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Abstract: It is progressively realized that noise can play a
constructive role in the domain of nonlinear information pro-
cessing. This phenomenon, also known as stochastic resonance
(SR) effect, has experienced large varieties of extensions with
variations concerning the type of noise, the type of information
carrying signal or the type of nonlinear system interacting
with the signal-noise mixture. In this article, we propose an
interpretation for the mechanism of noise-enhanced image
restoration with nonlinear PDE (Partial Differential Equation)
recently demonstrated in literature. More precisely, a link
is established between the action of noise in a nonlinear
Perona–Malik anisotropic diffusion and stochastic resonance in
memoryless nonlinear systems for 1-D signals. For illustration
some preliminary results are presented on classical “camera-
man” image and the inner of SR mechanism is theoretically and
practically studied using a simple set of parameters regarding
the PDE used and the modeling of boundaries within images.

Keywords: Stochastic resonance, anisotropic diffusion, image
restoration, nonlinear image processing.

I. Introduction

It is progressively realized that noise can play a constructive
role in the domain of nonlinear information processing. The
starting point of the investigation of such useful noise effect
has been the study of stochastic resonance [1, 2, 3]. Origi-
nally introduced to describe the mechanism of a constructive
action of a white Gaussian noise in the transmission of a si-
nusoid by a nonlinear dynamic system governed by a double
well potential [4, 5], the phenomenon of stochastic resonance
has experienced large varieties of extensions with variations
concerning the type of noise, the type of information carry-
ing signal or the type of nonlinear system interacting with
the signal-noise mixture (see [6] for a review in physics, [7]
for an overview in electrical engineering and [8, 9] for the
domain of signal processing). All these extensions of the
original setup preserve the possibility of improving the pro-
cessing of a signal by means of an increase in the level of
the noise coupled to this signal. New forms of useful-noise

effect, related to stochastic resonance or not, continue to be
demonstrated [10, 11, 12, 13, 14, 15, 16]. A current domain
of interest is the study of nontrivial transposition of stochas-
tic resonance to image processing [17, 18, 19, 20] and more
particularly to nonlinear image restoration.
We discuss here the possibility to enhance nonlinear PDE
image restoration with a controlled useful injection of noise.
In previous communications , we have proposed to tackle this
standard restoration task with a stochastic variant of Perona-
Malik’s process.
The report is organized as follow: we first recall the global
framework of stochastic resonance and introduce the stochas-
tic anisotropic diffusion equation originally proposed in
[21, 22]. We then study a simplified version of this equation
stochastic diffusion equation preserving the essential proper-
ties of the former historical equation proposed in [23]. There-
from, we establish a formal analogy between the mecha-
nism of useful-noise effect in image anisotropic diffusion and
the mechanism of stochastic resonance in static non-linearity
with additive signal–noise mixture in monodimensional sig-
nals.

II. Global scheme of stochastic resonance

From an informational point of view [8], stochastic res-
onance (SR) can be described with the general scheme
of Fig. 1 which involves four essential elements: (i) an
information-carrying or coherent signal s: it can be deter-
ministic, periodic or non, or random; (ii) a noise η, whose
statistical properties can be of various kinds (white or col-
ored, Gaussian or non,... ); (iii) a process, which generally
is nonlinear, receiving s and η as inputs under the influence
of which it produces the output signal y; (iv) a measure of
performance, which quantifies the input–output information
transmission (it may be a signal-to-noise ratio, a correlation
coefficient, a Shannon mutual information, ...). By contrast
with the informational scheme of Shannon, the noise in Fig. 1
is considered as an input with a tunable level. A useful-noise
effect occurs when the input–output information transmis-
sion, assessed with the chosen measure of performance, is

International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 4 (2012) pp. 411–419
c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA 



enhanced from an increase of the level of the noise.
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Figure. 1: Stochastic resonance consists in the possibility of
increasing the transmission of information between the input
signal s and the output signal y by means of an increase of
the level of the noise η.

Historically, the developments of SR have proceeded through
variations and extensions over these four basic elements.
From the origin, SR studies have concentrated on a peri-
odic coherent signal s, transmitted by nonlinear systems of
a dynamic and bistable type. This form of SR now ap-
pears simply as a special form of useful-noise effect. This
primary form of SR will not be entirely described in this
article but a complete description can be found in [4, 5]
for instance. For illustration, we propose to illustrate phe-
nomenon of SR in the framework of image transmission as
it was formerly proposed in [8]. This example has the ad-
vantage of its simplicity which makes both theoretical and
experimental analysis possible. Leaning again on the gen-
eral scheme of SR phenomenon, author considers this time
that the coherent information-carrying signal s is a bidimen-
sional image where the pixels are indexed by integer coor-
dinates (i, j) and have intensity s(i, j). For a simple illus-
tration, a binary image with s(i, j) ∈ {0, 1} is considered
for experiment. A noise η(i, j), statistically independent of
s(i, j), linearly corrupts each pixel of image s(i, j). The
noise values are independent from pixel to pixel, and are
identically distributed with the cumulative distribution func-
tion Fη(u) = Pr{η(i, j) ≤ u}. A nonlinear detector, that it
is taken as a simple hard limiter with threshold θ, receives the
sum s(i, j) + η(i, j) and produces the output image y(i, j)
according to:

If s(i, j) + η(i, j) > θ then y(i, j) = 1,
else y(i, j) = 0.

(1)

When the intensity of the input image s(i, j) is low relative
to the threshold θ of the detector, i.e. when θ > 1, then
s(i, j) (in the absence of noise) remains undetected as the
output image y(i, j) remains a dark image. Addition of the
noise η(i, j) will then allow a cooperation between the inten-
sities of images s(i, j) and η(i, j) to overcome the detection
threshold. The result of this cooperative effect can be visu-
ally appreciated on Fig. 2, where an optimal nonzero noise
level maximizes the visual perception.
To quantitatively characterize the effect visually perceived in
Fig. 2, an appropriate quantitative measure of the similarity
between input image s(i, j) and output image y(i, j), is pro-
vided by the normalized cross-covariance defined in [24] and
given by:

Csy =
〈(s− 〈s〉)(y − 〈y〉)〉√
〈(s− 〈s〉)2〉〈(y − 〈y〉)2〉

, (2)

Figure. 2: The image y(i, j) at the output of the detector of
Eq. (1) with threshold θ = 1.2, when η(i, j) is a zero-mean
Gaussian noise with rms amplitude 0.1 (left), 0.5 (center) and
2 (right).

where 〈.〉 denotes an average over the images.
Csy can be experimentally evaluated through pixels count-
ing on images similar to those of Fig. 2. Also, for the simple
transmission system of Eq. (1), Csy can receive explicit the-
oretical expressions, as a function of p1 = Prs(i, j) = 1 the
probabilty of a pixel at 1 in the binary input image s(i, j),
and as a function of the properties of the noise conveyed by
Fη(u) as mentioned in [24].
Considering the above scenario, Fig. 3 shows variations of
Csy function of rms amplitude of the input noise η.

Figure. 3: Input-output cross-covariance of Eq. (2) between
input image s(i, j) and output image y(i, j), as a function
of the rms amplitude of the noise η(i, j) chosen zero-mean
Gaussian. The crosses are experimental evaluations through
pixels counting on images, the solid lines are the theoretical
predictions (p1 = 0.6) calculated by authors [8].

As one can see on Fig. 3, measure of cross-covariance as
defined Eq. (2) identify a maximum efficacy in image trans-
mission for an optimal nonzero noise level. This simple ex-
ample is interpreted here as the first formalized instance of
SR for aperiodic bidimensionnal input signal s (even if it is
not clearly an image processing application).
We are now going to show that this kind of approach can be
successfully transposed in the framework of nonlinear PDE
based image restoration approach.

III. A stochastic variant of the Perona–Malik
process for image restoration

A. Framework

In the particular field of image restoration, nonlinear or
anisotropic regularization PDE’s are of primary interest. The
benefit of PDE-based regularization methods lies in their
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ability to smooth data in a nonlinear way, allowing the preser-
vation of important image features (contours, corners or
other discontinuities). In the particular domain of scalar im-
age restoration, the introduction of the Perona–Malik process
[23] as triggered a large interest [25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36] for a selected list of papers.
In the original Perona–Malik process the observable noisy
image ψ0 is restored by considering the solution of the partial
differential equation given by

∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ), ψ(x, y, t = 0) = ψ0 , (3)

where the anisotropy of this diffusion process is governed by
g(·) a nonlinear decreasing function of the norm of the gra-
dient∇ψ. In this study, we consider a variant of the standard
Perona–Malik’s process of Eq. (3) introduced in [21], where
the anisotropic diffusion process, given by

∂ψ

∂t
= div(gη(‖∇ψ‖)∇ψ) , (4)

which is of a form similar to Eq. (3) except for the nonlinear
function gη(·) which is given by

gη(u) = g(u+ η(x, y)) , (5)

where η is a noise assumed independent and identically dis-
tributed with probability density function fη(u) and rms am-
plitude ση . The noise η, which is distinct from the native
noise component ξ to be removed, is a purposely added noise
applied to influence the operation of g(·). In [21], we have
shown that the injection of a Gaussian noise in Eq. (5) can
improve the restoration process by comparison with standard
Perona-Malik process of Eq. (3) when the native noise com-
ponent ξ is a Gaussian, impulsive or multiplicative noise and
with g(·) given by

g(u) = e−
‖u‖2

k2 . (6)

In this expression, parameter k can be seen as a soft threshold
controlling the decrease of g(·) and the amplitude of the gra-
dients to be preserved from the diffusion process. Our previ-
ous works [21] and [22] have shown, as a proof of feasability,
that an injection of a non zero amount of noise could help the
restoration process when the threshold k is ill-positioned.

B. Preliminary results

For illustration, the image “cameraman” (see image (d) in
Fig. 4), is chosen as reference for the original image ψori.
Noisy versions of this original image are presented as the
observable images ψ0 of our restoration task in Fig. 4 for
various image–noise coupling.
A visual appreciation of the performance of the stochastic
version of Perona–Malik process of Eq. (4) and the original
Perona–Malik process of Eq. (3) is shown in Fig. 5.
The images restored by the stochastic process appear to be
of better visual interest than those obtained with the clas-
sical Perona–Malik process for all the three types of noise
component tested. This is especially visible, in Fig. 5, in ar-
eas of the “cameraman” image characterized by small gradi-
ents (face, buildings in the background, or textured area like
grass) which are preserved from the diffusion process and

(a) (b)

(c) (d)

Figure. 4: The original image ψori cameraman (d) corrupted
by three different native noises ξ: (a) additive zero-mean
Gaussian noise with ψ0 = ψori + ξ, (b) multiplicative Gaus-
sian noise of mean unity with ψ0 = ψori+ ξ.ψori, (c) impul-
sive noise.The rms amplitude of these noises are separately
adjusted in order to have each of the images (a,b,c) charac-
terized by the same normalized crosscovariance (given in Eq.
(7)) with the original image equal to 0.87.

better restored with the presented stochastic approach than
with the classical Perona–Malik process.
A quantitative analysis is presented in Fig. 6 where the num-
ber of iteration n of the diffusion processes is fixed. For
our purpose, the normalized crosscovariance is adapted to
the framework of image restoration by iterative process con-
sidering the following equation:

Cψoriψ(tn) =
〈(ψori − 〈ψori〉)(ψ(tn)− 〈ψ(tn)〉)〉√
〈(ψori − 〈ψori〉)2〉〈(ψ(tn)− 〈ψ(tn)〉)2〉

,

(7)

with 〈..〉 a spatial average, ψ(tn) the different restored steps
calculated with Eq. (4), for (i) geff and (ii) gη , at discrete
instants tn = nτ .
Variation of this similarity measure is then presented as a
function of the rms amplitude ση of the Gaussian noise pur-
posely injected. As visible in Fig. 6, the normalized cross-
covariance of Eq. (7) experiences, for all the 3 tested noise
components, a nonmonotonic evolution and culminates at a
maximum for an optimal nonzero level of the injected Gaus-
sian noise. These results are in good accordance with the di-
rect visual inspection of the images and demonstrate the pos-
sibility of improving the performance of the Perona–Malik
process by injecting a non zero amount of the noise η with
various image–noise coupling.
We now propose to investigate the inner mechanism of the
useful-noise effect shown in [21, 22]. To this purpose, we
propose to simplify the nonlinear function g(·). The diffusive
function of Eq. (6) was chosen in [21] because it corresponds
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(a) (b)

(c) (d)

(e) (f)

Figure. 5: Visual comparison of the performance of the orig-
inal restoration Perona–Malik process and the corresponding
stochastic version. The left column shows the results ob-
tained with usual Perona-Malik restoration process and the
right column with our stochastic version of the Perona–Malik
process. Each image is obtained with the iteration number n
corresponding to the highest value of the normalized cross-
covariance. The top (a,b), middle (c,d) and bottom (e,f) lines
are respectively standing for the additive, multiplicative and
impulsive noise component described in Fig. 4.
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Figure. 6: Normalized crosscovariance of Eq. (7) as a func-
tion of the rms amplitude ση of the Gaussian noise η pur-
posely injected with the number of iteration n which is fixed
to n = 15. Solid, dash-dotted and dotted lines are respec-
tively standing for the additive, multiplicative and impulsive
noise components described in Fig. 4

to the historical function proposed in [23]. This choice nev-
ertheless presents some drawbacks for the complete under-
standing of the useful-noise effect since the presence in the
analytical definition of g(·) function of a L2 norm of the pur-
posely noised gradient of the image leads to an offset shift-
ing that makes the interpretation of the impact of the noise
uneasy.

C. A simple set of parameters

In this article, we choose to simplify the shape of g(·) into a
hard threshold non-linearity given by

g(s) =

{
1 if s ≥ k
0 if s < k

, (8)

where parameter k is now a hard threshold. This function
integrates a hard non-linearity in order to set in a binary way
the diffusion threshold. Moreover, this non-linearity is only
function of the norm of the gradient in order to only empha-
sis the effect of the purposely injection of noise and to avoid
the shifting effect described above. One can note that despite
this methodological choice regarding g(·) function, this latter
is just a simplified version of the former function proposed
in [23] and still embed the fundamental elements of the clas-
sical anisotropic diffusion.
For illustration, the data to be restored is also chosen in its
most simplest form. We consider a monodimmensional sig-
nalψori taken as a unit step function modeling an edge within
a noisy image. ψ0 will denote the noisy version of ψori. The
goal is now to restore the noisy step version without altering
the hard discontinuity of ψori. More, we want to show that
injection of noise within the restoration process can lead to
overpass the classical weak point of Perona-Malik process: a
lack of robustness regarding k parameter.
Parameter k of Eq. (8) plays a very important role in the
study as far as little variations of its value can lead to com-
pletely different results of restoration. For instance, let us
consider ψori as defined Fig. 7.

  414 Histace and Rousseau



0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure. 7: Illustration of the monodimensional function used
for the study. On the left, the original ψori function. On the
right, the corrupted version ψ0 (ξ is chosen gaussian).
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Figure. 8: Illustration of the lack of robustness of classical
Perona-Malik’s process of Eq. (3) regarding parameter k.
g(.) is given by Eq. (8), iteration number n is fixed to 200,
and time step τ to 0.2. (a) shows for each value of k the ob-
tained diffused step, and (b) the corresponding gradient func-
tion. This Figure shows that the possibility to remove noise
without smoothing the discontinuity of ψ0 strongly depend
on the value of k.

To apply classical Perona-Malik process of Eq. (3) to ψori,
Eq. (3) is discretized with a time step τ such as tn = nτ
where n is the number of iterations in the process and tn the
corresponding scale.
Fig. 8 shows that the classical Perona-Malik process of Eq.
(3) with g(·) given by Eq. (8) presents a lack of robustness
regarding parameter k as far as for different values of this
parameter (k ∈ {0; 0.2; 0.4; 0.6; 0.8; 1}) final result of each
corresponding diffusion process is quite different.
More precisely, one can notice in Fig. (8) that for k < 0.5
ψori is not altered by the diffusion process of Eq. (3),
whereas for k > 0.5 ψori is diffused as far as a smoothing
is introduced which tends to attenuate the maximum value
of the corresponding gradient and to spread its width along
x-axis. This can be interpreted as an alteration of boundaries
within images for a bad tuning of k.
This drawback is all the more embarrassing as the smoothing
discrimination between noise and boundaries also depends
on the value of k as one can notice on Fig. 8.
In [21] we have shown that the stochastic variant of Perona-
Malik process of Eq. (4) has a stronger robustness toward the
tuning of parameter k. We provide an interpretation of the
mechanism for this useful-noise effect.

IV. Stochastic restoration: theoretical study

A. Preliminary calculations

The non-linearity of Eq. (4) can be classified as a static or
memoryless non-linearity. Possibility of useful-noise effect
in static non-linearity has been intensively studied (see [9]
for a review). The action of the additive noise η(x, y) can be
understood as a shaping by noise of the input–output charac-
teristic which on average becomes equivalent to

geff (s) = E[g(s+ η(x, y))] =

∫ +∞

−∞
g(u)fη(u− s)du ,

(9)
with fη(u) the probability density function of the purposely
injected noise η. In the case of the hard quantizer of Eq. (8)
with threshold k, Eq. (9) becomes

geff (s) = Fη(k − s) , (10)

where Fη is the cumulative distribution function of the prob-
ability density function of fη(u). If we consider the case
where fη(u) is uniform we have

geff (s) =


0 for k − s ≤ −

√
3ση

1
2

(
1 + k−s√

3ση

)
for |k − s| <

√
3ση

1 for k − s ≥
√
3ση

. (11)

geff (·) function corresponds to the average theoretical
equivalent characteristic of gη(·) in presence of a purposely
added noise with standard deviation ση .

B. Experiment

We now propose to compare the behavior of the numerical
diffusion process of Eqs. (5) and (8) with the equivalent the-
oretical input–output characteristic of Eq. (9). We choose
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the noisy step ψ0 of Fig. 9.(a), and we assess the efficacy of
the restoration process with the normalized cross-covariance
as previously defined (Eq. 7).
As noticeable in Figs. 9.(b) and 9.(c), restoration results are
in good accordance between numerical simulation and the-
oretical relation (standard deviation of ξ noise is set to 0.05
for illustration).
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Figure. 9: Comparison between the numerical implementa-
tion of the stochastic diffusion process (Eqs. (5) and (8) and
the theoretical one (Eq. (9)) on noisy step ψ0.ξ noise is gaus-
sian of standard deviation fixed to 0.05. iteration number n
is fixed to 150. (a) ψ0, (b) noise-enhanced diffusion process,
(c) diffusion process with g(·) = geff (·).

This agreement is also valid in Fig. 10 which shows aver-
age evolution of normalized cross-covariance (Eq. (7)) in
terms of iteration number n calculated for 1000 diffusion
processes.
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Figure. 10: Comparison of evolution of normalized cross-
covariance for 1000 diffusion processes (Eq. (7) between the
numerical implementation stochastic diffusion process (Eqs.
(5) and (8) and theoretical one (Eq. (9)) on noisy step ψ0.
n is fixed to 150. (a) noise-enhanced diffusion process, (b)
diffusion process with g(·) = geff (·), (c) superposition of
both. One can notice that the scale for normalized crossco-
variance is very tiny: this can be easily explained by the fact
that even corrupted, the noisy version of the step function re-
mains characterized by a high value of this parameter. Global
variations still remain of primary importance and must be
only considered for this study.

Fig. 10.(c) shows again a perfect matching between both
average evolution curves.
These results establish the link between the useful-noise ef-
fect shown in [21] and the mechanism at work in static non-

linear systems as described in [9].

V. Study of the Stochastic Resonance effect

In order to further study the influence of an injection of noise
in classical Perona-Malik process, we consider in this section
that k (Eq. (8)) is badly tuned (i.e. k > 0.5).
Considering the stochastic version of Perona-Malik process
(Eq. (4)) with g(·) given by Eq. (8), the purposely injected
noise η is a zero-mean Gaussian noise characterized by a tun-
able rms amplitude ση . For a visual appreciation of the noise-
enhanced process, we consider the noisy step ψ0 of Fig. 7
and k is set to 0.6, which corresponds to a badly tuned value
regarding Fig. 8. In these conditions, as shown in Fig. 11.(b),
Perona-Malik process fails in denoising ψ0 without altering
its integrity. If we now consider the stochastic Perona-Malik
process of Eq. (4) with same parametrization of k, addition
of noise η acts as a random resetting of parameter k, and, as
shown in Fig. 11.(c), sometimes makes the preservation of
the discontinuity of ψ0 possible whereas k was badly tuned.
It is important to notice, that this positive effect does not oc-
cur systematically, because of the random nature of the noise
η.
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Figure. 11: (a) Noisy step ψ0 = ψori + ξ (rms ampli-
tude of ξ is fixed to 0.05), (b) Perona-Malik restoration of
ψ0 (n = 50), (c) Stochastic Perona-Malik restoration of ψ0

(n = 50 and ση = 0.3. For (b) and (c), k is fixed to 0.6
(badly tuned). Injection of η noise makes possible to obtain
a better restoration of the noisy step regarding the fact that
noise is suppressed and step discontinuity is preserved.

Although the positive effect of injection of η noise is not sys-
tematic, this clearly demonstrates that an increase of the ro-
bustness of classical Perona-Malik process regarding param-
eter k is possible with the function gη(·) proposed. Concern-
ing the optimal amount of noise η to inject and the possibil-
ity to estimate the probability to have an averaged positive
effect, we propose to quantitatively characterize the noise-
enhanced effect shown Fig. 11 in the following way. We
compute the percentage of well-restored steps (no alteration
of the discontinuity) among a large number N of restora-
tion attempts and for different values of ση , k being set up
to a non optimal value. This ratio can be interpreted as a
measure of the gain of robustness compare to the classical
Perona-Malik process of Eq. (3) toward threshold k. Fig. 13
shows the evolution of the percentage of well restored steps
for k = 0.6.
One can notice in Fig. 13 that the variations of the ratio of
well restored steps is typical of the existence of a stochastic
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Figure. 12: (a) Solid line stands for variations of ∇ψori.
Maximum value (0.5) is reached at the discontinuity of the
studied step. Dotted line represents hard threshold k (fixed
to 0.6 and considered as badly tuned) leading the diffusion
process (Eq. (8)). (b) Solid line stands for variations of
∇ψori + η (η is chosen gaussian) and dotted line still rep-
resents k-threshold. As one can notice in (b), sometimes
the purposely injected noise η makes it possible to cross k-
threshold, that is to say to locally tuned diffusion process in
order to increase its robustness regarding k.
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Figure. 13: Variation of the ratio of well restored steps (no
alteration of the discontinuity) thanks to the purposely injec-
tion of η (Eq. (4)) function of rms amplitude ση . k is fixed to
0.6 and N , the total amount of restoration attempts, to 1000.

resonance effect related to a static ity where a maximum of
the measure of performance is reached for a non zero amount
of injected noise. Same experiments can be made for other
badly-tuned values of k. Results are presented Fig. 14.
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Figure. 14: Ratio of non-diffused steps function of rms am-
plitude ση . N is fixed to 1000. Dashed line stands for
k = 0.65, dotted one for k = 0.7, dash-dotted one for
k = 0.75 and solid one for k = 0.8. For each value of k,
same stochastic effect as before (Fig. 13) can be observed :
the non-diffusion ratio is maximum for a non zero amount of
purposely injected noise.

As visible in Fig. 14, even if the maximum value of the ratio
decreases, the useful-noise effect can be observed. This de-
crease can be easily explained by the fact the farer parameter
k is from 0.5, the more important is the necessary amount of
noise to inject to finally make an interesting retuning of k. As
a consequence positive effect of purposely injected noise η is
less important and presents a maximum for a value of ση also
increasing (which can also be noticed on Fig. 14). Moreover,
that type of curves also makes possible an evaluation of the
optimal amount of noise to add regarding k values. For in-
stance, it appears that for k = 0.6 (Fig. 13), a maximum
probability of 46% of non diffusion of the discontinuity of
ψori can be reached for ση = 0.3 thanks to the stochastic
Perona-Malik process.

VI. Conclusion

In this report, we have established a link between noised-
enhanced anisotropic diffusion and stochastic resonance in
static nonlinearities. This shows the way to non trivial trans-
position of stochastic resonance effect previously dedicated
to monodimensional signal to images. Further investigations
in the continuity of this report could deal with extensions to
more complex nonlinear partial differential equation of the
literature.
More precisely, in some recent publications ([14, 36]) deal-
ing with diffusion processes for image restoration, particular
nonlinear anisotropic PDE, integrating a double-well poten-
tial function of the form f(ψ) = ψ(ψ−a)(ψ−1), have been
proposed. One of the obtained PDE [14] is an extension of
the Fisher equation, derived from the Perona–Malik process,
and given by
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∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ) + f(ψ) . (12)

Such an equation has proved to be efficient for image en-
hancement. Nevertheless, sharpness preservation of the edge
profiles remains a real challenge.
Moreover, Eq. (13) can be related to the evolution equa-
tion of dynamic systems as described in [8] for instance, for
which SR phenomenon have been clearly identified, a com-
plete theoretical and practical study of those type of PDE
could be of real interest for image restoration. For such a
study, the considered image restoration PDE could be of the
form

∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ) + f(ψ) + η(x, y) . (13)

Establishment of a link between Fisher equation and stochas-
tic resonance in dynamic nonlinearities could be of real in-
terest to propose original restoration processes based on SR
PDE and would extend the study proposed in this article but
restricted to static nonlinearities.
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“Nonlinear systems for image processing,” Advances in
imaging and electron. physics, 2008.

[14] S. Morfu, “On some applications of diffusion processes
for image processing,” Physics Letters A, vol. 373, pp.
2438–2444, 2009.

[15] S. R. V.P. and P. Kumar Roy, “Magnetic resonance im-
age enhancement using stochastic resonance in fourier
domain,” Magnetic Resonance Imaging, 2010.

[16] D. Rousseau, A. Delahaies, and F. Chapeau-Blondeau,
“Structural similarity measure to assess improvement
by noise in nonlinear image transmission,” IEEE Signal
Processing Letters, vol. 17, pp. 36–39, 2010.

[17] X. Bohou, J. Zhong-Ping, W. Xingxing, and D. Rep-
perger, “Theoretical analysis of image processing us-
ing parameter-tuning stochastic resonance technique,”
in Proceedings of American Control Conference, 2007,
pp. 1747–1752.

[18] ——, “Nonlinear bistable stochastic resonance filters
for image processing,” in Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, vol. 1, 2007, pp. 717–720.

[19] P. Renbin, C. Hao, P. Varshney, and J. Michels,
“Stochastic resonance: An approach for enhanced med-
ical image processing,” in Proceedings of Life Science
Systems and Applications Workshop, 2007, pp. 253–
256.

[20] Y. Yang, Z. Jiang, B. Xu, and D. Repperger, “Investi-
gation of 2-d psr and applications in nonlinear image
processing,” J. Physics A: Math. Theor., 2009.

[21] A. Histace and D. Rousseau, “Constructive action of
noise for scalar image restoration,” Electronics Letters,
vol. 42, no. 7, pp. 393–395, 2006.

[22] ——, “Noise-enhanced anisotropic diffusion for im-
age scalar restoration,” in Proceedings of the fifth PSIP
congress (Physics in Signal and Image Processing,
2007.

[23] P. Perona and J. Malik, “Scale-space and edge detection
using anistropic diffusion,” IEEE Transcations on Pat-
tern Analysis and Machine Intelligence, vol. 12, no. 7,
pp. 629–639, 1990.

  418 Histace and Rousseau



[24] F. Vaudelle, J. Gazengel, G. Rivoire, X. Godivier, and
F. Chapeau-blondeau, “Stochastic resonance and noise-
enhanced transmission of spatial signals in optics: The
case of scattering,” Journal of the Optical Society of
America B, vol. 13, pp. 2674–2680, 1998.

[25] L. Alvarez, F. Guichard, P. Lions, and J. Morel, “Im-
age selective smoothing and edge detection by nonlin-
ear diffusion (ii),” Arch. Rationnal Mech. Anal., vol. 29,
no. 3, pp. 845–866, 1992.
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