further assignments in a row or column of
the matrix, as shown in Rs. A credibility matrix can be cal-
culated based on the following equation 12.

Tod ol
od ot

(Toa o) = 5 pmaz (12)
o¢,o!

with r;';‘ﬂfl as the maximum value (greater than zero) of the
considered row respectively column of the ranking matrix ex-
cluding the considered 7,q i itself. This credibility matrix
can be included as a quality measure in the behavior analy-
sis of people, which is one research goal of the project de-
scribed in the introduction. Evaluations based on these cred-
ibility matrices have shown that the decision based solely on
the FFNN results are sufficient and that the inclusion of the
credibility has no further effort on the assignment decision.
They rather assess the risk of a label permutation. Based on
these pre-evaluations the assignment algorithm is structured
as follows. For the assignment, the collator takes the best-hit
maz{rya ., } in the ranking matrix R, after that the next best-
hit and so on of the matrix R. Actual objects which cannot be
assigned will be included as new objects. An object cannot
be assigned if the number of new objects is greater than the
number of known objects, or if the result of the ANN is lower
than a defined threshold threshold, ;. If formerly known
objects cannot be assigned, their 7T'L will be decreased.

VI. Evaluation

In this section the robustness of the algorithm will be evalu-
ated. We used five benchmark videos which cover different
complex scenarios. The first two videos show a mall in Por-
tugal with two different scenes, from the CAVIAR project.
The challenge is the view on the scene. The videos were
recorded along a longitudinal corridor, so many occlusions
arise. Additional two videos from the PETS2001 dataset
were used. This videos show the same scene from differ-
ent views. It shows a wide area with moving objects like
cars and people. The most sophisticated benchmark video
shows a soccer game. The video includes many object oc-
clusions and fast changes of the moving directions. In Figure
6 a snapshot of each video is depicted.

To evaluate the videos it is necessary to use the ground truth
data for object detection. This makes the results of the data
association discussible to similar approaches. The ground



388

Figure. 6: The figures show from left to right the benchmark
videos Malll [16], Mall2 [17], PETS1 [14], PETS2 [15] and
the soccer game [18].

truth data also contains objects which cannot be seen by the
camera, e.g. they are occluded. Therefore we wanted to eval-
uate the videos at real constraints, the objects which cannot
be detected by a HOG-Detector [3] were not used. The goal
of the algorithm is to continuously assign labels to corre-
sponding objects, see Equation 1. A change of the label is
unwanted. A failure of the label distributor is defined as a
change of the label of an object while it is present in the
scene. E.g. if the label of an object changes and the label will
be reassigned to the object after a few frames it will cause
two failures.

There are several parameters which affect on the algorithms
performance. One of these parameters is the threshold,., . .
Output values of the FFNN below this threshold will not be
considered. This parameter describes the minimum determi-
nation of a correct assignment. Other important parameters
are the time-to-live T7T'L, the history size N which deter-
mines the maximum amount of features which can be stored
of each object o'.

A. Exemplary Result

To demonstrate the capacity of this algorithm we selected a
scene of the mall video [16] exemplarily. During the first
300 frames two persons revolve around each other, see Fig.
7, and the labels were assigned correctly.

B. Dependency on Detection Rate

The data association depends on the object detection. Be-
cause we used the ground-truth data we are able to evaluate
the performance on several detection rates. In Fig. 8 the
amount of false assignments of the label distributor are de-
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Figure. 7: The person with the label 413 will be occluded by
person 202, because of a revolve. In the lower right figure
both persons 202 and 413 kept their labels.

picted on a varying probabilistic detection rate decreasing
from 100% to 20%. The probability is assumed to be uni-
form. Therefore we used a Mersenne Twister implementa-
tion. A detection rate of e.g. 20% does mean that on aver-
age a object is detected every fifth frame, but because of the
probabilistic uniform distribution the gap between detetec-
tions can be much longer. Each measurement was repeated
ten times. We used the parameters listed in Tab. 2. Fig. 8
shows the results of the mall videos. The list above repre-
sents the failure ratio to all assignments. These videos con-
tains many occlusions because of the longitudinal viewing
direction to the corridor. It is evident, that even at a detec-
tion rate of 20% the failure ratio is lower than 1.6%. In Fig.
9 the results of the parking scenes (PETS2001) are depicted.
These videos are challenging because of the bad illumination
conditions. At a detection rate lower than 50% the correct as-
signment of the people in the dark regions becomes difficult.
The persons revolve around each other and at a low detection
rate this cannot be recognized. Fig. 10 shows the results of
the soccer game benchmark video. It is the most challenging
video, because the objects sharply change their movement di-
rection. But even at a detection rate of 50% the failure ratio
is lower than 0.5%. These results show that the failure ratio
of false assignments about all benchmark videos is even at a
detection rate of 40% much lower than 1.0%.

| Parameter | Value |
thresholdy,, ;. 0.0
N 10
TTL 75
Xconst 100
Yconst 75
dconst 1

Table 2: Parameters used within the evaluation.

C. Dependency on a Minimum Recognition Amount

In most applications the recorded trajectories are used to ac-
complish further analysis on these data. In huge observation
scenarios those systems cannot be administrated manually.
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Dependency on Detection Rate
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Figure. 8: Amount of failures of the mall videos. The list
above represents the failure ratio to all assignments.
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Figure. 9: Amount of failures of the PETS2001 benchmark
videos. The list above represents the failure ratio to all as-
signments.

Current research is towards automated surveillance camera
networks. These networks of smart cameras use the trajec-
tory data for self-configuration. Those systems will assume,
that a new object has entered the scene if the algorithm looses
an object and assigns it with a new label. Therefore it could
be necessary to report objects only if the object has been rec-
ognized for a minimum amount h. In Fig. 11, 12, 13 the
amount of failures within the benchmark videos is depicted
over the detection rate using a minimum A of 25. It is shown
that the amount of failures is lower than using non minimum
recognition length. Even in the soccer video the amount of
failures has been halved at a detection rate of 20%. It is sig-
nificant that the amount of failures does not increase with a
decreasing detection rate. This is an advantage for a selfor-
ganzing surveillance system.

D. Dependency on the Determination Threshold

The output values of the FFNN are set into relation to a
minimum determination threshold threshold,, . . To set
threshold,, . = 0.0is only one solution. In Fig.14 the fail-
ure rate is depicted over the determination rate and the mini-
mum determination threshold in the soccer game example. It
is evident that the system performs best with low thresholds,
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Figure. 10: Amount of failures on the soccer video. The list
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Figure. 11: Amount of failures of the mall videos. The list
above represents the failure ratio to all assignments.

around 0.0 This is caused by the training of the FFNN. Most
of the training data are false-positive matches. Using —1.0 as
threshold respectively non threshold is not an option because
this causes a lot of false associations.

VII. Conclusion and Outlook

In this article we presented a new approach for solving
the data association problem using feed-forward networks.
FFNNs have an advantage in computational speed compared
to Hopfield networks. The termination time is fixed by the
amount of neurons and hidden layer within the network. We
have shown that the combination of error-prone object de-
scribing features as input to the feed-forward network is suf-
ficient to reach a high association rate. In the evaluation the
robustness of the algorithm was analyzed using five bench-
mark videos with different scenes and different complexity.
We could show that the label distributor even works well with
low detection rates. The evaluation on a minimum determi-
nation threshold on the output of the FFNN demonstrated
that this threshold depends on the detection rate, but even at
a detection rate of 40% the correct association rate is higher
than 99%. In a scenario with a object detector which can en-
sure no detection failures the threshold can reduced to a very
low level. In future work we want to include this algorithm
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videos. The list above represents the failure ratio to all as-
signments.
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Figure. 13: Amount of failures on the soccer video. The list
above represents the failure ratio to all assignments.

into an automated surveillance system. The system will re-
configure itself by using the trajectory data. This will require
a detailed analysis of the credibility measurement which was
introduced in section V.
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