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Abstract:  In this paper, we study the links betweenRELIEF, has paved the way for a new reasearch theme temmadel

a well-known feature re-weighting algorithm and SiLA a sim-  ric learning. Most of the people working in this research
ilarity learning algorithm. On one hand, SiLAis interested in area are more interested in learning a distance metric (see
directly reducing the leave-one-out error or0 — 1 loss by reduc-  e.g. [1, 2, 3, 4]) as compared to a similarity one. However,
ing the number of mistakes on unseen examples. On the other as argued by several researchers, similarities shoulddse pr
hand, it has been shown thaRELIEFcould be seen as a distance ferred over distances on some of the data sets. Similarity is
learning algorithm in which a linear utility function with m axi-  usually preferred over the distance metric while dealinpwi
mum margin was optimized. We first propose here a version of text, in which case the cosine similarity has been deemed
this algorithm for similarity learning, called RBS(for RELIER  more appropriate as compared to the various distance met-
Based Similarity learning). As RELIEF, and unlike SiLA RBS rics. Furthermore, studies reportedin [5, 6, 7, 8] have @dov
does not try to optimize the leave-one-out error or0 — 1 loss, that cosine should be preferred over the Euclidean distance
and does not perform very well in practice, as we illustrate @ over non-textual data sets as well. Furthermore, cosine sim
several UCI collections. We thus introduce a stricter versin ilarity has been compared with the Euclidean distancéon

of RBS called sSRBS aiming at relying on a cost function closer different datasets. Umugwaneza and Zou [9] have combined
to the 0 — 1 loss. Moreover, we also developed Positive, semi- cosine similarity and Euclidean distance for Trademarks re
definite (PSD) versions oRBSand sRBSalgorithms, where the  trieval whereby they fine tune the proportions for each of the
learned similarity matrix is projected onto the set of PSD ma  two measures. Similarly Porwik et al. [10] have compared
trices. Experiments conducted on several datasets illusite the ~many different similarity and distance measures such as Eu-
different behaviors of these algorithms for learning simitrities  clidean distance, Soergel distance, cosine similarit;aal

for kNN classification. The results indicate in particular thatthe and Dice coefficients etc.

0 — 1 loss is a more appropriate cost function than the one im- RELIEF(originally proposed by Kira and Rendell [11]) is an
plicitly used by RELIEF. Furthermore, the projection onto the  online feature reweighting algorithm successfully emphby

set of PSD matrices improves the results foRELIEFalgorithm  in various different settings. It learns a vector of weights
only. for each of the different features or attributes descrilblivegy
Keywords: similarity learning,RELIEF algorithm, positive, semi- importance. It has been proved by Sun and Wu [12] that it
definite (PSD) matricesSiLA algorithm, kNN classification, ma- implicitly aims at maximizing the margin of a linear utility
chine learning function.

SILA[8] is a similarity metric learning algorithm for nearest
neighbor classification. It aims at moving the nearest neigh
bors belonging to the same class nearer to the input example

The k nearest neighbokNN) algorithm is a simple yet ef- (termed aSargetn_eighbors) while pushing away the nearest
ficient classification algorithm: to classify an exampleit ~€x@mples belonging to different classes (describethpss-

finds itsk nearest neighbors based on the distance or sinfRS)- The similarity function between two exampleandy

larity metric, from a set of already classified examples ang@" be written as:

assignsr to the most represented class in the set of these

nearest neighbors. Many people have improved the perfor- salz,y) =
mance ofk N N algorithm by learning the underlying geom- N(z,y)
etry of the space containing the data e.g. learning a Mahaheret represents the transposeis a (p x p) similarity ma-
lanobis distance instead of the standard Euclidean ona. Thiix and N (z, y) is a normalization function which depends
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on x and y (this normalization is typically used to map th&ronecker symbol), for a symmetric matrix,;(z,y) =

similarity function to a particular interval, as [0, 1]). &ar
tion 1 generalizes several standard similarity functioms e

the cosine measure which is widely used in text retrieval, igy|ly, an asymmetric similarity)f,..;(

obtained by setting théd matrix to the identity matrix, and
N(z,y) to the product of the L2 norms afandy. The aim
here is to reduce the — 1 loss which is dependent on the

number of mistakes made during the classification phase. For

t t
W, and for a square matrix (and hence, poten-
' t
_ Tyl
nY) = \Emk

[ll. RELIEF and its mathematical interpreta-
tion

the remainder of the paper, a matrix is sometimes repregente

as a vector as well (e.g.pax p matrix can be represented by
a vector having? elements).

The rest of the paper is organized as follows: Sectate-
scribes the&iLAalgorithm. This is followed by a short intro-
duction ofRELIEFalgorithm along with its mathematical in-
terpretation, its comparison wisiLA and aRELIEFBased
Similarity learning algorithmRBS in section3. Section 4
introduces a strict version &BSfollowed by the experimen-
tal results and conclusion.

[I. SiLA- A Similarity Learning Algorithm

The SiLA algorithm is described in detail here. It is a simi-
larity algorithm and is a variant of the voted perceptroroalg
rithm of Freund and Schapire [13], later used in Collins [14]

SiLA - Training (k=1)
Input: training set ((z™M), M), ... (2™ ™)) of n
vectors ink?, number of epochg; A,,; denotes the elemeg
of A at rowm and columri
Output: list of weighted (p x p)
((Ala ’LU1), T (Aqa wq))
Initialization ¢ = 1, A = 0 (null matrix),w; = 0
RepeatJ times (epochs)
1.fori=1,---,n
2.if sa(z® y) —sa(z?,2) <0
3.¥(m,1),1 <m,l <p,
AR = AT+ fa (@D y) = frua (2, 2)

nt

b

matrice

4. Wi41 = 1
5t=t+1
6. else

7.wt:wt+1

Whenever an examplel®) is not separated from differently
labeled examples, the curreAitmatrix is updated by the dif-
ference between the coordinates of the target neighbors (

Sun and Wu [12] have shown shown that RRELIEF algo-
rithm solves convex optimization problem while maximizing
a margin-based objective function employing &N algo-
rithm. It learns a vector of weights for each of the features,
based on the nearelit (nearest example belonging to the
class under consideration, also known as the neétaegit
neighbor) and the nearestiss(nearest example belonging
to other classes, also known the the nearapbsto).

In the original setting for theRELIEF algorithm, it only
learns a diagonal matrix. However, Sun and Wu [12] have
learned a full distance metric matrix and have also proved
thatRELIEFis basically an online algorithm.

In order to describe thRELIEF algorithm, we suppose that
= is a vector inR? with y(?) as the corresponding class la-
bel with values+1, —1. Furthermore, letd be a vector of
weights initialized with). The weight vector learns the qual-
ities of the various attributest is learned on a set of training
examples. Suppose an examplé is randomly selected.
Then two nearest neighbors of) are found: one from the
same class (termed as thearest hitor H) while the second
one from a class other than thatdf) (termed as thaear-

est misor M). The update rule in case BELIEFdoes not
depend on any condition unlik&iLA

TheRELIEFalgorithm is presented next:

RELIEF (k=1)
Input: training set((z™M), M), (2™, ™)) of n vec-
tors in RP, number of epochs;
Output: the vectorA of estimations of the qualities of &
tributes
Initialization 1 <m <p,A4,, =0
RepeatJ times (epochs)
1. randomly select an instana#?)
2. find nearest hi#{ and nearest miss/
3.fori=1,---,p

a A = 4y - WMLatn

—

|

), diff (1, arn)
+ 7

e

noted byy) and the impostors (representedd)yas described

in line 4 of the algorithm. This corresponds to the standary

perceptron update. Similarly, when currehtorrectly clas-
sifies the example under focus, then its weight is increas
by 1, so that the weights finally correspond to the numb
of examples correctly classified by the similarity matrixeov
the different epochs.

The worst-time complexity oSiLA is 0(Jnp*) where J
stands for the number of iterationsjs the number of train-

ing examples while stands for the number of dimensions or

attributes.
The functionsf,,; allows to learn different types of matri-
ces and therefore different types of similarities: in theeca

t
0 DTyt with & the

of a diagonal matrixf,.;(z,y) = N

here J represents the number of timBELIEF has been
executed, whildiff finds the difference between the values
t H or the nearest mis&/. If an instancer(”) and its near-
est hit, H have different values for an attributethen this
means that it separates the two instances in the same class
which is not desirable, so the quality estimatidn is de-
creased. On the other hand, if the instancésand M/ have
different values for an attributethen this attribute separates
two instances pertaining to different classes which isrdesi
able, so the quality estimatiofy, is increased. In the case of
discrete attributes, the value of difference is either & {t&l-

ues are different) or O (the values are the same). However, fo
continuous attributes, the difference is the actual diffiee

i_)l(‘gan attributel for the current example(® and the nearest
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normalized to the closed intervi, 1] which is given by the N
following equation: A (2) ©)

|1 — |
ma(l) = min(l where (2) = [maz(z1,0), - ,maz(z,,0))', z repre-
sents the margin of examplelf we compare the above equa-
tion with the weight update rule f&ELIEF, it can be noted
that RELIEF is an online algorithm which solves the opti-

scenarios unlik&iLA mization problem given in equation 2. This is true except
In the original settingRELIEF can only deal with binary when A, — 0 for z < 0 which corresponds to the irrelevant

class problems and cannot work with incomplete data. Afseatures
a work around,RELIEF was extended t&RELIEFF algo- '
rithm [15]. Rather than just finding the nearest hit and mis
it finds k& nearest hits and the same number of nearest mis

diff (I, z,2") =

The complexity of RELIEF algorithm can be given as
O(Jpn). Moreover, the complexity is fixed for all of the

s RELIEF-Based Similairty Learning Algorithm - RBS

from each of the different classes. In this subsection, RELIEFBased Similarity Learning al-
gorithm RBS [16] is proposed which is based &®ELIEF
A. Mathematical Interpretation of RELIEF algorithm algorithm. However, the interest here is in similaritieshea

Oguan distances.

ur aim here is to maximize the margh (A) betweertar-
getneighbors (represented by andimpostors(represented
by z). However, as the similarity defined through matrix

p= d(x(i) _ M(:Z?(i))) _ d(z(ﬂ _ H(x(ﬂ)) can be arbitrarily large through multiplication dfby a pos-

itive constant, we impose that the Frobenius normidbfe

where M (z(*)) and H (")) represent the nearest miss ancbqual tol. The margin, foi = 1, in thekNNalgorithm can
the nearest hit for(") respectively, and(.) represents a dis- pe written as:

tance function which is defined @) = >} |z;| in a simi-

Sun and Wu [12] have given a mathematical interpretati
for the RELIEF algorithm. The margin for an instanaé?)
can be defined in the following manner:

lar fashion as the origin@®ELIEF algorithm. The margin is M(A) =30, (Sé(f(i)v.y(i)) - fA(xl(i), z(1))
greater thar if and only if z(*) is closer to the nearest hit as =31 (a3 Ay — 2" 42()
compared to the nearest miss, or in other words, is classified =37 2@ A@® - 2(0)

correctly as per th&e N N rule. The aim here is to scale each

feature so that the leave-one-out eryaf_, I(p;(A) < 0)is WhereA is the similarity matrix. _
minimized, where 1(.) is the indicator function ape(A) The optimization problem derived from the above consider-

is the margin ofz(? with respect toA. As the indicator ations thus takes the form:
function is not differentiable, a Iinegr u_tility func_tioe used argmax  M(A)
instead so that the averaged margin in the weighted feature A )
space is maximized: subjectto [|A[]z =1,

max Y, pi(A) = S {00 Al faf”) — MO ()

= Xf A e - HO @), £(4) =32 AN —20) 12133 af,)
subjecttd|A||3 = 1, andA > 0, i=1 1=1 m=1

Taking the Lagrangian of the similarity matrik

whereA > 0 makes sure that the learned weight vector in?/N€reX is a Lagrangian multiplier. Moreover, after taking
O and setting it to zero, one obtains:

duces a distance measure. Equation 2 can be simplified W derivative w.r.tayn,
definingz = 1, (Ja®@ — M(z®)] — |2 — H(2?))) AL(A)

) _5xn @6 @) _
which can be expressed as: darm Zﬂi:l ) (Yym — zm ) — 2Aaim =0
max A'z subjectto||Al3=1, A>0 Z%(l) (g —=%)
= Ay = =1 o

Taking the Lagrangian of the above equation, we get:
Furthermore, since the Frobenius norm of mattiis 1:

p
L=—-Az4+XNJJA|Z + 1)+ ) 0;(—A4) PP
=1lm=

where both\ andé > 0 are Lagrangian multipliers. In or- ixm(y(”*z(”) 2
der to prove that the optimum solution can be calculatedina ~ _ Xp: Xp: @ — Xp: N -
closed form, the following steps are performed: the deriva- Sty ™ S 2
tive of L is taken with respect td, before being set to zero:

oL 9 leading to:

- i42M0=0 = A=

A 2
p P n
The values for\ andé are deduced from the KKT (Karush- 2\ — Z Z Z zl(i) (yﬁ,i) _ 27(2))
Kuhn-Tucker) condition giving way to: =1 m—1
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Figure. 1: Margin for RELIEF-Based similarity learning al- Figure. 3: Margin for RELIEF-Based similarity learning al-

gorithm onlris dataset
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Figure. 2: Margin for RELIEF-Based similarity learning al- rigyre. 4: Margin for RELIEF-Based similarity learning al-

gorithm onWinedataset

In case of a diagonal matrix; is replaced withi. The margin

for £ > 1 can be written as:

n k

M(4)

i=1

t k . .
= () AN (y(z),q _ Z(z),q)
q=1

q=1

S S sa(a®, y @) — 3 54 (a®, 2(D:0))
q=1

wherey():7 represents theth nearest neighbor aft) from

the same class whilg?)-¢ represents thegth nearest neighbor
of z(®) from other classes. Furthermorg,, and2\ can be

written as:
=0 Y 1)
i=1 g=1
A = o\
LR (& & a0
20=,1> > x> (ym™ — 2m)
I=1m=1 \i=1 q=1

The problem with theRELIEF based approacheRELIEF

gorithm onPimadataset

Wine BalanceandPimaas can be seen from figure 1, 2, 3, 4
respectively. It can be observed from all of these figures
that the average margin remains positive despite the pres-
ence of a number of mistakes, since the positive margin is
much greater than the negative one for the majority of the
test examples. For example, in figure 1, the values of nega-
tive margin is in the range df.05 — 0.10 whereas most of
the positive margin values are greater tiats. Similarly,

for Wine (figure 2), most of the negative margin values lie
in the range betweemand—0.04 while the positive margin
values are dispersed in the rarge- 0.08. So, despite the
fact that the overall margin is large, a lot of examples are
still misclassified. This explains why the algorithRELIEF
andRBSdid not perform quite well on different standard test
collections (see section VII).

C. Comparison between SiLA and RELIEF

While comparing the two algorithmSiLA and RELIEF, it
can be verified thaRELIEFlearns a vector of weights while

and RBS is that as one strives to maximize the margin, iSiLAlearns a sequence of vectors where each vector has got
is quite possible that the overall margin is quite large hut ia corresponding weight which signifies the number of ex-
reality the algorithm has made a certain number of mistakesnples correctly classified while using that particulateec
(characterized with negative margin). This concept was veFurthermore, the weight vector is updated systematically i
ified on a number of standard UCI datasets [17] dris,

case ofRELIEF while a vector is updated fdBiLA if and
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only if it has failed to correctly classify the current exam-v I,m,1 > [ > p,1 > m > p. Setting this derivative t0

ple 2 (i.e. s4(x¥,y) — sa(z?,2) < 0). In this case,

a new vectorA is created and its corresponding weight is

set tol. However, in case of correct classification fitA
the weight associated with the curresitis incremented by
1. Moreover, the two algorithms find the nearest hit and th
nearest miss to updaté: RELIEF selects an instance ran-

leads to: o

oy v gali)
= (L+ga(i))?

e know of no closed form solution for this fixed point equa-

tion, which can however be solved with gradient descent

2)\alm =

domly whereasiLAuses the instances in a systematic waynethods, through the following update:

Another difference between these two algorithms is that i
case ofRELIEF, the vectorA is updated based on the dif-
ference (distance) while it is updated based on the sirilari
function forSiLA This explains why the impact of nearest hit
is subtracted foRELIEF while the impact for nearest miss
is added to the vectot. For SiLA the impact of the nearest
hit is added while that of the nearest miss is subtracted fr

n

t_"n an(At)
A LN Tl
m z:zl Oaim,

wherea! stands for the learning rate, is inversely propor-
tional to timet and is given byn! = 1

-
m

t+1
Alm

currentA.
SiLAtries to directly reduce the leave-one-out error. How

ever,RELIEFuses a linear utility function in such a way thattors in R, A} denotes the element ¢f! at row! and col

the average margin is maximized.

V. A stricter version: sRBS

A work around to improve the performanceRELIEFbased
methods is to directly use the leave-one-out errdr-et loss
like the originalSiLA algorithm where the aim is to reduce
the number of mistakes on unseen examples. The resulti
algorithm is a stricter version dRELIEF-Based Similairty
Learning Algorithm and is termed aRBS It is called as

a stricter version as we do not try to maximize the overal
margin but are interested in reducing the individual eroors
the unseen examples.

The cost function fosRBScan be described in terms of a
sigmoid function:

oa(z'V) = (

As 5 approacheso, the sigmoid function starts representin
the0— 1 loss: it approacheswhere the margin(() A(y®) —
2"} is positive and approachésn the case where the mar-
ginis negative. Ley 4 (i) representsap(8z®" A(y® —z(®)
while v representy — z. The cost function we are consider-

1
1+ exp(Bz®’ A(y(D — 2(D)

SRBS Training
Input: training set((z™,cM), ... (2™, ™)) of n vec-

umnm
Output: Matrix A
Initialization ¢ = 1, A = 1 (Unity matrix)
RepeatJ times (epochs)
1. For all of the featureg m
2. Minus;,,, =0
3.fori=1,---,n
N9 4. For all of the feature m
5. Minus;,,, + = %ﬁ:t)
6. At =At — %ﬁ * Minus;,,
7, AL — ALl <
8. Stop

During each epoch, the difference between the new similar-
ity matrix A/ and the current ond!,  is computed. If this
difference is less than a certain thresheldr( this case), the
algorithm is stopped. The range ¢fis betweenl0—2 and
10~%. Figure 5, 6, 7 and 8 show the margin values on the
training data forsRBSfor the datasetsris, Wing Balance
andPimarespectively. Comparing these figures with the ear-
lier ones (i.e. foRBS reveals the importance of using a cost
function closer to the 0-1 loss. One can see that the average

ing is based on the above sigmoid function, regularized wigargin is positive for most of the training exampless&BS

the Frobenius norm ofi:

o) + A AlI3

M=

arg r’glng(A)

o

A 2
~ + — ap,| (4
N T n;l (4)

where) is the regularization parameter. Taking the derivativ
of (A) with respect ta,,:

de(A) 2o ga (i)
= B A2 4 2agn,
Daim v ;um(z))? “

n

>

i=1

0Q;(A?)

8alm

There are only a very few errors although a lot of examples
have a margin just slightly greater than zero.

V. Effect of Positive, Semi-Definitiveness oRE-
LIEF based algorithms

The similarityz! Az in the case oRELIEFbased algorithms
does not correspond to a symmetric bi-linear form, and hence
a scalar product. In order to define a proper scalr produdt, an
hence a cosine-like similarity, one can project the sirtifar
matrix A onto the set of positive, semi-definite (PSD) matri-
Bes. A similarity matrix can be projected onto the set of PSD
matrices by finding an eigenvector decomposition followed
by the selection of positive eigenvalues. A PSD mattiis
written as:

A0

In case, where a diagonal matrix is learnedRBLIEF, posi-
tive semi-definitiveness can be achieved by selecting dwely t
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positive entries of the diagonal. Moreover for learning k& fu
matrix with RELIEF, the projection can be performed in the
following manner:

A= Z )\jujuz-

j,Aj>0

where); andu; are the eigenvalues and eigenvectorsiof

In this case, only the positive eigenvalues are retainetewhi
the negative ones are discarded. It is important to note here
that all eigenvalues off may be negative, in which case
the projection on the PSD cone will result on the null ma-
trix. In such a case, PSD versions of the above alorithms,
i.e. versions including a PSD constraint in the optimizatio
problem, are not defined as the final matrix does satisfy the
constraint but is not interesting from a classification poin

view.
We now introduce the PSD versions RELIEF, RBSand
sRBY18].

A. RELIEF-PSD Algorithm

TheRELIEF-PSDalgorithm fork = 1 is presented next.

RELIEF-PSD (k=1)
Input: training set((z(M, M), ..., (z(™, (™)) of n vec-
tors in R, number of epochs/;
Output: diagonal matrixA of estimations of the qualities
attributes
Initialization Vm 1 <m <p, A,, =0
RepeatJ times (epochs)
1. randomly select an instanaé”)
2. find nearest hitd and nearest miss/

3.fori=1,---,p
. iff (12 iff (12 0
4.4 = A — dlff(z,J H) d|ff(l,J M)

5. If there exist strictly positive eigenvalues éf then
A= x50 Arurul, where), andu, are the eigenval-
ues and eigenvectors df

6. Error otherwise
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Figure. 9: Margin forRBSPSD onlris dataset

B. RELIEF-Based Similarity Learning Algorithm with PSD
matrices- RBS-PSD

In this subsection, RELIEFBased Similarity Learning al-
gorithm based on the PSD matric&BS-PSDis proposed
which is based on thRELIEFalgorithm. However, the inter-
est here is in similarities rather than distances. Furtoegem
this algorithm is also based on tRBSalgorithm discussed
earlier. However, in this approach the similarity matrix is
projected onto the set of PSD matrices. The aim here als
is to maximize the margirM(A) between theargetneigh-
bors (represented hy) and the examples belonging to other
classes (calledmpostorsand given byz). The margin, for

k = 1in kNNalgorithm can be written as:

M(A) =20, (5a(@®,yW) — sa(a®,2))
= (2@ Ay — g 4200y
=", 2" A(y@ — 2@)

where A is the similarity matrix. The margin is maximized
subject to two constraintsi = 0 and||A||% = 1. There was
only a single constraint{ > 0) in the case oRBSalgorithm.

We proceed in two steps: in the first step, we maximize the
margin subject to the constraifit||2. = 1, whereas in the
second step, we find the closest PSD matrixiaformalized
with its Frobenius norm:

arg max M(A)
IAIE =1,

We take the Lagrangian of the similarity matrix in a simi-
lar manner as used f&tBSalgorithm before finding the ele-
ments ofA matrix.

Once we have obtained the matwx its closest PSD matrix
A is found. Since we want the Frobenius normAto be
equal to 1, hencd is normalized with its Frobenius norm in
the following manner:

A

A= ———
Zl’m(Al,m)Q

The problem with maximizing the margin approach was vel

ified onRBSPSD and was found to be equivalent to that en-

countered foRBS A number of UCI datasets [17] i.dris,

Wine Balanceetc. were used for the verification as seen in

figures 9, 10, 11 and 12. It can be observed for all of the

Margin
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Figure. 11: Margin for RBSPSD onBalancedataset

0.4 T F T+ T T T T T
"./PimaScv/pima.data_train.margin.2.0.3.1"  +
03 - =
0.2 - =
+
01 + Ty o, % . + +
.1 - ++ +
SR H + + o + *
+ + o T + + T + o+
T + +owg +r ot
i Foy 44t + = 1 ++++J + + T H‘L—
AT T, Haih Rty Bt R T e P
0 [t pA N Py Gl st |
SR T DR R e BN g
o * + ot o4 + + % ++ A
01k * + o
+
-0.2 | 1 1 | 1 | 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Examples

Figure. 12 Margin forRBSPSD onPimadataset
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datasets that the average margin remains positive debpite t

presence of a number of mistakes, since the positive margin

is much greater than the negative one for the majority of tF~ . .
test examples. For example, the values of negative margin nsseviins dar_trainmargin 203.1.20.0.017 -+
the case ofris is in the range 06.05 — 0.10 whereas most of LEX S 1
the positive margin values are greater tiats. Similarly, - . " *
for Wine most of the negative margin values lie in the rang ‘ Lo,
between0 and —0.04 while the positive margin values are
dispersed in the range— 0.08. So, despite the fact that the
overall margin is large, a lot of examples are misclassified. 0.05 |- .
This explains the fact that the algorithrRELIEF-PSDand it gt et gt b et T s T A
RBS-PSDdid not perform quite well on different standard °T ToTT T T
test collections as can be seen in Section VII. 0.05 . . . s ‘ ‘ ‘ ‘ s

o) 10 20 30 40 50 60 70 80 920 100
Examples

0.1 =

Margin

V1. A stricter version of RBSPSD: sRBSPSD Figure. 13 Margin forsRBSPSD onlris dataset

The same work around used in the cassRBSalgorithm

to improve the performance &ELIEF based methods was
used in the case ®RELEIFPSD andRBSPSD: to directly
use the leave-one-out error @r 1 loss like theSiLAalgo-
rithm [8] where the aim is to reduce the number of mistakes

on unseen examples. The resulting algorithm is a stricter ve 0.02 . . . ‘ .

Sion OfRBSPSD and iS termed @BS'PSD“: iS Ca.”ed as " /Wine5cv/wine.data_train.margin.2.0.3.1.2.0.01.100"  +

a stricter version as we do not try to maximize the overall ools |t + 1
margin but are interested in reducing the individual eraors oor * o
the unseen examples. v *
sRBSPSD algorithm is exactly the same slRBSexcept the 0.005 |- L

4
+ + N 4+ R +++ ++++"’+

e o B T+ st S+ ++ " *.,d+++++1d'++++ [T

Margin
+

fact that in the former case, the similarity matrix is progst
onto the set of PSD matrices.

We proceed in two steps in the casesitBSPSD: in the 0.005 +
first step we find thed matrix for which the cost function
is minimized. In the second step, we find the closest PS -0.01 - 1

matrix of A which should have a low cost. oo , , , * ,

o

SRBSPSD - Training Examples
Input: training set(z(M, ¢M) ... (™ () of n vectors _ _ ,
in kP, Al denotes the element of' at row! and column Figure. 14 Margin for sSRBSPSD onWinedataset

Output: Matrix A
Initialization ¢ =1, A = 1 (Unity matrix)
RepeatJ times (epochs)

for all of the feature$, m

H 0.12
M|nUSlm - O ".iBaIalmceSC\:/be{lance'scaie.data.cl_‘train.mardin.2.0.3.1.‘2.?0.1000“' +
fori=1,---,n b .
.
for all of the feature$, m *
. . BQ,;(At) 0.08 - + =
Minus;,,, + = Dan P ot +
at =1 o 006 * s iy +
~ t ¢ % + + o+ + « 7 + o+ * Tt
Attl = At — % * Minus = 004 L7 ++*+ L +++: oot s + o
. . . . ~ * + J_:_ ks + 4 + +
If there exist strictly positive eigenvalues dft!, then . - PR e 0 P
. Me T+ 4 ++ +
AL =3 o Auqul (where), andu, are the eigen R ﬂﬂ»;;;i; 1;%{ Fige 4% T@: T et
1T N + o+ g
values and eigenvectors df 1) O R tmeba ’ FY
Error otherwise 002 s s ‘ ‘ ! ‘ :
I.I: Zl |At+1 A;ﬁ | < 0001 0 50 100 150 200 250 300 350 400
St’gp mi— Examples

. . Figure. 15 Margin forsRBSPSD onBalancedataset
Figures 13, 14, 15 and 16 show the margin values on the

training data forsRBS-PSDOor the dataset#ris, Wine and
Balance Comparing these results with the earlier ones for
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0.7

Py S S g s s L prediction rules given above. Moreover, it allows learning
06 L * * 4 local matrices, which are more likely to capture the variety
of the data. Finally, its application in prediction resuiisa
multi-label decision.
5-fold nested cross-validation was used to learn the single
03 - ] weight vector in case dRELIEF andRBSalong with their
0z | , PSD counterparts, and the matrix sequefitge --- , A,,) in
case ofsRBSandsRBSPSD for all of the datasets. 20 per-
cent of the data was used for test purpose for each of the
dataset. Of the remaining data, 80 percent was used for
learning whereas 20 percent for the validation set. In case
0.2 L . . L . w . . . of RELIEF, RBSand their PSD versions, the validation set

o %0 e o 20 Ex;:;es 00030 400 w030 ig ysed to find the best value &f whereas in the case of

sRBSandsRBSPSD, it is used to estimate the valueskof

A andjs. Micro-sign test ¢-tes}, earlier used by Yang and
Liu [19] was performed to assess the statistical signifieanc
of the different results.

0.5 B

04 - 4

Margin

Figure. 16: Margin forsRBSPSD onPimadataset

kNN-cosine kNN-Euclidean
Soybean 1.6:0.0 1.0+ 0.0 . . .
ris 0.9874 0.025 0.973% 0.029 A. Comparlsor_l t_)etween different RELIEF algorithms based
Letter 0.997+ 0.002 0.997+ 0.002 on kNN decision rule
Balance 0.954k 0.021>>  0.8794+ 0.028 . . e .
Wine 0.865+ 0.050>  0.819+ 0.096 While comparingRELIEF with its similarity based variant
lonosphere  0.87% 0.019 0.854+ 0.035 (RBS based on the simpleNN classification rule, it is ev-
S_'ass g'ge?c;t&t 8-22? 8-23& 8-29292 ident that the later performs significantly much better only
ma . . . . > H H
Liver 0.620+ 0.064 0.620% 0.043 on Germanand slightly better orSoybearas shown in ta-
German 0.594- 0.040 0.615+ 0.047 ble 3. HoweveRELIEF outperformsRBSfor Heart while
Heart 0.67Qk 0.020 0.656t 0.056 usingkNN
;eaStb 06981% 8-(1)83 8-21& 8-(1)83 It can be further verified from table 3 that the algoriteRBS
pambase . . . . P
Musk-1. 0.844% 0.028 0.848% 0.018 performs significantly much better{) than theRELIEFal-

gorithm for eight out of twelve datasets i.&oybeanlris,
Table 2 Comparison between cosine similarity and Euclidean disBaIance lonosphergHeart, Pima, Gla_ssand\/\ﬁne_ This al-
tance based on s-test lows one to deduce safely thaRBSin general is a much

better choice thaRELIEFalgorithm.

RBS-PSDone can see the importance of using a cost fun®. Comparison between different RELIEF algorithms based
tion closer to the) — 1 loss. The margin is positive for most  gn SKNN decision rule

of the training examples in this case. ) ) o o )
While comparingRELIEF with its similarity based variant

] o (RBS based on th&kNNA rule, it can be seen from table 4
VII. Experimental Validation that the later performs significantly much better lkmmo-

. sphere German Liver and Wine collections. On the other
Fifteen datasets from the UCI database ([17]) were used ﬁ%nd,RELIEFperforms significantly much better th&®BS

assess the performance of the different algorithms. These &, Heart andGlass

standard collections which have been used by different r@- ... further observed thatRBSperformed significantly
search communities (machine learning, pattern recognitio,, ,ch better thaRELIEF on majority of the datasets (9 out
statistics etc.). The information about the datasets iss&m ¢ o total of 12) i.e.Soybean Iris, Balance lonosphere
rized in Table 1 wher®al stands foiBalancewhereadono Heart German Pima, Glassand Wine On Liver, SRBS

refers tolonosphere performed slightly better than tHRELIEF algorithm. Thus

Table 2 compares the performance of cosine similarity arQQBSoutperformsRELlEFin general forSkNNas seen pre-
the Euclidean distance for all of the datasets. viously for kNN

The matrices learned by all of the algorithms can be used
to predict the class(es) to which a new example should
assigned. Two basic rules for prediction were considetes:
standardkNNrule and its symmetric varianBKNN. SKNNis  Furthemore, the twdRELIEF based similarity learning al-
based on the consideration of the same number of examptgsithms i.e.RBSand sRBSare compared using bo#tiNN

in the different classes. The new example is simply assigned well asSKkNN as shown in table 5. On majority of
to the closest class, the similarity with a class being ddfinghe datasets, the algoritheRBSoutperformsRBSfor both

as the sum of the similarities between the new example ak®iN andSKNN sRBSperforms significantly much better (as
its k nearest neighbors in the class. shown by<) than its counterpart on the following datasets:
Furthermore, all of the algorithms can be used in either a bsoybeanlris, Balance lonosphereHeart, Pima, Glassand
nary or multi-class mode. There are a certain number of atlvinefor the two classification ruleklNNandSkNN. On the
vantages in the binary version. First, it allows using the twother handRBSwas able to perform slighty better than its

ttE Performance of sSRBS as compared to RBS



454

Qamar and Gaussier

Iis Wine Bal lono Glass Soy Pima Liver Letter German Yeast Hart Magic Spam Musk-1
Learn 96 114 400 221 137 30 492 220 12800 640 950 12172 294404 3
Valid. 24 29 100 56 35 8 123 56 3200 160 238 3044 737 77
Test 30 35 125 70 42 9 153 69 4000 200 296 3804 920 95
Class 3 3 3 2 6 4 2 2 26 2 10 2 2 2
Feat. 4 13 4 34 9 35 8 6 16 8 10 57 168
Table 1 Characteristics of datasets
kNN-A (RELIEP  kNN-A (RBS kNN-A (SRBS
Soybean 0.71% 0.211 0.750+ 0.197> 1.0+ 0.0>
Iris 0.667+ 0.059 0.667 0.059 0.987+ 0.025>>
Balance 0.681 0.662 0.670+ 0.171 0.959t 0.016>>
lonosphere  0.799 0.062 0.826+ 0.035 0.866+ 0.015>
Heart 0.556+ 0.048 0.43H 0.064<  0.696+ 0.046>>
Yeast 0.900t 0.112 0.9006+ 0.112 0.905+ 0.113
German 0.598t 0.068 0.634 0.020>>  0.609+ 0.016
Liver 0.5744+ 0.047 0.580+ 0.042 0.583+ 0.015
Pima 0.598+ 0.118 0.583+ 0.140 0.654+ 0.034>>
Glass 0.815+ 0.177 0.821- 0.165 0.886+ 0.093>>
Letter 0.961+ 0.003 0.96 0.005 0.997+ 0.002
Wine 0.596+ 0.188 0.630+ 0.165 0.834+ 0.077>

Table 3 Comparison between differeRELIEFbased algorithms while usidgNN-A method based on s-test

SKNN-A (RELIER  SKNN-A (RBS SKNN-A (sRB$

Soybean 0.756 0.199 0.750t 0.197 0.989+ 0.034>>
Iris 0.673=+ 0.064 0.667+ 0.059 0.987-+ 0.025>>
Balance 0.662 0.200 0.6720.173 0.967-+ 0.010>>
lonosphere  0.68% 0.201 0.834£ 0.031>  0.871+ 0.021>>
Heart 0.526+ 0.085 0.430k 0.057<  0.685+ 0.069>>
Yeast 0.900 0.113 0.900k 0.112 0.908+ 0.110

German 0.493: 0.115 0.632+0.021>>  0.5984+ 0.038>>
Liver 0.539+ 0.078 0.580f 0.042>>  0.588+ 0.021>
Pima 0.585+ 0.125 0.583+ 0.140 0.665- 0.044>>
Glass 0.833t 0.140 0.816+ 0.171<  0.884-+ 0.084>>
Letter 0.957+ 0.047 0.96%t 0.005 0.997+ 0.002

Wine 0.575+ 0.198 0.634f 0.168>>  0.840- 0.064>>

Table 4 Comparison between differeRELIEFbased algorithms while usirBkNNA based on s-test
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stricter versiorsRBSon Germanwhile using thekNNrule.  4) Performance of RELIEF-PSD as compared to RELIEF
Similarly RBSperforms significantly much better thaRBS
on only one dataset i.&ermanwhile using theSKNNclas-
sification rule. The performance &BSandsRBSs equiv-
alent forYeast Liver andLetter. These results allows us to
conclude thasRBSs a much better algorithm thdRELIEF,

While comparingRELIEF (with no PSD matrices) with
RELIEF-PSDalgorithm (table 8), it can be observed that
while usingkNN, RELIEF-PSDperforms significantly better
thanRELIEF on Germanand slightly better ononosphere
On the other handRELIEFwas able to outclass its counter-
é)cflrt for Yeast However, for rest of the datasets the perfor-
mance of these two algorithms was comparable.
Table 8 also compares the effect of using PSD matrices with
In this subsection, the effect of learning PSD matrices4s irthe RELIEF algorithm while using the&SkNNdecision rule.
vestigated for th&ELIEFbased algorithms. It can be observed th&ELIEF-PSDperforms significantly
better tharRELIEFon 4 datasetdalance lonosphereGer-
1) RELIEF based approaches and positive, semi-definitaanandPima On the other handRELIEFwas able to out-
matrices with kNN classification rule class its counterpart for 3 datasdtss, YeastandGlass The

In table 6, RELIEF-PSDis compared withRELIERBased performance of these two algorithms was comparable for the

Similarity learning algorithmrRBS-PSDand its stricter ver- remaining collections.

sion SRBS-PSPwhile using thekNN classification rule. It

can be seen th&RBS-PSperforms much better than the

other two algorithms on majority of the data setsSRBS- Table 8 finds statistically the effect of positive, semi-

PSDis statistically much better (as shown by the synisgl  definitiveness orRBSas well assRBS RBS-PSDoutper-

than RELIEF-PSDfor the following 10 datasetsSoybean formsRBSsignificantly forPimawith both kNN as well as

Iris, Balance Heart, Yeast Pima, Glass Wine Spambase SkNNwhile Glassfor SkNNonly. The use of PSD matrices

andMusk-1 Similarly for lonospheresRBS-PSIis slightly  improve the performance slightly f@lasswith kNNrule.

better than théRELIEF-PSDalgorithm. On the other hand, The use of positive, semi-definitiveness neither improwes n

RELIEF-PSDperforms slightly better<) thansRBS-PSD degrades the performance &RBSalgorithm for both of the

for Germandataset. classification ruleskNNand its symmetric counterpart.

Moreover, while comparin@BS-PSDwvith RELIEF-PSD it

can be observed that the former performs significantly bettg/|||. Conclusion

than the later folveast PimaandMusk-], and slightly better

for Glassdataset. On the other hariRELIEF-PSDwas able In this paper, we studied the links betwdRBLIEFandSiLA

to perform significantly better thaRBS-PSior Heartand  algorithms.SiLAis interested in directly reducing the leave-

Spambasewhile slightly better foiGerman one-out error o6—1 loss by reducing the number of mistakes
on unseen examples. However, Sun and Wu have shown that

2) RELIEF based approaches and positive, semi-definiRELIEF could be seen as a distance learning algorithm in

matrices with SKNN classification rule which a linear utility function with maximum margin was
optimized. We first proposed a versionRELIEF for sim-

D. Effect of positive, semi-definitiveness on RELIEF bas
algorithms

5) Effect of positive, semi-definitiveness on RBS and sRBS

Table 7 compares differeRELIEF based algorithms based ., " . . oo
on SkNNdecision rule while using PSD matrices. Itcan b llarity learning, calledRBS(for RELIEF-Based Similarity

observed thadRBS-PSperforms much better than the otheream'r.]g)' ASRELIEF, and unlikeSiLA RBSdoes not try
. 1 1o optimize the leave-one-out error 0r— 1 loss, and does
two algorithms on majority of the data sets as seen earlier . . .
. : L not perform very well in practice, as we illustrate on two
while using thekNN rule. sRBS-PSDs statistically much : . : .
UCI collections namelyris andWine We thus introduce a
better (as shown by the symbwt) than RELIEF-PSDfor ; . . .
. i . stricter version oRBS calledsRBS aiming at relying on a
the following 10 datasets (out of 158o0ybeanlris, Bal- :
: cost function closer to thé — 1 loss. Moreover, we devel-
ance Heart, YeastLiver, Glass Wing SpambasandMusk- - A )
1. RELIEF-PSDperforms slightly better{) thansRBS-PSD oped positive, semi-definite (PSD) version®RESandsRBS
X : ghtly algorithms:RBSPSD andsRBSPSD whereby the similarity
for only one dataset i.€&erman

Simialy,RBS-PSmutperformKELIEF-PSTlor s datasets 1 o8 SR RIEATI AR TR SR B> BT e
(Iris, Yeast Liver, Glass SpambasandMusk-1 while the 9 '

. : In order to find the statistical significance of the results, a
reverse is true for the following 3 dataseBalance lono- . .
micro-sign test, known as the s-test was employed. The algo-
sphereandHeart

rithm sRBSperforms statistically much better than its coun-
terparts for most of the data sets iSoybeanlris, Balance
lonosphere Pima, Glassand Wine for both of the learn-
Table 8 compares statistically the results obtained wtsle uing rules usedkNN and its symmetric variarBkNN While
ing RBS-PSandsRBS-PSalgorithms. The later outper- comparingRELIEF with RBS it can be noted that the re-
forms the former for the following 7 datasets (out of 13 consults for the later are significantly better Germanfor both
sidered for comparisonBoybearnlris, Balance lonosphere kNN and SkNN while with only KNN for lonosphereLiver
Heart, GlassandWinewith bothkNNas well asSkNN RBS- andWine On contraryRELIEF performs significantly much
PSD performs slightly better than its counterpart f8er-  better tharRBSfor Heart (with bothkNN as well asSkNN
man while using theSkNNrule. However, for the rest of while only with SkNNon Glass This shows that the — 1
the datasets, the two algorithms’ performance is comparabloss is a more appropriate cost function than the lineaityutil

3) Performance of SRBS-PSD as compared to RBS-PSD
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kKNN-A (RBS) / kKNN-A (sRBS) | SKNN-A (RBS) / SKNN-A (SRBS)

Soybean
Iris
Balance
lonosphere
Heart
Yeast
German
Liver
Pima
Glass
Letter
Wine

<
<

<

TAA Y  AAA

<
<

Table 5 Comparison betweeRBSandsRBShased on s-test

kNN-A (RELIEF-PSI)

kNN-A (RBS-PSD

kNN-A (SRBS-PSP

Soybean
Iris
Balance
lonosphere
Heart
Yeast
German
Liver

Pima
Glass
Letter
Wine
Magic
Spambase
Musk-1

0.73% 0.192
0.664+ 0.058
0.665- 0.193
0.83% 0.055
0.556+ 0.048
0.893t 0.132
0.637+0.017
0.5744+ 0.034
0.593+ 0.077
0.819t 0.164
0.961+ 0.005
0.608+ 0.185
0.516+ 0.085
0.618+ 0.031
0.698+ 0.055

0.733£ 0.220
0.66 7 0.059
0.670£ 0.171
0.826+ 0.035
0.43H 0.036«K
0.900f 0.112>>
0.624f 0.015<
0.580f 0.042
0.661+ 0.024>>
0.835f 0.138>
0.961 0.005
0.630f 0.165
0.360Qf 0.007
0.61H: 0.020«
0.851+ 0.033>

1.0£0.0>
0.987+ 0.025>
0.959+ 0.016>
0.880+ 0.015>
0.693+ 0.047>
0.911+ 0.109>
0.609+ 0.016<
0.606+ 0.034
0.651+ 0.034>>
0.886+ 0.093>
0.997+ 0.002
0.834+ 0.077>
0.7674+ 0.009
0.855+ 0.009>>
0.838+ 0.024>>

Qamar and Gaussier

Table 8 Comparison between differeRELIEFbased algorithms usingNN-A and PSD matrices

SKNN-A (RELIEF-PSD)

SKNN-A (RBS-PS  SKNN-A (SRBS-PSP

Soybean
Iris
Balance
lonosphere
Heart
Yeast
German
Liver

Pima
Glass
Letter
Wine
Magic
Spambase
Musk-1

0.78% 0.163
0.571+0.164
0.708t 0.175
0.886- 0.028
0.533+ 0.067
0.89A-0.122
0.625+ 0.035
0.528+ 0.085
0.659+ 0.027
0.768t 0.235
0.961+ 0.008
0.606+ 0.177
0.539+0.109

0.588 0.075
0.712+ 0.037

0.733£ 0.220
0.66 7 0.059>>
0.672£ 0.173K
0.834f 0.031«K
0.43H 0.036K
0.900f 0.112>>
0.624+ 0.015
0.580f 0.042>>
0.658t 0.030
0.835f 0.138>>
0.961 0.004
0.634f 0.168
0.360f 0.007
0.61k: 0.020>>
0.857+ 0.029>>

0.983+ 0.041>
0.987+ 0.025>
0.967+ 0.010>
0.889+ 0.011

0.685+ 0.069>>
0.914+ 0.106>
0.598£ 0.038<
0.609+ 0.035>
0.665+ 0.044

0.884+ 0.084>>
0.997+ 0.002

0.840+ 0.064>>
0.777+ 0.009

0.857+ 0.010>
0.842+ 0.010>

Table 7 Comparison between differeREELIEFbased algorithms usingkNNA and PSD matrices
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Table 8 Comparison between different algorithms based on s-test

RELIEF / RELIEF-PSD|

RBS/RBS-PSD | SRBS/SRBS-PS[P RBS-PSD / sRBS-PSD

kNN-A SKNN-A | kNN-A SkNN-A| kNN-A SkNN-A| kNN-A SKNN-A
Soybean = = = = = = < <
Iris = > = = = = < <
Balance = < = = = = < <
lonosphere < < = = = = < <
Heart = = = = = = < <
Yeast > > = = = = = =
German < < = = = = = >
Liver = = = = = = = =
Pima = < < < = = = =
Glass = > < < = = < <
Letter = = = = = = = =
Wine = = = = = = < <
Musk-1 = =

function used byRELIEF. While comparing the PSD algo-
rithms with their counterpart® ELIEFPSD performed well
as compared tRELIEF. However, for the rest of the algo-

rithms, the effect of projection onto the set of PSD matrices

was minimal e.g. in the case sRBSthe use of PSD matri-
ces neither improves neither degrades the performance.
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