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Abstract: The paper presents a generalization of the classi-
cal rough set theory, called the partial approximative set theory
(PAST). According to Pawlak’s rough set theory, the vagueness
of a subset of a finite universe U is defined by the difference of
its upper and lower approximations with respect to a σ-algebra
generated by an equivalence relation on U . There are two most
natural ways of the generalization of this idea. In particular,
the equivalence relation is replaced by either any other type of
binary relations on U or an arbitrary covering of U . In this pa-
per, our starting point will be a partial covering of an arbitrary
universe. In general, the family of sets neither covers the uni-
verse nor forms a σ-algebra. We will put our discussions into
an overall treatment called the general set theoretic approxima-
tion framework. We will investigate under what conditions our
generalized upper and lower approximation pair forms Galois
connection.
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I. Introduction

The rough set theory (RST) was invented by the Polish math-
ematician, Zdzisław Pawlak in the early 1980s [1, 2]. It can
be seen as a new mathematical approach to manage uncer-
tain, incomplete, inexact or vague knowledge [3].

In its classical form, the starting point is a nonempty fi-
nite set U of distinguishable objects, called the universe of
discourse, and an equivalence relation ε on U . The partition
of U generated by ε is denoted by U/ε, and its elements are
called ε-elementary sets. An ε-elementary set can be viewed
as a set of indiscernible objects characterized by the same
available information about them [4, 5]. In addition, any
union of ε-elementary sets is referred to as definable set.

Any subset X ⊆ U can be naturally approximated by
two sets called the lower and upper ε-approximations of X .
The lower ε-approximation of X is the union of all the ε-
elementary sets which are the subsets of X , whereas the up-
per ε-approximation ofX is the union of all the ε-elementary
sets that have a nonempty intersection with X .

The difference of upper and lower ε-approximations is

called the ε-boundary of X . X is exact (ε-crisp), if its ε-
boundary is the empty set, inexact (ε-rough) otherwise.

Let σ(U/ε) ⊆ 2U denote the extension of U/ε with
all the unions of some ε-elementary sets and the empty
set. σ(U/ε) is a σ-algebra with the basis U/ε. In other
words, (U, σ(U/ε)) is an Alexandrov topological space,
where σ(U/ε) is the family of all open and closed sets [6, 7].

In Pawlak’s theory, lower and upper ε-approximations can
be defined in three equivalent forms. They are based on el-
ements of U , ε-elementary sets and the σ-algebra σ(U/ε)
[8, 9, 10]. The generalization of Pawlak’s approximations
can go along one of the three equivalent definitions.

The most natural generalization of Pawlak’s idea is that
the equivalence relation is replaced by any other type of bi-
nary relation on U [11, 6, 12]. Another way is that the par-
tition is replaced by any covering of U [13, 14]. The third
way is to use two different subsystems of the powerset of U
[15]. A subsystem for the lower approximation which must
be closed under unions and another for the upper approxima-
tion which, in turn, must be closed under intersections

In this paper, our starting point will be a partial covering
of an arbitrary universe U . The family of sets generally nei-
ther covers the universe nor forms a σ-algebra. We will put
our discussions into an overall treatment called the general
approximation framework. Within this framework, our con-
cepts of lower and upper approximations are straightforward
point-free generalizations of Pawlak’s ones. This new ap-
proach is called the partial approximative set theory (PAST).

The rest of the paper is organized as follows. In Section
II we summarize the basic notations. Section III outlines
two general approximation frameworks, a large-scaled one
and a much finer one. This is one of the major contribution
of our paper. Section IV presents the fundamental concepts
and their properties of the classic Pawlak’s rough set theory.
Only those facts will be considered which are important to
the forthcoming ones. We provide new elementary point-free
proofs for some of them. Section V sums up the basic princi-
ples of the partial approximative set theory. In Section VI we
will investigate under what conditions our generalized upper
and lower approximation pair forms Galois connection.
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II. Basic Notations

Let U be a nonempty set. Let A ⊆ 2U be a family of subsets
of U . The union of A is

⋃
A = {x | ∃A ∈ A(x ∈ A)}, and

the intersection of A is
⋂

A = {x | ∀A ∈ A(x ∈ A)}. If A
is an empty family of sets we define

⋃
∅ = ∅ and

⋂
∅ = U .

If ε is an arbitrary binary relation on U , let [x]ε denote the
ε-related elements to x, i.e., [x]ε = {y ∈ U | (x, y) ∈ ε}.
The family of [x]ε is denoted by X/ε.

A nonempty set P together with a partial order ≤ on P is
called a poset, in symbols (P,≤).

A self-map f : P → P is extensive if x ≤ f(x), contrac-
tive if f(x) ≤ x.

If (P,≤P ) and (Q,≤Q) are two posets, a map f : P → Q
is monotone when x ≤P y ⇒ f(x) ≤Q f(y), and antitone
when x ≤P y ⇒ f(y) ≤Q f(x), and order isomorphism if
f is a bijection and both f and f−1 are monotone.

Let (P,≤P ) and (Q,≤Q) be two posets, and (f, g) denote
a pair of maps f : P → Q, g : Q → P . (f, g) is a Galois
connection between P and Q if

∀p ∈ P ∀q ∈ Q (f(p) ≤Q q ⇔ p ≤P g(q)).

f is called the lower adjoint and g the upper adjoint of the
Galois connection.

We also write (P, f, g,Q) for a whole Galois connection.
If P = Q it is said (P, f, g, P ) is a Galois connection on P .
Remark 1. Here we adopted the definition of Galois connec-
tion in which the maps are monotone. It is also called the
monotone or covariant form. For more details, see, e.g. [16].

The following proposition gives a useful characterization
of Galois connections.
Proposition 2 (E.g., [11], Lemma 79). The pair (f, g) is a
Galois connection if and only if

1. ∀p ∈ P (p ≤P g(f(p))) and ∀q ∈ Q (f(g(q)) ≤Q q);

2. the maps f and g are monotone.

III. General Approximation Frameworks

In order to be able to treat the common features of both rough
set theory and partial approximative theory uniformly, we de-
fine two general approximation frameworks, a large-scaled
initial one, and a much finer general set theoretic one.

A. An Initial Approximation Framework

A large-scaled general framework of the set approximation
with a pair of lower and upper approximation maps has been
proposed in [17]. It is based on [18] and [19]. The framework
has a specific prerequisite, in particular, the subsets of a set
are approximated by the beforehand given subsets of the set
itself.

Let U be a nonempty set and 〈l, u〉 be a pair of maps

l, u : 2U → 2U .

The maps l and u are, of course, intended to be the lower and
upper approximations of any subset X ⊆ U .

In this context, the nature of an approximation pair—
beyond how they relate to one another—depends on how the
lower and upper approximations of subsets relate to the sub-
sets themselves.

The most essential features of approximation pairs 〈l, u〉
of this type are specified as follows.

1. (Monotonicity) The maps l, u : 2U → 2U are monotone.

2. (Weak approximation property.) A pair of maps 〈l, u〉 is
the weak approximation pair on U if they are monotone
and

∀X ∈ 2U (l(X) ⊆ u(X)).

3. (Strong approximation property.) A pair of maps 〈l, u〉
is the strong approximation pair on U , if each subset
X ∈ 2U is bounded by l(X) and u(X):

∀X ∈ 2U (l(X) ⊆ X ⊆ u(X)).

4. (Approximation hypothesis.) A pair of maps 〈l, u〉
forms Galois connection on (2U ,⊆) if

∀X ∈ 2U ∀Y ∈ 2U (l(X) ⊆ Y ⇔ X ⊆ u(Y )).

Remark 3. Ad 1. This property is a common and reasonable
assumption.

Ad 2. This constraint seems to be the weakest condition
for a sensible concept of approximation of subsets in U [20,
18].

Ad 4. In [19], a new hypothesis about approximation has
been drawn up recently. According to this assumption, the
notion of the “approximation” may be mathematically mod-
elled by the notion of the Galois connection.

A much finer characterization of the nature of set approxi-
mations can be obtained with further specifications concern-
ing the set families l(2U ) and u(2U ). These additional spec-
ifications will be performed in the next Subsection.

B. A General Set Theoretic Framework of Set Approximation

Let U be an arbitrary nonempty set called the universe of
discourse.

Let D ⊆ 2U be a nonempty family of sets so that ∅ ∈ D
and it contains at least a nonempty subset D ∈ 2U . The
members of D are called definable sets, while the members
of 2U \D are undefinable.

We want to approximate of any subset S ∈ 2U from
“lower side” and “upper side”—no matter what they mean at
this time. We have the only requirement at the highest level
of abstraction that to let the lower and upper approximations
of subsets S be definable. We look at definable sets as tools
to approximate subsets.

The following definition, at the next level of abstraction,
is about the minimum requirements of lower and upper ap-
proximation mappings.
Definition 4. A pair 〈l, u〉 of maps l, u : 2U → D is the
weak approximation pair on U if

(C1) l and u are monotone (monotonicity);

(C2) u(∅) = ∅ (normality of u);

(C3) if D ∈ D, then l(D) = D (granularity of D);

(C4) if S ∈ 2U , then l(S) ⊆ u(S) (approximation property).
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Clearly, the maps l, u are total and many-to-one. Accord-
ing to the next proposition, l is surjective, but u in not neces-
sarily surjective.
Proposition 5. Let l, u : 2U → D be a weak approximation
pair on U .

1. l(∅) = ∅ (normality of l);

2. ∀X ∈ 2U (l(l(X)) = l(X)) (idempotency of l).

3. S ∈ D if and only if l(S) = S.

In other words, l(2U ) = D, i.e. l is surjective.

4. u(2U ) ⊆ l(2U ) = D.

In other words, u is not necessarily surjective.

Proof.

1. By definition, ∅ ∈ D and so l(∅) = ∅ by condition (C3).

2. l(X) ∈ D and so l(l(X)) = l(X) by condition (C3).

3. (⇒) It is just the same as the condition (C3).

(⇐) Since l(S) ∈ D, and so l(S) = S ∈ D.

4. Let S ∈ u(2U ) ⊆ D. By the condition (C3), S =
l(S) ∈ l(2U ).

The following example shows that each condition in Def-
inition 4 is independent of the other three.
Example 6. Let U be a nonempty set. Let us assume that
there exist B1, B2( 6= ∅) ∈ 2U so that neither B1 ⊆ B2 nor
B2 ⊆ B1 holds, and there exists a proper superset S of B1

(i.e. ∅ 6= B1 $ S 6= U ).

1. Let D = {∅, B1, B2, B1 ∪ B2} and l, u : 2U → D be
as follows:

X 7→ l(X) =


B1, if X = B1;
B2, if X = B2;
B1 ∪B2, if X = B1 ∪B2, U ;
∅, otherwise.

X 7→ u(X) =


∅, if X = ∅;
B1, if X = B1;
B1 ∪B2, if X = B1 ∪B2, U ;
B2, otherwise.

Conditions (C2), (C3) trivially hold. Let us check the
condition (C4):

l(∅) = ∅ ⊆ ∅ = u(∅)
l(B1) = B1 ⊆ B1 = u(B1)
l(B2) = B2 ⊆ B2 = u(B2)

l(B1 ∪B2) = B1 ∪B2 ⊆ B1 ∪B2 = u(B1 ∪B2)
l(U) = B1 ∪B2 ⊆ B1 ∪B2 = u(U)

l(S) = ∅ ⊆ B2 = u(S)

and if S′(6= ∅, B1, B2, B1 ∪B2, S, U) ∈ 2U , then
l(S′) = ∅ ⊆ B2 = u(S′).

That is the condition (C4) also holds. However, in the
case B1 $ S

l(B1) = B1 6⊆ ∅ = l(S)
u(B1) = B1 6⊆ B2 = u(S).

Therefore, these l and u satisfy all the four conditions
except (C1).

2. Let D = {∅, B1, B2, B1 ∪ B2} and l, u : 2U → D be
as follows:

X 7→ l(X) =


∅, if X = ∅;
B1, if X = B1;
B2, if X = B2;
B1 ∪B2, otherwise.

X 7→ u(X) = B1 ∪B2.

Conditions (C1), (C3), (C4) hold, but u(∅) = B1 ∪B2.

Therefore, these l and u satisfy all the four conditions
except (C2).

3. Let D = {∅, B2, B1 ∪ B2} and l, u : 2U → D be as
follows:

X 7→ l(X) =

 ∅, if X = ∅;
B2, if X = B1;
B1 ∪B2, otherwise.

X 7→ u(X) =
{
∅, if X = ∅;
B1 ∪B2, otherwise.

Conditions (C1), (C2) trivially hold. Let us check the
condition (C4):

l(∅) = ∅ ⊆ ∅ = u(∅)
l(B1) = B2 ⊆ B1 ∪B2 = u(B1)

and if S′(6= ∅, B1) ∈ 2U , then
l(S′) = B1 ∪B2 ⊆ B1 ∪B2 = u(S′).

That is the condition (C4) also holds. However,

l(B1) = B2 6= B1.

Therefore, these l and u satisfy all the four conditions
except (C3).

4. Let D = {∅, B1, B2, B1 ∪ B2} and l, u : 2U → D be
as follows:

X 7→ l(X) =


∅, if X = ∅;
B1, if X = B1;
B2, if X = B2;
B1 ∪B2, otherwise.

X 7→ u(X) = ∅.
These l and u trivially satisfy all the four conditions ex-
cept (C4).

Next definition classifies the lower and upper approxima-
tion pairs as how the lower and upper approximations of a
subset relate to the subset itself.
Definition 7. A pair 〈l, u〉 of maps l, u : 2U → D is

• the l-semi-strong approximation pair on U if it is weak
and if S ∈ 2U , then l(S) ⊆ S (l is contractive);

• the u-semi-strong approximation pair on U if it is weak
and if S ∈ 2U , then S ⊆ u(S) (u is extensive);

• the strong approximation pair on U if it is l-semi-strong
and u-semi-strong at the same time, i.e. each subset S ∈
2U is bounded by l(X) and u(X): ∀S ∈ 2U (l(S) ⊆
S ⊆ u(X).
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If U is a nonempty set, and D = 2U , it is straightforward
that the pair of maps l, u : 2U → D, X 7→ X is a strong
approximation pair.

The next example shows that there are approximation
pairs which are neither l-semi-strong nor u-semi-strong, not
l-semi-strong but u-semi-strong, l-semi-strong but not u-
semi-strong.
Example 8. Let U = {a, b} be a nonempty set.

1. Let D = {∅, {a}}, and the maps l, u : 2U → D be as
follows:

X 7→ l(X), u(X) =
{
∅, if X = ∅;
{a}, otherwise.

Conditions (C1)–(C4) can easily be checked. However,
for X = {b}

l({b}) = {a} 6⊆ {b} 6⊆ {a} = u({b}). (1)

Therefore, the approximation pair 〈l, u〉 is neither l-
semi-strong nor u-semi-strong.

2. Let D = {∅, {a}, {a, b}}, and l, u : 2U → D be as
follows:

X 7→ l(X), u(X) =

 ∅, if X = ∅;
{a}, if X = {a};
{a, b}, otherwise.

Conditions (C1)–(C4) can easily be checked. Let us
check that u is extensive:

• ∅ ⊆ ∅ = u(∅);
• {a} ⊆ {a} = u({a});
• {b} ⊆ {a, b} = u({b});
• {a, b} ⊆ {a, b} = u({a, b}).

However, in the case X = {b},

l({b}) = {a, b} 6⊆ {b} ⊆ {a, b} = u({b}). (2)

Therefore, the approximation pair 〈l, u〉 is not l-semi-
strong, but u-semi-strong.

3. Let D = {∅, {a}, {b}}, and l, u : 2U → D be as fol-
lows:

X 7→ l(X), u(X) =

 ∅, if X = ∅;
{a}, if X = {a};
{b}, otherwise.

Conditions (C1)–(C4) can easily be checked. Let us
check that l is contractive:

• l(∅) = ∅ ⊆ ∅;
• l({a}) = {a} ⊆ {a};
• l({b}) = {b} ⊆ {b};
• l({a, b}) = {b} ⊆ {a, b}.

However, in the case X = {a, b},

l({a, b}) = {b} ⊆ {a, b} 6⊆ {b} = u({a, b}). (3)

Therefore, the approximation pair 〈l, u〉 is l-semi-
strong, but not u-semi-strong.

Using the preliminary notations general approximation
spaces can be defined.
Definition 9. An ordered quadruple 〈U,D, l, u〉 is the
weak/l-semi-strong/u-semi-strong/strong generalized ap-
proximation space, if the approximation pair 〈l, u〉 is weak/l-
semi-strong/u-semi-strong/strong, respectively.
Proposition 10. Let 〈U,D, l, u〉 be a generalized approxi-
mation space.

1. If 〈U,D, l, u〉 is weak, then

(a) l(U) ⊆
⋃

D;

(b) l(U) =
⋃

D if and only if
⋃

D ∈ D.

(c) u(U) ⊆
⋃

D.

2. If 〈U,D, l, u〉 is u-semi-strong, then u(U) =
⋃

D = U .

Proof.

1. (a) By the definition of l, l(U) ∈ D and so l(U) ⊆⋃
D.

(b) (⇒) By the definition of l, l(U) =
⋃

D ∈ D.
(⇐) Let us assume that

⋃
D ∈ D. Since

⋃
D ⊆

U , then by the condition (C3) and the monotonic-
ity of l, l(

⋃
D) =

⋃
D ⊆ l(U). Comparing it

with (1) (a), we obtain l(U) =
⋃

D.

(c) By the definitions of u, u(U) ∈ D and so u(U) ⊆⋃
D.

2. 〈U,D, l, u〉 is weak, thus by Proposition 10 (1)/(c),
u(U) ⊆

⋃
D. On the other hand, since u is monotone

and extensive,
⋃

D ⊆ U implies
⋃

D ⊆ u(
⋃

D) ⊆
u(U). Consequently, u(U) =

⋃
D.

Clearly, u(U) ⊆ U . Since u is extensive, thus U ⊆
u(U). Therefore, u(U) = U .

In generalized approximation spaces the notion of well
approximated sets can be introduced which we call crisp sets.
Definition 11. Let 〈U,D, l, u〉 be a weak/l-semi-strong/u-
semi-strong/ strong generalized approximation space and
S ∈ 2U .
S is a weak/l-semi-strong/u-semi-strong/strong crisp

set with respect to the given weak/l-semi-strong/u-semi-
strong/strong generalized approximation space, if l(S) =
u(S).
Proposition 12. Let 〈U,D, l, u〉 be a strong generalized ap-
proximation space.

If S ∈ 2U is a strong crisp set, then S is definable.

Proof. In the strong generalized approximations space
〈U,D, l, u〉, l(S) ⊆ S ⊆ u(S). Since S is crisp, therefore
l(S) = S = u(S), and so S ∈ D by Proposition 5, point
3.

In general, the crisp property of a set does not imply its
definability in not strong generalized approximation spaces.
One can check that in Example 8, the set {b} in the equations
(1), (2), and the set {a, b} in the equation (3) are all crisp but
none of them is definable. Of course, their lower and upper
approximations are definable.
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IV. Basics of Rough Set Theory

The basic concepts and properties of rough set theory can be
found, e.g, in [21], [11]. Here we cite only a few of them
which will be important in the following. We provide new
elementary point-free proofs for some of them.
Definition 13. A pair (U, ε), where U is a finite universe of
discourse and ε is an equivalence relation on U , is called
Pawlak’s approximation space.

A subset X ⊆ U is ε-definable, if it is a union of ε-
elementary sets, otherwise X is ε-undefinable.

By definition, the empty set is considered to be an ε-
definable set.

Let DU/ε denote the family of ε-definable subsets of U .
Remark 14. For an evolutionary survey of approximation
spaces, see [22].

The following lemma is elementary, however, in the con-
text of Pawlak’s rough set theory it is an important fact. It
follows from just the fact that the partition U/ε consists of
nonempty pairwise disjoint subsets of U .
Lemma 15. ∀X ∈ 2U/ε ∀X ∈ U/ε (X ⊆

⋃
X⇔ X ∈ X).

Proposition 16. Let (U, ε) be Pawlak’s approximation
space.

Then (2U/ε,⊆) and (DU/ε,⊆) are order isomorphic via
the map uε : 2U/ε → DU/ε,X 7→

⋃
X.

Proof. We show that the map uε is a bijection and both uε
and u−1

ε are monotone.
Let D1,D2 ∈ 2U/ε be such that

⋃
D1 =

⋃
D2 ∈ DU/ε.

By Lemma 15, ∀X ∈ 2U (X ∈ D1 ⇔ X ⊆
⋃

D1 =⋃
D2 ⇔ X ∈ D2), i.e., D1 = D2, thus uε is injective.

By definition of DU/ε, uε is surjective. Consequently, uε is a
bijection.

Clearly, the map uε is monotone, since X1,X2 ∈ 2U/ε,
X1 ⊆ X2 just implies

⋃
X1 ⊆

⋃
X2.

Now, let D1, D2 ∈ DU/ε be so that D1 ⊆ D2. Since uε
is a bijection, there exist unique u−1

ε (D1) = X1, u
−1
ε (D2) =

X2 ∈ 2U so that D1 =
⋃

X1, D2 =
⋃

X2. By Lemma 15,
∀X ∈ 2U (X ∈ X1 ⇔ X ⊆

⋃
X1 ⊆

⋃
X2 ⇔ X ∈ X2),

i.e., X1 ⊆ X2, and so u−1
ε is also monotone.

In Pawlak’s approximation spaces, the lower and up-
per approximations of X can be defined in the point-free
manner—based on the ε-elementary sets, and in the point-
wise manner—based on the elements.
Definition 17. Let (U, ε) be Pawlak’s approximation space,
and X ∈ 2U be a subset of U .

The lower ε-approximation of X is

ε(X) =
⋃
{Y | Y ∈ U/ε, Y ⊆ X}

= {x ∈ U | [x]ε ⊆ X},
and the upper ε-approximation of X is

ε(X) =
⋃
{Y | Y ∈ U/ε, Y ∩X 6= ∅}

= {x ∈ U | [x]ε ∩X 6= ∅}.

The set Bε(X) = ε(X) \ ε(X) is the ε-boundary of X .
X is ε-crisp, if Bε(X) = ∅, otherwise X is ε-rough.
It follows from just the definitions that ε(X), ε(X) ∈

DU/ε, the maps ε, ε : 2U → DU/ε are total, onto and many-
to-one.

Proposition 18 ([21], Proposition 2.1, point a)). Let (U, ε)
be Pawlak’s approximation space. Then X ∈ DU/ε if and
only if ε(X) = ε(X).
Proposition 19 ([21], Proposition 2.2, points 1). Let (U, ε)
be Pawlak’s approximation space. Then

∀X ∈ 2U (ε(X) ⊆ X ⊆ ε(X)),

that is, the maps ε and ε are contractive and extensive, re-
spectively.

In other words, the pair of maps ε(X) and ε(X) is a
strong approximation pair on U .
Corollary 20. ε(X) = X if and only if X = ε(X).

Proof. Since ε(X) ∈ DU/ε (ε(X) ∈ DU/ε), then X =
ε(X) ∈ DU/ε (X = ε(X) ∈ DU/ε), and so, by Proposi-
tion 18, X = ε(X) = ε(X) (X = ε(X) = ε(X)).

Proposition 21. Let (U, ε) be Pawlak’s approximation space
and X ⊆ U .

1. X is ε-crisp if and only if X is ε-definable.

2. X is ε-rough if and only if X is ε-undefinable.

Proof.

1. (⇒) X is ε-crisp ⇔ Bε(X) = ε(X) \ ε(X) = ∅ ⇔
ε(X) ⊆ ε(X). Proposition 19 implies ε(X) ⊆ ε(X),
and so ε(X) = ε(X). According to Proposition 18,
ε(X) = ε(X)⇔ X ∈ DU/ε.

(⇐) Since X ∈ DU/ε ⇔ ε(X) = ε(X), so Bε(X) =
ε(X) \ ε(X) = ∅ trivially satisfies.

2. It is the contrapositive version of 1.

As a consequence of Proposition 21, the notions ‘ε-crisp’
and ‘ε-definable’ are synonymous to each other, and so are
‘ε-rough’ and ‘ε-undefinable’.

Lower and upper ε-approximations can be generalized via
their point-wise definitions [11].
Definition 22. Let ε be an arbitrary binary relation on U
and X ∈ 2U . The lower ε-approximation of X is

ε(X) = {x ∈ U | [x]ε ⊆ X},
and the upper ε-approximation of X is

ε(X) = {x ∈ U | [x]ε ∩X 6= ∅}.

If ε−1 denotes the inverse relation of ε, in the same manner
one can also define lower and upper ε−1 -approximations.
Proposition 23 ([11], Proposition 134). Let ε be an arbitrary
binary relation on U .

Then (2U , ε, ε−1 , 2U ) and (2U , ε−1 , ε, 2U ) are Galois con-
nections on (2U ,⊆).

Some properties of lower and upper ε-approximations are
expressed by properties of binary relations and vice versa.
Proposition 24. Let ε be an arbitrary binary relation on U .

1. The pair (ε, ε) is a weak approximation pair if and only
if ε is connected.

2. The pair (ε, ε) is a strong approximation pair if and only
if ε is reflexive.
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3. The pair (ε, ε) is a Galois connection on (2U ,⊆) if and
only if ε is symmetric.

In particular, if ε is an equivalence relation on U , then
(2U , ε, ε, 2U ) is a Galois connection on 2U .

Proof. In [11]. 1. Proposition 136.; 2. Proposition 137.; 3.
Proposition 138.

It can be shown that even if the relation ε is symmetric,
it is not sufficient that the lower and upper ε-approximations
defined in the point-free manner form a Galois connection
([23], Example 3.10).

V. Partial Approximation of Sets

In practice, there are attributes which do not characterize all
members of an observed collection of objects.

Some illustrative examples:

• With the property ‘color of hair’ bald men cannot be
characterized.

• An infinite set is investigated via a finite family of its
finite subsets. For instance, a number theorist studies
the regularities of natural numbers using computers.

• Security policies are partial-natured in corporate infor-
mation security management. Typically some policies
may only apply to specific hardware appliances, soft-
ware applications or type of information.

Moreover, there are some features with which a set and
its complement cannot be described at the same time. For in-
stance, complements of recursively enumerable sets are not
necessarily recursively enumerable. The membership of re-
cursively enumerable sets can effectively be determined by a
finite amount of information, while the determination of their
nonmembership requires an infinite amount of information
[24]. That is, the complement of a recursively enumerable
set cannot necessarily be determined effectively. In other
words, the recursively enumerable sets can be managed by
computers (e.g., via a special rewriting system, the Markov
algorithm [25]). Thus, this is an important practical partial
approximation problem: how can we approximate an arbi-
trary set with recursively enumerable sets?

Throughout this section let U be a nonempty set called the
universe of discourse.

A. Definable Sets

The first definition gives us the fundamental sets of our
framework which can be considered as our primary tools.
Definition 25. Let B = {Bi | i ∈ I} ⊆ 2U be a nonempty
family of nonempty subsets of U , where I denotes an index
set.

B is called the base system, its elements are the B-sets.
Some extensions of the base set B can be defined by

means of B. It can be seen as derived tools. The next defini-
tion is about a possible extension of B.
Definition 26. A set family S ⊆ 2U is B-definable if its
elements are B-sets, otherwise S is B-undefinable.

A nonempty subset S ∈ 2U is B-definable if there exists a
B-definable set family S = {Bi | i ∈ IS ⊆ I,Bi ∈ B} so
that S =

⋃
S, otherwise S is B-undefinable.

The empty set is considered to be a B-definable set.
Let DB denote the family of B-definable subsets of U .
Notice that ∅ ∈ DB and B ⊆ DB, therefore DB contains

at least a nonempty subset of U and
⋃

B =
⋃

DB ∈ DB. It
is straightforward that DB does not form a σ-algebra at all.

We will need the following notion.
Definition 27. The base system B ⊆ 2U is single-layered, if

∀B ∈ B ∀B′ ⊆ B \ {B} (B ∩
⋃

B′ 6= B).

Informally, a base system B is single-layered if every pri-
mary and derived tools has at least one element which can be
characterized by exactly one primary tool.

Some properties of rough set theory can be preserved in
some wise with the notion of single-layered. For instance:
Proposition 28 ([23], Proposition 4.5; analogous with
Proposition 16). Let B ⊆ 2U be a base system. Then
(2B,⊆) and (DB,⊆) are order isomorphic via the map
uB : 2B → DB,X 7→

⋃
X if and only if B is single-layered.

B. Lower and Upper B-Approximations

Definition 29. Let B ⊆ 2U be a base system and X be a
subset of U .

The lower B-approximation of X is

C[B(X) =
⋃
{Y | Y ∈ B, Y ⊆ X}, (4)

and the upper B-approximation of X is

C]B(X) =
⋃
{Y | Y ∈ B, Y ∩X 6= ∅}. (5)

Notice that C[B and C]B are straightforward point-free gen-
eralizations of Pawlak’s lower and upper ε-approximations.

Clearly, C[B(X),C]B(X) ∈ DB, and the maps C[B,C
]
B :

2U → DB are total, onto and many-to-one.
Proposition 30. Let B ⊆ 2U be a base system.

1. ∀S ∈ 2U (C[B(S) ⊆ S)—that is C[B is contractive.

2. ∀S ∈ 2U (S ⊆ C]B(S)) if and only if
⋃

B = U—that
is C]B is extensive if and only if B covers the universe.

Proof. 1. is straightforward.
2. (⇒) U ⊆ C]B(U) =

⋃
{B | B ∈ B, B ⊆ U} =

⋃
B.

Of course,
⋃

B ⊆ U , and so
⋃

B = U .
(⇐) ∀S ∈ 2U (S ⊆ U =

⋃
B), thus we get

S ⊆
⋃

(B \ {B | B ∈ B, B ∩ S = ∅})

=
⋃
{B | B ∈ B, B ∩ S 6= ∅} = C]B(S).

Proposition 31. Let B ⊆ 2U be a base system.

1. The maps C[B,C
]
B : 2U → DB are monotone.

2. C]B(∅) = ∅.

3. If D ∈ DB, then C[B(D) = D.

4. If S ∈ 2U , then C[B(S) ⊆ C]B(S).
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Proof. 1., 2. and 4. are straightforward by the definition of
lower and upper B-approximations.

3. Clearly, if ∅ ∈ DB, then C[B(∅) = ∅.
If ∅ 6= D ∈ DB, there exists at least one nonempty family

of sets B′ ⊆ B so that D =
⋃

B′ =
⋃
{B | B ∈ B′, B ⊆

D} ⊆
⋃
{B | B ∈ B, B ⊆ D} = C[B(D). On the other

hand, we have C[B(D) ⊆ D. Thus C[B(D) = D.

In the language of general set theoretic framework of set
approximation the pair 〈C[B,C

]
B〉 of maps C[B,C

]
B : 2U →

DB is an l-semi-strong approximation pair, and it is a strong
one if and only if the base system B covers the universe.

Moreover, the so-called B-approximation space
〈U,DB,C

[
B,C

]
B〉 is l-semi-strong and it is strong if

and only if the base system B covers the universe.

VI. Galois Connections in B-approximation
Spaces

Let us investigate what conditions have to be satisfied by
the l-semi-strong B-approximation space 〈U,B,C[B,C

]
B〉 so

that the pair 〈C]B,C[B〉 forms a Galois connection on U .
The next proposition answers the first half of the Point 1

in Proposition 2.
Proposition 32. Let 〈U,B,C[B,C

]
B〉 be an l-semi-strong B-

approximation space.
Then ∀X ∈ 2U (X ⊆ C[B(C]B(X))) if and only if

⋃
B =

U .

Proof. (⇒) By a contradiction, let us assume that
⋃

B 6= U .
Accordingly, ∃X ′(6= ∅) ⊆ U \

⋃
B.Hence, C[B(C]B(X ′)) =

∅, which gives ∅ 6= X ′ ⊆ C[B(C]B(X ′)) = ∅, a contradiction.
(⇐) C]B(X) ∈ DB, and so, by Proposition 31 Point 3,

C[B(C]B(X)) = C]B(X). Since
⋃

B = U , by Proposition 30
Point 2, C]B is extensive, thus X ⊆ C]B(X) = C[B(C]B(X)).

Let us take up the question of the second half of the Point
1 in Proposition 2. In general, it also does not hold.
Proposition 33. Let 〈U,B,C[B,C

]
B〉 be an l-semi-strong B-

approximation space.
Then the base system B is single-layered and ∀X ∈

2U (C]B(C[B(X)) ⊆ X) if and only if the B-sets are pair-
wise disjoint.

Proof. (⇒) By a contradiction, let us assume that the B-sets
are not pairwise disjoint, i.e.

∃B1, B2 ∈ B (B1 6= B2 ∧B1 ∩B2 6= ∅).

Because B is single-layered, neither B1 ⊆ B2 nor B2 ⊆ B1

holds. Hence, e.g. for B1, we have

C]B(C[B(B1)) = C]B(B1) =
⋃
{Y | Y ∈ B, Y ∩B1 6= ∅}.

Thus we get B1 ∪ B2 ⊆ C]B(C[B(B1)), and so
C]B(C[B(B1)) * B1, a contradiction.

(⇐) Clearly, if the B-sets are pairwise disjoint, B is
single-layered. Furthermore, C]B(C[B(∅)) = C]B(∅) = ∅ ⊆ ∅
holds, independently of that the B-sets are pairwise disjoint
or not.

Let ∅ 6= X ∈ 2U . If C[B(X) = ∅, then C]B(∅) = ∅ ⊆ X .
Let C[B(X) =

⋃
B′ 6= ∅ for a family of B-sets B′ ⊆ B.

Because the map C[B is contractive, C[B(X) =
⋃

B′ ⊆ X .
Since the B-sets are pairwise disjoint, {Y | Y ∈ B, Y ∩⋃

B′ 6= ∅} = {Y | Y ∈ B′, Y ∩
⋃

B′ 6= ∅}. Thus we get

C]B(C[B(X)) = C]B(
⋃

B′)

=
⋃
{Y | Y ∈ B, Y ∩

⋃
B′ 6= ∅}

=
⋃
{Y | Y ∈ B′, Y ∩

⋃
B′ 6= ∅}

=
⋃
{Y | Y ∈ B′, Y ⊆

⋃
B′}

⊆
⋃
{Y | Y ∈ B, Y ⊆ X} ⊆ X.

Theorem 34. Let 〈U,B,C[B,C
]
B〉 be an l-semi-strong B-

approximation space.
The base system B is single-layered and the pair

〈C]B,C[B〉 forms a Galois connection on (2U ,⊆) if and only
if the base system B is a partition of U .

Proof. The maps C]B and C[B are monotone, and so by
Propositions 32 and 33, the conditions in Proposition 2
hold.

If the base system B is a partition of U , then B is trivially
single-layered.

However, if the 〈C]B,C[B〉 forms a Galois connection in
an l-semi-strong B-approximation space, it can be proven
that B is a partition of U without the assumption that B is
single-layered. For details see [23], Theorem 4.14.

VII. Conclusion

In this paper, first, we have presented a general set theoretic
approximation framework. Within this framework, a par-
ticular partial approximation space has been proposed. In
Pawlak’s space upper and lower approximations form a Ga-
lois connection on U . We have investigated what conditions
have to be satisfied by our generalized upper and lower ap-
proximation pair forms a Galois connection on U .

References

[1] Z. Pawlak, “Information systems theoretical founda-
tions,” Information Systems, vol. 6, no. 3, 1981, pp.
205–218.

[2] ——, “Rough sets,” International Journal of Informa-
tion and Computer Science, vol. 11, no. 5, 1982, pp.
341–356.

[3] ——, “Some issues on rough sets,” in Transactions
on Rough Sets I, ser. Lecture Notes in Computer Sci-
ence, J. F. Peters, A. Skowron, J. W. Grzymala-Busse,
B. Kostek, R. W. Swiniarski, and M. S. Szczuka, Eds.
Springer Berlin / Heidelberg, vol. 3100, pp. 1–58.

[4] Z. Pawlak and A. Skowron, “Rudiments of rough sets,”
Information Sciences, vol. 177, no. 1, 2007, pp. 3–27.

 443  Partial Approximative Set Theory: A Generalization of the Rough Set Theory



[5] A. Skowron, “Vague concepts: A rough-set approach,”
in Proceedings of EUROFUSE 2004, B. De Baets,
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