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Abstract: In this paper, we study the links betweenRELIEF,
a well-known feature re-weighting algorithm and SiLA, a sim-
ilarity learning algorithm. On one hand, SiLA is interested in
directly reducing the leave-one-out error or0− 1 loss by reduc-
ing the number of mistakes on unseen examples. On the other
hand, it has been shown thatRELIEFcould be seen as a distance
learning algorithm in which a linear utility function with m axi-
mum margin was optimized. We first propose here a version of
this algorithm for similarity learning, called RBS(for RELIEF-
Based Similarity learning). As RELIEF, and unlike SiLA, RBS
does not try to optimize the leave-one-out error or0 − 1 loss,
and does not perform very well in practice, as we illustrate on
several UCI collections. We thus introduce a stricter version
of RBS, called sRBS, aiming at relying on a cost function closer
to the 0 − 1 loss. Moreover, we also developed Positive, semi-
definite (PSD) versions ofRBSand sRBSalgorithms, where the
learned similarity matrix is projected onto the set of PSD ma-
trices. Experiments conducted on several datasets illustrate the
different behaviors of these algorithms for learning similarities
for kNNclassification. The results indicate in particular that the
0 − 1 loss is a more appropriate cost function than the one im-
plicitly used by RELIEF. Furthermore, the projection onto the
set of PSD matrices improves the results forRELIEFalgorithm
only.
Keywords: similarity learning,RELIEFalgorithm, positive, semi-
definite (PSD) matrices,SiLA algorithm, kNN classification, ma-
chine learning

I. Introduction

Thek nearest neighbor (kNN) algorithm is a simple yet ef-
ficient classification algorithm: to classify an examplex, it
finds itsk nearest neighbors based on the distance or simi-
larity metric, from a set of already classified examples and
assignsx to the most represented class in the set of these
nearest neighbors. Many people have improved the perfor-
mance ofkNN algorithm by learning the underlying geom-
etry of the space containing the data e.g. learning a Maha-
lanobis distance instead of the standard Euclidean one. This

has paved the way for a new reasearch theme termedmet-
ric learning. Most of the people working in this research
area are more interested in learning a distance metric (see
e.g. [1, 2, 3, 4]) as compared to a similarity one. However,
as argued by several researchers, similarities should be pre-
ferred over distances on some of the data sets. Similarity is
usually preferred over the distance metric while dealing with
text, in which case the cosine similarity has been deemed
more appropriate as compared to the various distance met-
rics. Furthermore, studies reported in [5, 6, 7, 8] have proved
that cosine should be preferred over the Euclidean distance
over non-textual data sets as well. Furthermore, cosine sim-
ilarity has been compared with the Euclidean distance on15
different datasets. Umugwaneza and Zou [9] have combined
cosine similarity and Euclidean distance for Trademarks re-
trieval whereby they fine tune the proportions for each of the
two measures. Similarly Porwik et al. [10] have compared
many different similarity and distance measures such as Eu-
clidean distance, Soergel distance, cosine similarity, Jaccard
and Dice coefficients etc.
RELIEF(originally proposed by Kira and Rendell [11]) is an
online feature reweighting algorithm successfully employed
in various different settings. It learns a vector of weights
for each of the different features or attributes describingtheir
importance. It has been proved by Sun and Wu [12] that it
implicitly aims at maximizing the margin of a linear utility
function.
SiLA [8] is a similarity metric learning algorithm for nearest
neighbor classification. It aims at moving the nearest neigh-
bors belonging to the same class nearer to the input example
(termed astargetneighbors) while pushing away the nearest
examples belonging to different classes (described asimpos-
tors). The similarity function between two examplesx andy
can be written as:

sA(x, y) =
xtAy

N(x, y)
(1)

wheret represents the transpose,A is a (p×p) similarity ma-
trix andN(x, y) is a normalization function which depends
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on x and y (this normalization is typically used to map the
similarity function to a particular interval, as [0, 1]). Equa-
tion 1 generalizes several standard similarity functions e.g.
the cosine measure which is widely used in text retrieval, is
obtained by setting theA matrix to the identity matrixI, and
N(x, y) to the product of the L2 norms ofx andy. The aim
here is to reduce the0 − 1 loss which is dependent on the
number of mistakes made during the classification phase. For
the remainder of the paper, a matrix is sometimes represented
as a vector as well (e.g. ap× p matrix can be represented by
a vector havingp2 elements).
The rest of the paper is organized as follows: Section2 de-
scribes theSiLAalgorithm. This is followed by a short intro-
duction ofRELIEFalgorithm along with its mathematical in-
terpretation, its comparison with⁀SiLA and aRELIEF-Based
Similarity learning algorithm (RBS) in section3. Section 4
introduces a strict version ofRBSfollowed by the experimen-
tal results and conclusion.

II. SiLA- A Similarity Learning Algorithm

TheSiLAalgorithm is described in detail here. It is a simi-
larity algorithm and is a variant of the voted perceptron algo-
rithm of Freund and Schapire [13], later used in Collins [14].

SiLA - Training (k=1)
Input: training set ((x(1), c(1)), · · · , (x(n), c(n))) of n

vectors inRp, number of epochsJ ; Aml denotes the element
of A at rowm and columnl

Output: list of weighted (p × p) matrices
((A1, w1), · · · , (Aq, wq))
Initialization t = 1, A(1) = 0 (null matrix),w1 = 0

RepeatJ times (epochs)
1. for i = 1, · · · , n

2. if sA(x(i), y)− sA(x
(i), z) ≤ 0

3. ∀(m, l), 1 ≤ m, l ≤ p,

A
(t+1)
ml = A

(t)
ml + fml(x

(i), y)− fml(x
(i), z)

4. wt+1 = 1

5. t = t+ 1

6. else
7. wt = wt + 1

Whenever an examplex(i) is not separated from differently
labeled examples, the currentA matrix is updated by the dif-
ference between the coordinates of the target neighbors (de-
noted byy) and the impostors (represented byz) as described
in line 4 of the algorithm. This corresponds to the standard
perceptron update. Similarly, when currentA correctly clas-
sifies the example under focus, then its weight is increased
by 1, so that the weights finally correspond to the number
of examples correctly classified by the similarity matrix over
the different epochs.
The worst-time complexity ofSiLA is 0 (Jnp2) where J

stands for the number of iterations,n is the number of train-
ing examples whilep stands for the number of dimensions or
attributes.
The functionsfml allows to learn different types of matri-
ces and therefore different types of similarities: in the case

of a diagonal matrix,fml(x, y) =
δ(m, l)xt

myl
N(x,y)

(with δ the

Kronecker symbol), for a symmetric matrix,fml(x, y) =
xt
myl + xt

lym
N(x,y)

, and for a square matrix (and hence, poten-

tially, an asymmetric similarity),fml(x, y) =
xt
myl

N(x,y)
.

III. RELIEF and its mathematical interpreta-
tion

Sun and Wu [12] have shown shown that theRELIEFalgo-
rithm solves convex optimization problem while maximizing
a margin-based objective function employing thekNNalgo-
rithm. It learns a vector of weights for each of the features,
based on the nearesthit (nearest example belonging to the
class under consideration, also known as the nearesttarget
neighbor) and the nearestmiss(nearest example belonging
to other classes, also known the the nearestimpostor).
In the original setting for theRELIEF algorithm, it only
learns a diagonal matrix. However, Sun and Wu [12] have
learned a full distance metric matrix and have also proved
thatRELIEFis basically an online algorithm.
In order to describe theRELIEFalgorithm, we suppose that
x(i) is a vector inRp with y(i) as the corresponding class la-
bel with values+1,−1. Furthermore, letA be a vector of
weights initialized with0. The weight vector learns the qual-
ities of the various attributes.A is learned on a set of training
examples. Suppose an examplex(i) is randomly selected.
Then two nearest neighbors ofx(i) are found: one from the
same class (termed as thenearest hitorH) while the second
one from a class other than that ofx(i) (termed as thenear-
est missor M ). The update rule in case ofRELIEFdoes not
depend on any condition unlikeSiLA.
TheRELIEFalgorithm is presented next:

RELIEF (k=1)
Input: training set((x(1), c(1)), · · · , (x(n), c(n))) of n vec-
tors inRp, number of epochsJ ;
Output: the vectorA of estimations of the qualities of at-

tributes
Initialization 1 ≤ m ≤ p,Am = 0

RepeatJ times (epochs)
1. randomly select an instancex(i)

2. find nearest hitH and nearest missM
3. for l = 1, · · · , p

4. Al = Al −
diff (l,x(i),H)

J
+ diff (l,x(i),M)

J

whereJ represents the number of timesRELIEF has been
executed, whilediff finds the difference between the values
of an attributel for the current examplex(i) and the nearest
hit H or the nearest missM . If an instancex(i) and its near-
est hit,H have different values for an attributel, then this
means that it separates the two instances in the same class
which is not desirable, so the quality estimationAl is de-
creased. On the other hand, if the instancesx(i) andM have
different values for an attributel then this attribute separates
two instances pertaining to different classes which is desir-
able, so the quality estimationAl is increased. In the case of
discrete attributes, the value of difference is either 1 (the val-
ues are different) or 0 (the values are the same). However, for
continuous attributes, the difference is the actual difference
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normalized to the closed interval[0, 1] which is given by the
following equation:

diff(l, x, x′) =
|xl − x′

l|

max(l)−min(l)

The complexity of RELIEF algorithm can be given as
O(Jpn). Moreover, the complexity is fixed for all of the
scenarios unlikeSiLA.
In the original setting,RELIEF can only deal with binary
class problems and cannot work with incomplete data. As
a work around,RELIEF was extended toRELIEFF algo-
rithm [15]. Rather than just finding the nearest hit and miss,
it findsk nearest hits and the same number of nearest misses
from each of the different classes.

A. Mathematical Interpretation of RELIEF algorithm

Sun and Wu [12] have given a mathematical interpretation
for the RELIEFalgorithm. The margin for an instancex(i)

can be defined in the following manner:

p = d(x(i) −M(x(i)))− d(x(i) −H(x(i)))

whereM(x(i)) andH(x(i)) represent the nearest miss and
the nearest hit forx(i) respectively, andd(.) represents a dis-
tance function which is defined asd(x) =

∑p

l |xl| in a simi-
lar fashion as the originalRELIEFalgorithm. The margin is
greater than0 if and only if x(i) is closer to the nearest hit as
compared to the nearest miss, or in other words, is classified
correctly as per the1NN rule. The aim here is to scale each
feature so that the leave-one-out error

∑n

i=1 I(pi(A) < 0) is
minimized, where I(.) is the indicator function andpi(A)
is the margin ofx(i) with respect toA. As the indicator
function is not differentiable, a linear utility function is used
instead so that the averaged margin in the weighted feature
space is maximized:

max
A

∑n
i=1 pi(A) =

∑n
i=1{

∑p
l=1 Al

∣

∣

∣x
(i)
l −M (i)(xl)

∣

∣

∣

−
∑p

l=1 Al

∣

∣

∣x
(i)
l −H(i)(xl)

∣

∣

∣},

subject to‖A‖22 = 1, andA ≥ 0,
(2)

whereA ≥ 0 makes sure that the learned weight vector in-
duces a distance measure. Equation 2 can be simplified by
defining z =

∑n

i=1

(

|x(i) −M(x(i))| − |x(i) −H(x(i))|
)

which can be expressed as:

max
A

Atz subject to ‖A‖22 = 1, A ≥ 0

Taking the Lagrangian of the above equation, we get:

L = −Atz + λ(‖A‖22 + 1) +

p
∑

l=1

θi(−Ai)

where bothλ andθ ≥ 0 are Lagrangian multipliers. In or-
der to prove that the optimum solution can be calculated in a
closed form, the following steps are performed: the deriva-
tive ofL is taken with respect toA, before being set to zero:

∂L

∂A
= −z + 2λA− θ = 0 ⇒ A =

z + θ

2λ

The values forλ andθ are deduced from the KKT (Karush-
Kuhn-Tucker) condition giving way to:

A =
(z)

+

‖(z)+‖2
(3)

where (z)
+

= [max(z1, 0), · · · ,max(zn, 0)]
t, zi repre-

sents the margin of examplei. If we compare the above equa-
tion with the weight update rule forRELIEF, it can be noted
that RELIEF is an online algorithm which solves the opti-
mization problem given in equation 2. This is true except
whenAl = 0 for zl ≤ 0 which corresponds to the irrelevant
features.

B. RELIEF-Based Similairty Learning Algorithm - RBS

In this subsection, aRELIEF-Based Similarity Learning al-
gorithm (RBS) [16] is proposed which is based onRELIEF
algorithm. However, the interest here is in similarities rather
than distances.
Our aim here is to maximize the marginM(A) betweentar-
getneighbors (represented byy) andimpostors(represented
by z). However, as the similarity defined through matrixA

can be arbitrarily large through multiplication ofA by a pos-
itive constant, we impose that the Frobenius norm ofA be
equal to1. The margin, fork = 1, in thekNNalgorithm can
be written as:

M(A) =
∑n

i=1

(

sA(x
(i), y(i))− sA(x

(i), z(i))
)

=
∑n

i=1(x
(i)tAy(i) − x(i)tAz(i))

=
∑n

i=1 x
(i)tA(y(i) − z(i))

whereA is the similarity matrix.
The optimization problem derived from the above consider-
ations thus takes the form:

arg max
A

M(A)

subject to ‖A‖2F = 1,

Taking the Lagrangian of the similarity matrixA:

L(A) =

n
∑

i=1

x(i)tA(y(i) − z(i)) + λ(1−

p
∑

l=1

p
∑

m=1

a2lm)

whereλ is a Lagrangian multiplier. Moreover, after taking
the derivative w.r.t.alm and setting it to zero, one obtains:

∂L(A)
∂alm

=
∑n

i=1 x
(i)
l (y

(i)
m − z

(i)
m )− 2λalm = 0

⇒ alm =

n
∑

i=1

x
(i)
l (y(i)m − z(i)m )

2λ

Furthermore, since the Frobenius norm of matrixA is 1:

p
∑

l=1

p
∑

m=1
a2lm = 1

⇒
p
∑

l=1

p
∑

m=1

a2lm =
p
∑

l=1

p
∑

m=1







n
∑

i=1

x
(i)

l
(y(i)

m −z(i)
m )

2λ







2

leading to:

2λ =

√

√

√

√

p
∑

l=1

p
∑

m=1

(

n
∑

i=1

x
(i)
l (y

(i)
m − z

(i)
m )

)
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Figure. 1: Margin for RELIEF-Based similarity learning al-
gorithm onIris dataset

Figure. 2: Margin for RELIEF-Based similarity learning al-
gorithm onWinedataset

In case of a diagonal matrix,m is replaced withl. The margin
for k > 1 can be written as:

M(A) =
n
∑

i=1

(

k
∑

q=1
sA(x

(i), y(i),q)−
k
∑

q=1
sA(x

(i), z(i),q))

)

= x(i)tA
k
∑

q=1
(y(i),q − z(i),q)

wherey(i),q represents theqth nearest neighbor ofx(i) from
the same class whilez(i),q represents theqth nearest neighbor
of x(i) from other classes. Furthermore,alm and2λ can be
written as:

alm =

n
∑

i=1

x
(i)

l

k
∑

q=1

(y(i),q
m −z(i),q

m )

2λ

2λ =

√

√

√

√

p
∑

l=1

p
∑

m=1

(

n
∑

i=1

x
(i)
l

k
∑

q=1
(y

(i,q)
m − z

(i,q)
m )

)

The problem with theRELIEFbased approaches (RELIEF
and RBS) is that as one strives to maximize the margin, it
is quite possible that the overall margin is quite large but in
reality the algorithm has made a certain number of mistakes
(characterized with negative margin). This concept was ver-
ified on a number of standard UCI datasets [17] e.g.Iris,

Figure. 3: Margin for RELIEF-Based similarity learning al-
gorithm onBalancedataset

Figure. 4: Margin for RELIEF-Based similarity learning al-
gorithm onPimadataset

Wine, BalanceandPimaas can be seen from figure 1, 2, 3, 4
respectively. It can be observed from all of these figures
that the average margin remains positive despite the pres-
ence of a number of mistakes, since the positive margin is
much greater than the negative one for the majority of the
test examples. For example, in figure 1, the values of nega-
tive margin is in the range of0.05 − 0.10 whereas most of
the positive margin values are greater than0.15. Similarly,
for Wine (figure 2), most of the negative margin values lie
in the range between0 and−0.04 while the positive margin
values are dispersed in the range0 − 0.08. So, despite the
fact that the overall margin is large, a lot of examples are
still misclassified. This explains why the algorithmsRELIEF
andRBSdid not perform quite well on different standard test
collections (see section VII).

C. Comparison between SiLA and RELIEF

While comparing the two algorithmsSiLA andRELIEF, it
can be verified thatRELIEFlearns a vector of weights while
SiLA learns a sequence of vectors where each vector has got
a corresponding weight which signifies the number of ex-
amples correctly classified while using that particular vector.
Furthermore, the weight vector is updated systematically in
case ofRELIEF while a vector is updated forSiLA if and
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only if it has failed to correctly classify the current exam-
ple x(i) (i.e. sA(x

(i), y) − sA(x
(i), z) ≤ 0). In this case,

a new vectorA is created and its corresponding weight is
set to1. However, in case of correct classification forSiLA,
the weight associated with the currentA is incremented by
1. Moreover, the two algorithms find the nearest hit and the
nearest miss to updateA: RELIEF selects an instance ran-
domly whereasSiLAuses the instances in a systematic way.
Another difference between these two algorithms is that in
case ofRELIEF, the vectorA is updated based on the dif-
ference (distance) while it is updated based on the similarity
function forSiLA. This explains why the impact of nearest hit
is subtracted forRELIEF while the impact for nearest miss
is added to the vectorA. ForSiLA, the impact of the nearest
hit is added while that of the nearest miss is subtracted from
currentA.
SiLA tries to directly reduce the leave-one-out error. How-
ever,RELIEFuses a linear utility function in such a way that
the average margin is maximized.

IV. A stricter version: sRBS

A work around to improve the performance ofRELIEFbased
methods is to directly use the leave-one-out error or0−1 loss
like the originalSiLA algorithm where the aim is to reduce
the number of mistakes on unseen examples. The resulting
algorithm is a stricter version ofRELIEF-Based Similairty
Learning Algorithm and is termed assRBS. It is called as
a stricter version as we do not try to maximize the overall
margin but are interested in reducing the individual errorson
the unseen examples.
The cost function forsRBScan be described in terms of a
sigmoid function:

σA(x
(i)) =

(

1

1 + exp(βx(i)tA(y(i) − z(i))

)

As β approaches∞, the sigmoid function starts representing
the0−1 loss: it approaches0 where the margin (x(i)A(y(i)−
z(i)) is positive and approaches1 in the case where the mar-
gin is negative. LetgA(i) representsexp(βx(i)tA(y(i)−z(i))
while v representsy − z. The cost function we are consider-
ing is based on the above sigmoid function, regularized with
the Frobenius norm ofA:

arg min
A

ε(A) =

n
∑

i=1

σA(x
(i)) + λ‖A‖22

=

n
∑

i=1

[

1

1 + gA(i)
+

λ

n

∑

lm

a2lm

]

(4)

=

n
∑

i=1

Qi(A)

whereλ is the regularization parameter. Taking the derivative
of ε(A) with respect toalm:

∂ε(A)

∂alm
= −β

n
∑

i=1

x
(i)
l v

(i)
m gA(i)

(1 + gA(i))2
+ 2λalm

=

n
∑

i=1

∂Qi(A
t)

∂alm

∀ l,m, 1 ≥ l ≥ p, 1 ≥ m ≥ p. Setting this derivative to0
leads to:

2λalm = −β

n
∑

i=1

x
(i)
l v

(i)
m gA(i)

(1 + gA(i))2

We know of no closed form solution for this fixed point equa-
tion, which can however be solved with gradient descent
methods, through the following update:

At+1
lm = At

lm −
αt

n

n
∑

i=1

∂Qi(A
t)

∂alm

whereαt stands for the learning rate, is inversely propor-
tional to timet and is given by:αt = 1

t
.

sRBS- Training
Input: training set((x(1), c(1)), · · · , (x(n), c(n))) of n vec-
tors inRp, A1

lm denotes the element ofA1 at row l and col-
umnm
Output:Matrix A

Initialization t = 1, A(1) = 1 (Unity matrix)
RepeatJ times (epochs)

1. For all of the featuresl,m
2. Minuslm = 0

3. for i = 1, · · · , n

4. For all of the featuresl,m

5. Minuslm + = ∂Qi(A
t)

∂alm

6. At+1
lm = At

lm − αt

n
∗ Minuslm

7. If
∑

lm |At+1
lm −At

lm| ≤ γ

8. Stop

During each epoch, the difference between the new similar-
ity matrixAt+1

lm and the current oneAt
lm is computed. If this

difference is less than a certain threshold (γ in this case), the
algorithm is stopped. The range ofγ is between10−3 and
10−4. Figure 5, 6, 7 and 8 show the margin values on the
training data forsRBSfor the datasetsIris, Wine, Balance
andPimarespectively. Comparing these figures with the ear-
lier ones (i.e. forRBS) reveals the importance of using a cost
function closer to the 0-1 loss. One can see that the average
margin is positive for most of the training examples forsRBS.
There are only a very few errors although a lot of examples
have a margin just slightly greater than zero.

V. Effect of Positive, Semi-Definitiveness onRE-
LIEF based algorithms

The similarityxtAx in the case ofRELIEFbased algorithms
does not correspond to a symmetric bi-linear form, and hence
a scalar product. In order to define a proper scalr product, and
hence a cosine-like similarity, one can project the similarity
matrixA onto the set of positive, semi-definite (PSD) matri-
ces. A similarity matrix can be projected onto the set of PSD
matrices by finding an eigenvector decomposition followed
by the selection of positive eigenvalues. A PSD matrixA is
written as:

A � 0

In case, where a diagonal matrix is learned byRELIEF, posi-
tive semi-definitiveness can be achieved by selecting only the
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Figure. 5: Margin forsRBSon Iris dataset

Figure. 6: Margin forsRBSonWinedataset

Figure. 7: Margin forsRBSonBalancedataset

Figure. 8: Margin forsRBSonPimadataset

positive entries of the diagonal. Moreover for learning a full
matrix with RELIEF, the projection can be performed in the
following manner:

A =
∑

j,λj>0

λjuju
t
j

whereλj anduj are the eigenvalues and eigenvectors ofA.
In this case, only the positive eigenvalues are retained while
the negative ones are discarded. It is important to note here
that all eigenvalues ofA may be negative, in which case
the projection on the PSD cone will result on the null ma-
trix. In such a case, PSD versions of the above alorithms,
i.e. versions including a PSD constraint in the optimization
problem, are not defined as the final matrix does satisfy the
constraint but is not interesting from a classification point of
view.
We now introduce the PSD versions ofRELIEF, RBSand
sRBS[18].

A. RELIEF-PSD Algorithm

TheRELIEF-PSDalgorithm fork = 1 is presented next.

RELIEF-PSD (k=1)
Input: training set((x(1), c(1)), · · · , (x(n), c(n))) of n vec-
tors inRp, number of epochsM ;
Output:diagonal matrixA of estimations of the qualities of
attributes
Initialization ∀m 1 ≤ m ≤ p, Am = 0

RepeatJ times (epochs)
1. randomly select an instancex(i)

2. find nearest hitH and nearest missM
3. for l = 1, · · · , p

4. Âl = Al −
diff (l,x(i),H)

J
+ diff (l,x(i),M)

J

5. If there exist strictly positive eigenvalues of̂A, then
A =

∑

r,λr>0 λruru
t
r, whereλr andur are the eigenval-

ues and eigenvectors of̂A
6. Error otherwise
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Figure. 9: Margin forRBS-PSD onIris dataset

B. RELIEF-Based Similarity Learning Algorithm with PSD
matrices- RBS-PSD

In this subsection, aRELIEF-Based Similarity Learning al-
gorithm based on the PSD matrices (RBS-PSD) is proposed
which is based on theRELIEFalgorithm. However, the inter-
est here is in similarities rather than distances. Furthermore,
this algorithm is also based on theRBSalgorithm discussed
earlier. However, in this approach the similarity matrix is
projected onto the set of PSD matrices. The aim here also,
is to maximize the marginM(A) between thetargetneigh-
bors (represented byy) and the examples belonging to other
classes (calledimpostorsand given byz). The margin, for
k = 1 in kNNalgorithm can be written as:

M(A) =
∑n

i=1

(

sA(x
(i), y(i))− sA(x

(i), z(i))
)

=
∑n

i=1(x
(i)tAy(i) − x(i)tAz(i))

=
∑n

i=1 x
(i)tA(y(i) − z(i))

whereA is the similarity matrix. The margin is maximized
subject to two constraints:A � 0 and‖A‖2F = 1. There was
only a single constraint (A � 0) in the case ofRBSalgorithm.
We proceed in two steps: in the first step, we maximize the
margin subject to the constraint‖A‖2F = 1, whereas in the
second step, we find the closest PSD matrix ofA normalized
with its Frobenius norm:

arg max
A

M(A)

‖A‖2F = 1,

We take the Lagrangian of the similarity matrix in a simi-
lar manner as used forRBSalgorithm before finding the ele-
ments ofA matrix.
Once we have obtained the matrixA, its closest PSD matrix
Â is found. Since we want the Frobenius norm ofÂ to be
equal to 1, hencêA is normalized with its Frobenius norm in
the following manner:

Ã =
Â

√

∑

l,m(Âl,m)2

The problem with maximizing the margin approach was ver-
ified onRBS-PSD and was found to be equivalent to that en-
countered forRBS. A number of UCI datasets [17] i.e.Iris,
Wine, Balanceetc. were used for the verification as seen in
figures 9, 10, 11 and 12. It can be observed for all of the

Figure. 10: Margin forRBS-PSD onWinedataset

Figure. 11: Margin forRBS-PSD onBalancedataset

Figure. 12: Margin forRBS-PSD onPimadataset
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datasets that the average margin remains positive despite the
presence of a number of mistakes, since the positive margin
is much greater than the negative one for the majority of the
test examples. For example, the values of negative margin in
the case ofIris is in the range of0.05−0.10 whereas most of
the positive margin values are greater than0.15. Similarly,
for Wine, most of the negative margin values lie in the range
between0 and−0.04 while the positive margin values are
dispersed in the range0 − 0.08. So, despite the fact that the
overall margin is large, a lot of examples are misclassified.
This explains the fact that the algorithmsRELIEF-PSDand
RBS-PSDdid not perform quite well on different standard
test collections as can be seen in Section VII.

VI. A stricter version of RBS-PSD:sRBS-PSD

The same work around used in the case ofsRBSalgorithm
to improve the performance ofRELIEFbased methods was
used in the case ofRELEIF-PSD andRBS-PSD: to directly
use the leave-one-out error or0 − 1 loss like theSiLAalgo-
rithm [8] where the aim is to reduce the number of mistakes
on unseen examples. The resulting algorithm is a stricter ver-
sion ofRBS-PSD and is termed assRBS-PSD. It is called as
a stricter version as we do not try to maximize the overall
margin but are interested in reducing the individual errorson
the unseen examples.
sRBS-PSD algorithm is exactly the same assRBSexcept the
fact that in the former case, the similarity matrix is projected
onto the set of PSD matrices.
We proceed in two steps in the case ofsRBS-PSD: in the
first step we find theA matrix for which the cost function
is minimized. In the second step, we find the closest PSD
matrix ofA which should have a low cost.

sRBS-PSD - Training
Input: training set(x(1), c(1)), · · · , (x(n), c(n)) of n vectors
in Rp, A1

lm denotes the element ofA1 at row l and column
m

Output:Matrix A

Initialization t = 1, A(1) = 1 (Unity matrix)
RepeatJ times (epochs)
for all of the featuresl,m

Minuslm = 0

for i = 1, · · · , n

for all of the featuresl,m

Minuslm + = ∂Qi(A
t)

∂alm

αt = 1
t

Ât+1 = At − αt

n
∗ Minus

If there exist strictly positive eigenvalues of̂At+1, then
At+1 =

∑

r,λr>0 λruru
t
r (whereλr andur are the eigen-

values and eigenvectors of̂At+1)
Error otherwise
if
∑

lm |At+1
lm −At

lm| ≤ 0.001

Stop

Figures 13, 14, 15 and 16 show the margin values on the
training data forsRBS-PSDfor the datasetsIris, Wine and
Balance. Comparing these results with the earlier ones for

Figure. 13: Margin forsRBS-PSD onIris dataset

Figure. 14: Margin forsRBS-PSD onWinedataset

Figure. 15: Margin forsRBS-PSD onBalancedataset
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Figure. 16: Margin forsRBS-PSD onPimadataset

kNN-cosine kNN-Euclidean

Soybean 1.0± 0.0 1.0± 0.0
Iris 0.987± 0.025 0.973± 0.029
Letter 0.997± 0.002 0.997± 0.002
Balance 0.954± 0.021≫ 0.879± 0.028
Wine 0.865± 0.050≫ 0.819± 0.096
Ionosphere 0.871± 0.019 0.854± 0.035
Glass 0.899± 0.085 0.890± 0.099
Pima 0.630± 0.041 0.698± 0.024≫
Liver 0.620± 0.064 0.620± 0.043
German 0.594± 0.040 0.615± 0.047
Heart 0.670± 0.020 0.656± 0.056
Yeast 0.911± 0.108 0.912± 0.108
Spambase 0.858± 0.009 0.816± 0.007
Musk-1 0.844± 0.028 0.848± 0.018

Table 2: Comparison between cosine similarity and Euclidean dis-
tance based on s-test

RBS-PSD, one can see the importance of using a cost func-
tion closer to the0− 1 loss. The margin is positive for most
of the training examples in this case.

VII. Experimental Validation

Fifteen datasets from the UCI database ([17]) were used to
assess the performance of the different algorithms. These are
standard collections which have been used by different re-
search communities (machine learning, pattern recognition,
statistics etc.). The information about the datasets is summa-
rized in Table 1 whereBal stands forBalancewhereasIono
refers toIonosphere.
Table 2 compares the performance of cosine similarity and
the Euclidean distance for all of the datasets.
The matrices learned by all of the algorithms can be used
to predict the class(es) to which a new example should be
assigned. Two basic rules for prediction were considered: the
standardkNNrule and its symmetric variant (SkNN). SkNNis
based on the consideration of the same number of examples
in the different classes. The new example is simply assigned
to the closest class, the similarity with a class being defined
as the sum of the similarities between the new example and
its k nearest neighbors in the class.
Furthermore, all of the algorithms can be used in either a bi-
nary or multi-class mode. There are a certain number of ad-
vantages in the binary version. First, it allows using the two

prediction rules given above. Moreover, it allows learning
local matrices, which are more likely to capture the variety
of the data. Finally, its application in prediction resultsin a
multi-label decision.
5-fold nested cross-validation was used to learn the single
weight vector in case ofRELIEF andRBSalong with their
PSD counterparts, and the matrix sequence(A1, · · · , An) in
case ofsRBSandsRBS-PSD for all of the datasets. 20 per-
cent of the data was used for test purpose for each of the
dataset. Of the remaining data, 80 percent was used for
learning whereas 20 percent for the validation set. In case
of RELIEF, RBSand their PSD versions, the validation set
is used to find the best value ofk, whereas in the case of
sRBSandsRBS-PSD, it is used to estimate the values ofk,
λ andβ. Micro-sign test (s-test), earlier used by Yang and
Liu [19] was performed to assess the statistical significance
of the different results.

A. Comparison between different RELIEF algorithms based
on kNN decision rule

While comparingRELIEF with its similarity based variant
(RBS) based on the simplekNN classification rule, it is ev-
ident that the later performs significantly much better only
on Germanand slightly better onSoybeanas shown in ta-
ble 3. HoweverRELIEF outperformsRBSfor Heart while
usingkNN.
It can be further verified from table 3 that the algorithmsRBS
performs significantly much better (≫) than theRELIEFal-
gorithm for eight out of twelve datasets i.e.Soybean, Iris,
Balance, Ionosphere, Heart, Pima, GlassandWine. This al-
lows one to deduce safely thatsRBSin general is a much
better choice thanRELIEFalgorithm.

B. Comparison between different RELIEF algorithms based
on SkNN decision rule

While comparingRELIEF with its similarity based variant
(RBS) based on theSkNN-A rule, it can be seen from table 4
that the later performs significantly much better onIono-
sphere, German, Liver andWinecollections. On the other
hand,RELIEFperforms significantly much better thanRBS
onHeart andGlass.
It can further observed thatsRBSperformed significantly
much better thanRELIEFon majority of the datasets (9 out
of a total of 12) i.e.Soybean, Iris, Balance, Ionosphere,
Heart, German, Pima, Glass and Wine. On Liver, sRBS
performed slightly better than theRELIEFalgorithm. Thus
sRBSoutperformsRELIEF in general forSkNNas seen pre-
viously forkNN.

C. Performance of sRBS as compared to RBS

Furthemore, the twoRELIEF based similarity learning al-
gorithms i.e.RBSandsRBSare compared using bothkNN
as well asSkNN as shown in table 5. On majority of
the datasets, the algorithmsRBSoutperformsRBSfor both
kNNandSkNN. sRBSperforms significantly much better (as
shown by≪) than its counterpart on the following datasets:
Soybean, Iris, Balance, Ionosphere, Heart, Pima, Glassand
Winefor the two classification rules (kNNandSkNN). On the
other hand,RBSwas able to perform slighty better than its
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Iris Wine Bal Iono Glass Soy Pima Liver Letter German Yeast Heart Magic Spam Musk-1

Learn 96 114 400 221 137 30 492 220 12800 640 950 172 12172 2944 304
Valid. 24 29 100 56 35 8 123 56 3200 160 238 44 3044 737 77
Test 30 35 125 70 42 9 153 69 4000 200 296 54 3804 920 95
Class 3 3 3 2 6 4 2 2 26 2 10 2 2 2 2
Feat. 4 13 4 34 9 35 8 6 16 20 8 13 10 57 168

Table 1: Characteristics of datasets

kNN-A (RELIEF) kNN-A (RBS) kNN-A (sRBS)

Soybean 0.711± 0.211 0.750± 0.197> 1.0± 0.0≫

Iris 0.667± 0.059 0.667± 0.059 0.987± 0.025≫

Balance 0.681± 0.662 0.670± 0.171 0.959± 0.016≫

Ionosphere 0.799± 0.062 0.826± 0.035 0.866± 0.015≫

Heart 0.556± 0.048 0.437± 0.064≪ 0.696± 0.046≫

Yeast 0.900± 0.112 0.900± 0.112 0.905± 0.113

German 0.598± 0.068 0.631± 0.020≫ 0.609± 0.016

Liver 0.574± 0.047 0.580± 0.042 0.583± 0.015

Pima 0.598± 0.118 0.583± 0.140 0.651± 0.034≫

Glass 0.815± 0.177 0.821± 0.165 0.886± 0.093≫

Letter 0.961± 0.003 0.961± 0.005 0.997± 0.002

Wine 0.596± 0.188 0.630± 0.165 0.834± 0.077≫

Table 3: Comparison between differentRELIEFbased algorithms while usingkNN-A method based on s-test

SkNN-A (RELIEF) SkNN-A (RBS) SkNN-A (sRBS)

Soybean 0.756± 0.199 0.750± 0.197 0.989± 0.034≫

Iris 0.673± 0.064 0.667± 0.059 0.987± 0.025≫

Balance 0.662± 0.200 0.672± 0.173 0.967± 0.010≫

Ionosphere 0.681± 0.201 0.834± 0.031≫ 0.871± 0.021≫

Heart 0.526± 0.085 0.430± 0.057≪ 0.685± 0.069≫

Yeast 0.900± 0.113 0.900± 0.112 0.908± 0.110

German 0.493± 0.115 0.632± 0.021≫ 0.598± 0.038≫

Liver 0.539± 0.078 0.580± 0.042≫ 0.588± 0.021>

Pima 0.585± 0.125 0.583± 0.140 0.665± 0.044≫

Glass 0.833± 0.140 0.816± 0.171≪ 0.884± 0.084≫

Letter 0.957± 0.047 0.961± 0.005 0.997± 0.002

Wine 0.575± 0.198 0.634± 0.168≫ 0.840± 0.064≫

Table 4: Comparison between differentRELIEFbased algorithms while usingSkNN-A based on s-test
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stricter versionsRBSon Germanwhile using thekNN rule.
Similarly RBSperforms significantly much better thansRBS
on only one dataset i.e.Germanwhile using theSkNNclas-
sification rule. The performance ofRBSandsRBSis equiv-
alent forYeast, Liver andLetter. These results allows us to
conclude thatsRBSis a much better algorithm thanRELIEF.

D. Effect of positive, semi-definitiveness on RELIEF based
algorithms

In this subsection, the effect of learning PSD matrices is in-
vestigated for theRELIEFbased algorithms.

1) RELIEF based approaches and positive, semi-definite
matrices with kNN classification rule

In table 6,RELIEF-PSDis compared withRELIEF-Based
Similarity learning algorithmRBS-PSDand its stricter ver-
sion (sRBS-PSD) while using thekNNclassification rule. It
can be seen thatsRBS-PSDperforms much better than the
other two algorithms on majority of the data sets.sRBS-
PSDis statistically much better (as shown by the symbol≫)
thanRELIEF-PSDfor the following 10 datasets:Soybean,
Iris, Balance, Heart, Yeast, Pima, Glass, Wine, Spambase
andMusk-1. Similarly for Ionosphere, sRBS-PSDis slightly
better than theRELIEF-PSDalgorithm. On the other hand,
RELIEF-PSDperforms slightly better (<) than sRBS-PSD
for Germandataset.
Moreover, while comparingRBS-PSDwith RELIEF-PSD, it
can be observed that the former performs significantly better
than the later forYeast, PimaandMusk-1, and slightly better
for Glassdataset. On the other hand,RELIEF-PSDwas able
to perform significantly better thanRBS-PSDfor Heart and
Spambase, while slightly better forGerman.

2) RELIEF based approaches and positive, semi-definite
matrices with SkNN classification rule

Table 7 compares differentRELIEFbased algorithms based
on SkNNdecision rule while using PSD matrices. It can be
observed thatsRBS-PSDperforms much better than the other
two algorithms on majority of the data sets as seen earlier
while using thekNN rule. sRBS-PSDis statistically much
better (as shown by the symbol≫) thanRELIEF-PSDfor
the following 10 datasets (out of 15):Soybean, Iris, Bal-
ance, Heart, Yeast, Liver, Glass, Wine, SpambaseandMusk-
1. RELIEF-PSDperforms slightly better (<) thansRBS-PSD
for only one dataset i.e.German.
Similarly,RBS-PSDoutperformsRELIEF-PSDfor 6 datasets
(Iris, Yeast, Liver, Glass, SpambaseandMusk-1) while the
reverse is true for the following 3 datasets:Balance, Iono-
sphereandHeart.

3) Performance of sRBS-PSD as compared to RBS-PSD

Table 8 compares statistically the results obtained while us-
ing RBS-PSDandsRBS-PSDalgorithms. The later outper-
forms the former for the following 7 datasets (out of 13 con-
sidered for comparison):Soybean, Iris, Balance, Ionosphere,
Heart, GlassandWinewith bothkNNas well asSkNN. RBS-
PSD performs slightly better than its counterpart forGer-
man while using theSkNNrule. However, for the rest of
the datasets, the two algorithms’ performance is comparable.

4) Performance of RELIEF-PSD as compared to RELIEF

While comparingRELIEF (with no PSD matrices) with
RELIEF-PSDalgorithm (table 8), it can be observed that
while usingkNN, RELIEF-PSDperforms significantly better
thanRELIEFon Germanand slightly better onIonosphere.
On the other hand,RELIEFwas able to outclass its counter-
part for Yeast. However, for rest of the datasets the perfor-
mance of these two algorithms was comparable.
Table 8 also compares the effect of using PSD matrices with
the RELIEF algorithm while using theSkNNdecision rule.
It can be observed thatRELIEF-PSDperforms significantly
better thanRELIEFon 4 datasets:Balance, Ionosphere, Ger-
manandPima. On the other hand,RELIEFwas able to out-
class its counterpart for 3 datasets:Iris, YeastandGlass. The
performance of these two algorithms was comparable for the
remaining collections.

5) Effect of positive, semi-definitiveness on RBS and sRBS

Table 8 finds statistically the effect of positive, semi-
definitiveness onRBSas well assRBS. RBS-PSDoutper-
formsRBSsignificantly forPima with bothkNN as well as
SkNNwhile Glassfor SkNNonly. The use of PSD matrices
improve the performance slightly forGlasswith kNNrule.
The use of positive, semi-definitiveness neither improves nor
degrades the performance forsRBSalgorithm for both of the
classification rules:kNNand its symmetric counterpart.

VIII. Conclusion

In this paper, we studied the links betweenRELIEFandSiLA
algorithms.SiLA is interested in directly reducing the leave-
one-out error or0−1 loss by reducing the number of mistakes
on unseen examples. However, Sun and Wu have shown that
RELIEF could be seen as a distance learning algorithm in
which a linear utility function with maximum margin was
optimized. We first proposed a version ofRELIEF for sim-
ilarity learning, calledRBS(for RELIEF-Based Similarity
learning). AsRELIEF, and unlikeSiLA, RBSdoes not try
to optimize the leave-one-out error or0 − 1 loss, and does
not perform very well in practice, as we illustrate on two
UCI collections namelyIris andWine. We thus introduce a
stricter version ofRBS, calledsRBS, aiming at relying on a
cost function closer to the0 − 1 loss. Moreover, we devel-
oped positive, semi-definite (PSD) versions ofRBSandsRBS
algorithms:RBS-PSD andsRBS-PSD whereby the similarity
matrices were projected onto the set of PSD matrices.
The algorithms were validated on a number of UCI datasets.
In order to find the statistical significance of the results, a
micro-sign test, known as the s-test was employed. The algo-
rithm sRBSperforms statistically much better than its coun-
terparts for most of the data sets i.e.Soybean, Iris, Balance,
Ionosphere, Pima, Glass and Wine for both of the learn-
ing rules used:kNNand its symmetric variantSkNN. While
comparingRELIEF with RBS, it can be noted that the re-
sults for the later are significantly better onGermanfor both
kNN andSkNN; while with only kNN for Ionosphere, Liver
andWine. On contrary,RELIEFperforms significantly much
better thanRBSfor Heart (with bothkNNas well asSkNN)
while only with SkNNon Glass. This shows that the0 − 1
loss is a more appropriate cost function than the linear utility
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kNN-A (RBS) / kNN-A (sRBS) SkNN-A (RBS) / SkNN-A (sRBS)

Soybean ≪ ≪

Iris ≪ ≪

Balance ≪ ≪

Ionosphere ≪ ≪

Heart ≪ ≪

Yeast = =
German > ≫

Liver = =
Pima ≪ ≪

Glass ≪ ≪

Letter = =
Wine ≪ ≪

Table 5: Comparison betweenRBSandsRBSbased on s-test

kNN-A (RELIEF-PSD) kNN-A (RBS-PSD) kNN-A (sRBS-PSD)

Soybean 0.739± 0.192 0.733± 0.220 1.0± 0.0≫

Iris 0.664± 0.058 0.667± 0.059 0.987± 0.025≫

Balance 0.665± 0.193 0.670± 0.171 0.959± 0.016≫

Ionosphere 0.839± 0.055 0.826± 0.035 0.880± 0.015>

Heart 0.556± 0.048 0.437± 0.036≪ 0.693± 0.047≫

Yeast 0.893± 0.132 0.900± 0.112≫ 0.911± 0.109≫

German 0.637± 0.017 0.624± 0.015< 0.609± 0.016<

Liver 0.574± 0.034 0.580± 0.042 0.606± 0.034

Pima 0.593± 0.077 0.661± 0.024≫ 0.651± 0.034≫

Glass 0.819± 0.164 0.835± 0.138> 0.886± 0.093≫

Letter 0.961± 0.005 0.961± 0.005 0.997± 0.002

Wine 0.608± 0.185 0.630± 0.165 0.834± 0.077≫

Magic 0.516± 0.085 0.360± 0.007 0.767± 0.009

Spambase 0.618± 0.031 0.611± 0.020≪ 0.855± 0.009≫

Musk-1 0.698± 0.055 0.851± 0.033≫ 0.838± 0.024≫

Table 6: Comparison between differentRELIEFbased algorithms usingkNN-A and PSD matrices

SkNN-A (RELIEF-PSD) SkNN-A (RBS-PSD) SkNN-A (sRBS-PSD)

Soybean 0.783± 0.163 0.733± 0.220 0.983± 0.041≫

Iris 0.571± 0.164 0.667± 0.059≫ 0.987± 0.025≫

Balance 0.708± 0.175 0.672± 0.173≪ 0.967± 0.010≫

Ionosphere 0.886± 0.028 0.834± 0.031≪ 0.889± 0.011

Heart 0.533± 0.067 0.437± 0.036≪ 0.685± 0.069≫

Yeast 0.897± 0.122 0.900± 0.112≫ 0.914± 0.106≫

German 0.625± 0.035 0.624± 0.015 0.598± 0.038<

Liver 0.528± 0.085 0.580± 0.042≫ 0.609± 0.035≫

Pima 0.659± 0.027 0.658± 0.030 0.665± 0.044

Glass 0.768± 0.235 0.835± 0.138≫ 0.884± 0.084≫

Letter 0.961± 0.008 0.961± 0.004 0.997± 0.002

Wine 0.606± 0.177 0.634± 0.168 0.840± 0.064≫

Magic 0.539± 0.109 0.360± 0.007 0.777± 0.009

Spambase 0.583± 0.075 0.611± 0.020≫ 0.857± 0.010≫

Musk-1 0.712± 0.037 0.857± 0.029≫ 0.842± 0.010≫

Table 7: Comparison between differentRELIEFbased algorithms usingSkNN-A and PSD matrices

  456 Qamar and Gaussier



Table 8: Comparison between different algorithms based on s-test

RELIEF / RELIEF-PSD RBS / RBS-PSD sRBS / sRBS-PSD RBS-PSD / sRBS-PSD

kNN-A SkNN-A kNN-A SkNN-A kNN-A SkNN-A kNN-A SkNN-A

Soybean = = = = = = ≪ ≪

Iris = ≫ = = = = ≪ ≪

Balance = ≪ = = = = ≪ ≪

Ionosphere < ≪ = = = = ≪ ≪

Heart = = = = = = ≪ ≪

Yeast ≫ ≫ = = = = = =
German ≪ ≪ = = = = = >

Liver = = = = = = = =
Pima = ≪ ≪ ≪ = = = =
Glass = ≫ < ≪ = = ≪ ≪

Letter = = = = = = = =
Wine = = = = = = ≪ ≪

Musk-1 = =

function used byRELIEF. While comparing the PSD algo-
rithms with their counterparts,RELIEF-PSD performed well
as compared toRELIEF. However, for the rest of the algo-
rithms, the effect of projection onto the set of PSD matrices
was minimal e.g. in the case ofsRBS, the use of PSD matri-
ces neither improves neither degrades the performance.
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