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Abstract: The demand for cellular systems has increased dras-
tically in recent years. To design such networks is not a simple
task and computational tools to assist network designers can be
very helpful. The design of a cellular network can be divided in
two minor problems: the maximum coverage and channel as-
signment planning. In this paper, we propose a methodology to
tackle the former using Particle Swarm Optimization and the
latter using genetic algorithms. We had to adapt the Particle
Swarm Optimization algorithm, since we have associated the
position of the Radio Base Stations to the particle positions in
the search space. We also developed two mechanisms to avoid
the overlap among the cells and to maximize the coverage of the
entire system. We tested our approach in two scenarios in dif-
ferent configurations. For the channel assignment planning, we
adapted the crossover and the mutation operators in order to
define which channels should be used in each cell. We believe
the preliminary results are very encouraging and with future
works we can develop a commercial tool to solve the real prob-
lem.
Keywords: Cellular networks; Network design; Particle Swarm
Optimization; Genetic Algorithms.

I. Introduction

Nowadays, flexibility and reliability are required character-
istics for telecommunication systems. In this scenario, wire-
less technologies are the most promising alternative to con-
nect people with mobility. Because of this, wireless networks
have gained a lot of attention in the last years due to the ever
growing demand for mobile telephones and wireless local
area networks [1][2]. Wireless networks can be organized in
two distinct ways: networks with infrastructure and ad hoc
networks. In the former, there are Radio Base Station (RBS)
in which the mobile devices can connect to, whereas in ad
hoc networks the devices send information to one another
through links created by the devices itselves.
The cellular networks are networks with infrastructure,
where each cell [3] is a geographical region with a RBS. Each
RBS should connect the users within its coverage area by us-
ing a set of predefined channels. This strategy can be used
due to the frequency reuse concept, where the frequencies
can be reused when they are not being used in adjacent cells.
In networks with infrastructure (e.g.a cellular network), there

are two non trivial tasks during the planning phase. The first
is to define how many base stations are necessary to build the
infrastructure network and where the designer should posi-
tion them. This problem is known as the maximum coverage
problem. The second one consists on how to define which
frequencies should be used in each cell, in order to supply
the service demand while avoiding intercell interference.
The maximum coverage problem can be formally stated as:
Given a geographical area with a service demand distribu-
tion, one has to define the positions of the RBS and the set of
parameters for the antennas, such as the transmission power
and the antenna height [4]. These parameters influence on the
area covered by the antenna, which defines the cell size. One
should note that the network designer must avoid to overlap
the cells, since it reduces the total area covered by the entire
system. However, sometimes it is necessary to shorten the
distance between adjacent cells in order to supply regions
with higher demand for services. Besides, other practical is-
sues must be analyzed during the network design, such as the
cost to position the antennas in certain places and the physi-
cal land constraints.
A relevant aspect widely used in models for solving the max-
imum coverage problem is how the service demand is geo-
graphically distributed [5]. In many cases, the demand is
higher in some areas and more RBS must be positioned in
these regions.
The major issue to design wireless networks with infrastruc-
ture is the trade-off between Quality of Service (QoS) and
the total Capital Expenditure (CAPEX) to implement the net-
work. One should note that the higher the number of RBS,
the higher the availability of the network for the user, but
the higher the CAPEX is. Besides, one should notice that a
higher number of RBS in a bounded geographical area results
in transmitters with lower power. The lower power should
be used in order to avoid interference between non adjacent
cells.
In this paper, we propose to adapt the Particle Swarm Opti-
mization (PSO) algorithm [6] to solve the maximum cover-
age problem. The PSO has to determine the position of the
RBS considering the demand distribution in order to maxi-
mize the QoS. The PSO algorithm had to be adapted since
each particle in our approach is associated to a different RBS
of the network.
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Once the RBS are positioned, it is necessary to define which
channels should be allocated in each cell. This task is cru-
cial in the network design process, since it directly impacts
on the network QoS and on the amount of generated interfer-
ence. A bad channel assignment scheme can cause interfer-
ence among adjacent cells, since the signal transmitted by a
RBS can surpass the cell boundary and if an adjacent cell is
using the same channel, co-channel interference can occur.
Thus, the channel assignment planning must aim to avoid
adjacent cells using the same channels. We used genetic al-
gorithms (GA) [7] to solve the channel assignment problem.
The GA was applied to define which channels should be used
in each cell of the network built by the PSO.
This paper is organized as follows: section II presents the
basic PSO algorithm and some related concepts. Section III
presents a brief review on genetic algorithms. Our proposal
to solve the maximum coverage problem with a modified
PSO is presented in section IV. In section V, we present the
GA model developed to solve the channel assignment prob-
lem. The experiments and results are described, respectively,
in sections VI and VII. Finally, in section VIII, we present
our conclusions.

II. Particle Swarm Optimization

Some efficient optimization algorithms for hyper-
dimensional problems in continuous spaces have been
proposed in recent years. Among them, we can cite the
Particle Swarm Optimization (PSO) algorithm [6]. The
PSO algorithm was proposed by Kennedy and Eberhart
in 1995 [8], inspired by the behavior of flocks of birds.
PSO was conceived to optimize non-linear functions in
multidimensional continuous search spaces.
The PSO algorithm is based on an analogy between the flight
of a flock of birds looking for food and a set of artificial en-
tities searching for the best solution in the search space of a
problem. The term particle stands for the bird. Each particle
has a position, that represents a possible solution within the
search space, and a velocity. The position of each particle
is updated at each algorithm iteration by using the following
equation:

−→xi(t + 1) = −→xi(t) +−→vi (t + 1), (1)

where −→xi(t + 1) is the new position of particle i, −→xi(t) is
the position of particle i in the current iteration and −→vi (t +
1) is the velocity of particle i already updated in the current
iteration of the algorithm.
The velocities of the particles are updated according to the
equation (2).

−→vi (t+1) = −→vi (t)+c1r1[−→pi (t)−−→xi(t)]+c2r2[−→ni(t)−−→xi(t)],
(2)

where −→vi (t + 1) is the new velocity for particle i, −→vi (t) is
the velocity in the previous iteration for particle i. r1 and r2

are random values generated by a uniform distribution in the
interval [0, 1]. −→pi (t) is the position of the best solution found
by the particle i and −→ni(t) is the position of the best solution
found by the neighborhood of particle i during the search so
far.

The first term in the equation (2) is the inertial term and takes
into account the previous velocity of the particle. The other
two components are called cognitive and social terms, re-
spectively. The cognitive component represents the experi-
ence of the particle itself during the search, whereas the so-
cial component is related to the experience of the swarm. c1

and c2 are constants used to weight the influence of the cog-
nitive component and the social component, respectively. It
has been demonstrated empirically that when c1 = c2 = 2.0,
the PSO algorithm can achieve good results [8].
Other proposals have been presented aiming to accelerate
the convergence of the algorithm, most of them proposing
to change the equation used to update the velocities or to cre-
ate a new communication mechanisms among the particles.
One of the adjustments was the insertion of a coefficient ω
in the inertial term [9], which was widely accepted by the
scientific community. This approach is known as Inertia ap-
proach and the velocity update equation for this is presented
in equation (3):

−→vi (t+1) = ω−→vi (t)+c1r1[−→pi (t)−−→xi(t)]+c2r2[−→ni(t)−−→xi(t)].
(3)

It has been demonstrated that if one decreases ω along the
algorithm iterations, the algorithm can achieve better results.
The most used strategy is to start the search process with ω
close to 1 and decrease it linearly during the search process.
By doing this, the particles begin the search in an exploration
mode and change gradually to an explotation mode along the
iterations [9].
Regarding the mechanisms to exchange information among
the particles, called the communication topology, there are
different strategies to perform it. The most used topology is
the Global topology. In the Global topology, each particle
can obtain information directly from all other particles. De-
spite the PSO with Global topology converges quickly, it has
a higher chance to get trapped in local minima.
Other topologies have been proposed based on local neigh-
borhoods. The most famous is the ring topology, where each
particle just acquires information from the two direct neigh-
bors [6]. Generally, a PSO with ring topology achieves bet-
ter results than a PSO with global topology. However, the
convergence time tends to increase, since the information
obtained during the search process is transmitted indirectly
through the particles.

III. Genetic Algorithms

Genetic Algorithms (GA) were inspired in the Charles Dar-
win theory of evolution and natural selection. This theory
states that individuals with some competitive advantages are
more likely to survive and reproduce. These advantages can
be transmitted from the parents or can appear due to varia-
tions caused by environmental changes. Then, to eliminate
the weaker individuals through the iterations may result in a
population with more chances to survive [7]. Valuable infor-
mation is transmitted from generation to generation through
the genetic code of the individuals. This idea was firstly
modeled by Holland in 1975. Nowadays, it is largely used
in search and optimization problems. In this model, each
individual is represented by a set of genes and each gene
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represents an attribute of a problem, the set (chromosome)
represents a possible solution for the problem. The fitness of
a chromosome is determined by the quality of the encoded
solution. The goal is to simulate the principle of Darwin
searching for new and better solutions. The evolutionary pro-
cess proposed by Holland can be implemented by successive
repetition of three operations: crossover, mutation and se-
lection. The pseudocode of a generic GA can be viewed in
algorithm 1.

Algorithm 1: Pseudocode of a Generic Genetic algo-
rithm.

Create a population with N individuals;1

Initialize the population by defining random values to2

the genes;
while stop condition is not reached do3

Evaluate the quality of the individuals;4

Select parents;5

Perform Crossover;6

Perform Mutation;7

Eliminate the weaker individuals;8

end9

The crossover operator generates new individuals by com-
bining chromosomes of two individuals chosen from the pop-
ulation (parents). The occurrence of crossovers is determined
by a parameter called crossover rate. Figure 1 presents one
example of crossover, the one point crossover. There are
some other possible strategies to perform the crossover.

Figure. 1: Example of one point GA crossover operator.

The mutation operator simulates the “variations caused by
environmental changes in living conditions” suggested by
Darwin. It changes the chromosome of an individual ran-
domly, i.e., it chooses a gene (or several genes) and changes
their values. The mutation operator is responsible to main-
tain the diversity during the search, enabling the algorithm to
escape from local optima. The mutation occurrence is deter-
mined by a parameter called mutation rate. Figure 2 shows
an example mutation for a binary chromosome encoding.
The selection operator incorporates the core of Darwin’s the-
ory: individuals with higher fitness have more chances to re-
main in the population in the next generations and reproduce.
In the search process, the selection leads the solutions from
worse regions to best regions of the search space. The selec-
tion can be performed in different manners. Some examples
are the simple deletion of the N worst individuals, a tourna-
ment selection or a selection by roulette wheel. In the tour-
nament selection, a subset of the population is chosen with
equal probability and the best individuals within this subset

Figure. 2: Example of GA mutation operator.

proceeds to the next generation. In the roulette wheel selec-
tion, the individuals are chosen probabilistically, where the
probability of selection is proportional to the fitness.
One should notice that the mutation can discard the best so-
lutions. One alternative to avoid this is to copy the N best
individuals to next generation. This is called elitism [7].

IV. Our Proposal to Solve The Maximum Cov-
erage Problem

In this section, we present our proposal to adapt the PSO al-
gorithm to solve the maximum coverage problem. In this first
proposal, we have decided to reduce the scope of the prob-
lem by not including the configuration of the parameters of
the RBS in the optimization process. The coverage for all the
antennas are the same and all the parameters of the antennas
are combined in one parameter, called RBS coverage radius
(R).
The search space represents the region where it is desired to
install the cellular network. In this first model, the region is
free of any physical obstacle and it is possible to place the
RBS at any point of the search space. The service demand
distribution in the search space is described by a function
that maps each position of the search space to a value that
represents the amount of clients covered if the RBS is placed
at this point. The mapping position→ demand is defined by
a F (−→xi , R) function, where −→xi indicates the position of the
RBS i. One should notice that higher values for R, will lead
to more clients covered by a cell, as can be seen in figure
3. One can observe that F (−→xi , R) = 5 when the coverage
radius assumes a value R, and the amount of covered clients
increases F (−→xi , R) = 10 when the coverage radius assumes
a value R

′
. On the other hand, higher values for R, will cause

more interference among the cells.

Figure. 3: Example to illustrate the service demand function.

Differently from the conventional applications for the PSO
algorithm, where the n search variables are encoded into the
n dimensions of the particle, each RBS is a particle “flying”
through the search space in our approach. Each particle is
guided by the demand function to the higher demand regions.
Thus, we have a maximization problem.
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However, the convergence of all the antennas to a single point
is not interesting since all the cells will be overlapped, and
the total area covered by the entire system will be minimized.
Because of this, we developed two mechanisms to avoid the
agglutination of particles over a single point.
In the former, the particles consider the overlapped areas,
evaluated by using the coverage radius, to upgrade their po-
sition. Every particle evaluates if the next movement will re-
sult in overlapping areas with other particles. If it occurs, an
opposite vector, called anti-collision vector, is generated for
each collision. Then, the velocity of the particle is updated
considering the anti-collision vectors. The weight of the ve-
locity vector is always unitary, whereas the weights of the
anti-collision vectors are determined by the normalized area
of intersection between the coverage areas generated by the
two particles. An anti-collision vector has an unitary weight
if two cells are totally overlapped.
An illustration of the anti-collision vector effect can be ob-
served in figure 4. Consider the particle A moving to point
X , then an overlapped area will be created. Because of this,
a vector (~Vcol) is generated and applied to the particle A. One
should note that the particle A will have a different position
as shown in the bottom of Figure 4 and the collision will be
avoided in this case.

Figure. 4: Illustration of the PSO anti-collision mechanism.

Sometimes, if the overlap occurs for many particles, differ-
ent anti-collision vectors can nullify or greatly minimize the
influence of one another. Because of this, we developed an-
other mechanism to avoid agglutination.
In the second mechanism, we introduced a new term in the
equation used to update the velocities of the particles, called
repulsion term. It means that the velocity equation for our
approach is given by equation (4).

−→vi (t + 1) = ω−→vi (t) + c1r1[−→pi (t)−−→xi(t)]

+c2r2[−→ni(t)−−→xi(t)]− c3r3[
−−−−→
lworsti

(t)−−→xi(t)]. (4)

where lworsti represents a position in the neighborhood re-
gion of a particle i with higher density. The concept of neigh-
borhood to evaluate lworsti

is defined by dividing the search
space in a squared grid. A particle i evaluates the density by
checking how many particles exist in each adjacent regions
of the grid. Once one region is selected, a particle j is ran-
domly selected from this region and the current position of
this particle j is the lworsti for particle i. This new term of
the velocity equation has a negative signal in order to sep-
arate particles i and j. Figure 5 shows an example of this
process, where the grid represents the search space. In this

scenario, a particle i positioned in the region E will check the
regions A, B, C, D, E, F, G, H and I. As the region G presents
the higher density, one of the 4 particles of the region G will
be chosen as the lworsti

.

Figure. 5: Example to illustrate how to determine the lworsti .

An important aspect of our proposal is the behavior of the co-
efficients c1, c2 and c3. We defined that they can vary along
the iterations, such as ω. Initially, the algorithm should act in
order to find good regions in the search space and, after that,
the algorithm should try to maximize the total coverage area
by separating the particles. For this, we performed some tests
and the best results were achieved when c1 and c2 decrease
along the iterations, while c3 increases along the iterations.
One should note that c1 and c2 are responsible for attracting
the particles to the regions with maximum demand, whereas
c3 is responsible to repulse the particles covering the same
region. In our simulations, c1, c2 and c3 vary linearly along
the iterations and each one has an initial value and a final
value (ci and cf ).
The result achieved by our proposal is not the best point of
the search space ever found during the search process so far,
as the standard PSO. In this case, the solution is the set of the
final positions of the particles in the search space.
For the maximum coverage problem, the particles should
keep a distance close to the RBS radius. Because of this,
the size of the grid used to determine the lworst should be
chosen based on this parameter. A large grid can result in
sparse positioned RBS and can difficult handoff operations.
This effect may happen due the repulsion mechanism in un-
necessary situations and it can be comprehended by observ-
ing the figure 6, where the area of each square in the grid
is nearly four times greater than the RBS coverage area. In
the scenario of figure 6, the repulsion mechanism will elect
particle Y or Z as the lworst for particle X. However, it is not
necessary because particle X is not near to Y nor Z.
Figure 7 shows a scenario where the grid square area and the
RBS coverage area have closer values. In the case of figure 7,
the repulsion mechanism for particle X, will not act because
there is no other particle at neighborhood.
On the other hand, if the grid square area is much smaller
than the RBS coverage area, the opposite effect can occur, the
particles will not be separated when it is necessary. Figure 8
illustrates an example of this situation. Although there is an
overlap between particles Y and Z, one can observe in figure
8 that the particles Y and Z will not be separated for this case.
We evaluated the algorithm performance using two metrics:
the average fitness per particle (Dcover) and the average per-
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Figure. 6: Example with a grid square area nearly four times
greater than the RBS coverage area.

Figure. 7: Example with a grid square area close to the RBS
coverage area.

centage of overlap area per particle (Aoverlap). The former is
evaluated by using F (−→xi , R). It indicates how many clients
can be covered by the entire network infrastructure. The
second metric is directly related to the total coverage area
achieved by the RBS.
The pseudocode of our proposal for the Maximum Coverage
Problem is presented in algorithm 2.
The stop condition used in our approach is based on the expo-
nential moving average (EMA) of the overlapped area varia-
tion between the iterations (∆Aover). EMA is evaluated by
equation (5), where N defines the first samples of ∆Aover

to be the first value of EMAprevious (evaluated by using an
arithmetic average).

EMA = [1− (
2

N + 1
)]EMAprevious + (

2
N + 1

)∆Aover.

(5)
Since it is possible to estimate the next value of this se-
ries, the algorithm terminates when the predicted value for
the overlapped coverage area has an average value of 10%.
We used this value since the particles should not disperse too
much in order to provide a good handoff service [10]. If the
algorithm does not reach the stop condition after 1,000 itera-
tions, it finishes.

V. The model developed for the channel assign-
ment problem

The assignment of channels for the RBS is the second stage
of the cellular network design. This task is performed af-

Figure. 8: Example with a grid square area nearly 25% of
the RBS coverage area.

Algorithm 2: Pseudo-code of the PSO approach to solve
the Maximum Coverage Problem.

for each particle i of the swarm do1

Assign randomly the position −→xi ;2

Assign randomly the velocity −→vi ;3

Evaluate the fitness using F (−→xi , R);4

Evaluate −→pi ;5

Evaluate −→ni;6

end7

while stop condition is not reached do8

for each particle i of the swarm do9

Determine
−−−−→
lworsti ;10

Update the velocity according equation (4);11

Update the position according equation (1);12

Check collisions;13

if there is any collision then14

Apply the anti-collision mechanism;15

end16

Evaluate the fitness using F (−→xi , R);17

Update −→pi if it is necessary;18

Update −→ni if it is necessary;19

end20

Update the Coefficients c1, c2 and c3;21

end22

ter the positioning because it requires the RBS neighbor-
hood information to define the amount of needed channels
in each RBS. The number of channels in a RBS determines
how many users can use the service simultaneously within
the cell. Therefore, the total number of required channels for
a RBS is evaluated using the demand function (F (x, y,R))
and a parameter that indicates the average percentage (P ) of
users which use the service simultaneously within the cell.
The total number of required channels for a RBS is evaluated
by equation (6). The parameter P was introduced in order to
avoid the cells to have more channels than it is necessary.

N = F (x,y,R)
P

100
. (6)

In our genetic algorithm approach, each individual represents
the channel assignment planning for the whole network, i.e.,
a single chromosome encodes the channels used in all RBS.
The individual is composed by subsets of genes where each
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subset represents the channels used by a specific RBS. Figure
9 presents a simple scenario of a network with up to 9 avail-
able channels and figure 10 shows examples of individuals
for this scenario.

Figure. 9: Hypothetical example of a network.

Figure. 10: Examples of GA individuals for the channel as-
signment problem.

The fitness evaluation is performed by counting the total
number of channels used simultaneously by adjacent cells.
The lower this number, the lower is the co-channel interfer-
ence. In this model, two cells are adjacent if the distance
between their centers is lower than the sum of their radius.
Table 1 shows the fitness function results for the individuals
of figure 10.

Table 1: Fitness function results for the individuals of figure
10 individuals.

Individual Fitness
W 0
X 0
Y 3
Z 1

The GA aims to find combinations that minimize the fitness
function. In the example of figure 10, W and X are the fittest
individuals. The stop condition is to find an individual with
fitness function equal to zero or to reach a maximum number
of iterations.
The strategy developed for the crossover operator was to de-
fine N cut points, where N is the number of RBS. The po-
sition of each cutting point is randomly selected within the
gene sequence that represents the RBS and the crossover
is performed into this sequence. Figure 11 illustrates our
crossover operator. If the crossover operator results in a in-
dividual with repeated channels within a RBS, the generated
individual is penalized.
The mutation operator developed, defines N mutation points
where each point is randomly chosen within a gene sequence

Figure. 11: Crossover operator for the channel assignment
problem.

that represents a RBS. The gene mutation is done by assign-
ing a channel that is not present in the RBS to avoid rep-
etition. This value is chosen randomly among the remain-
ing channels available for each RBS. Figure 12 illustrates the
mutation operator. The arrows above the chromosome indi-
cate the mutation points.
We decided to use the roulette wheel strategy for the selec-
tion operator.

Figure. 12: Mutation operator for the channel assignment
problem.

VI. Simulation Setup

For the maximum coverage problem, two scenarios were
considered for the simulations and they are characterized by
the functions presented in equations (7) and (8). The graph-
ics for the demand function are presented in figures 13 and
14, respectively. The dimensions of the search space are 100
km x 100 km. The experiments were performed with 10 par-
ticles, R equal to 5 km or 10 km and ω decreasing linearly
from 0.6 to 0.1 along the iterations. We used four differ-
ent sets of parameters for c1i, c1f , c2i, c2f , c3i and c3f in
the simulations, as shown in table 2. These sets were cho-
sen after a preliminary analysis, aiming to produce different
behaviors for the algorithm. We present our results in terms
of average value and standard deviation for the two metrics
after 30 trials.

F1(x,y,R) = R{10e
−[

(x− 75)2

800
+

(y − 70)2

800
]
+

20e
−[

(x− 40)2

800
+

(y − 25)2

800
]
}, (7)
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F2(x,y,R) = R{20e
−[

(x− 65)2

578
+

(y − 70)2

578
]
+

15e
−[

(x− 30)2

578
+

(y − 30)2

578
]
+

10e
−[

(x− 80)2

578
+

(y − 15)2

578
]
}. (8)

Figure. 13: Graphic of the demand function described by
equation (7).

Figure. 14: Graphic of the demand function described by
equation (8).

Table 2: Configurations used for c1i, c1f , c2i, c2f , c3i and
c3f .

Configuration Parameters
c1i c1f c2i c2f c3i c3f

I 0.7 0.4 0.6 0.1 0.1 1.2
II 0.7 0.4 0.6 0.1 0.2 0.6
III 0.7 0.4 1.5 0.4 0.1 1.2
IV 1.6 0.7 0.6 0.1 0.1 1.2

For the channel assignment problem, we performed some
simulations considering the network presented in figure 15,
where the number within the cell identify the RBS.
In this scenario, 60 channels were available and the number
of channels required for each RBS is presented in table 3.
These values were determined based on an estimative on the
demand functions and the coverage radius used for the max-
imum coverage problem with P equal to 10% and 20%.

Figure. 15: Network used for the simulation in the channel
assignment problem.

Table 3: Number of channels required per RBS.
Cell id. Number of Channels

0 13
1 12
2 12
3 17
4 11
5 18
6 12
7 16
8 13
9 14

The GA parameters investigated in the experiments were the
crossover rate, the mutation rate and the percentage of elitism
in the population. The configurations used in our experi-
ments are presented in table 4.

Table 4: GA configurations used in the experiments.
Configuration Parameters

Crossover rate Mutation rate
I 35 10
II 35 15
III 35 20
IV 40 10
V 40 15
VI 40 20

The results (mean and standard deviation for the best individ-
ual) were measured for 30 individuals in the population, 10
trials and a maximum of 3,000 GA iterations were executed.

VII. Simulation Results

For the maximum coverage problem, we performed some
tests for two different functions with two different radius of
coverage to analyze the results produced by our approach.
Tables 5 and 6 present the results for the function F1 for the
configurations defined in table 2 with radius sizes of 5 km
and 10 km, respectively. Tables 7 and 8 present the same re-
sults for function F2. One can note from these tables that the
configurations I and II achieved better results then configura-
tions III and IV. In all cases, Dcover are similar, but configu-
rations I and II obtained lower Aoverlap. One can claim that
the configuration I is even better then configuration II, since
the standard deviation for Dcover and Aoverlap are lower for
almost all the cases. Therefore, it indicates that the algorithm
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is more stable when c3f is higher.

Table 5: Results for Function F1 and radius 5 km.
Configuration Dcover Aoverlap

I 80.46 ± 3.41 15.34 ± 2.66
II 83.35 ± 7.16 15.10 ± 7.52
III 84.17 ± 3.78 33.06 ± 19.96
IV 83.06 ± 4.70 31.76 ± 13.32

Table 6: Results for Function F1 and radius 10 km.
Configuration Dcover Aoverlap

I 107.20 ± 9.04 15.90 ± 3.04
II 111.70 ± 10.44 16.72 ± 9.16
III 110.91 ± 14.92 34.06 ± 19.15
IV 109.98 ± 14.83 24.61 ± 15.58

Table 7: Results for Function F2 and radius 5 km.
Configurations Dcover Aoverlap

I 75.17 ± 3.14 14.68 ± 2.78
II 78.24 ± 3.25 14.88 ± 6.34
III 78.87 ± 4.99 38.99 ± 20.55
IV 78.39 ± 7.26 33.84 ± 21.75

Figures 16 and 17 show the average values, the average val-
ues plus the standard deviation and the average values mi-
nus the standard deviation for Dcover and Aoverlap, respec-
tively, after the 30 trials using configuration I for function F1

with coverage radius of 5 km. As expected, the particles are
grouped toward high demand areas in the beginning, and the
particles spread around after some iterations.
For the channel assignment problem, we performed experi-
ments with the configurations presented in table 4 for 3 val-
ues of elitism percentage (0%, 10% and 20%). The results
are presented in table 9. One can observe that the con-
figuration with higher mutation rate and elitism percentage
achieved better results. The crossover rate did not present a
significant difference for this case.
Figures 18 and 19 show examples of solutions found by our
approach for the functions F1 and F2, using configuration I
and 10 particles. Tables 10 and 11 present the channel as-
signment scheme for these networks found by the GA for
P = 10%, GA configuration III and 20% of elitism.
Regarding to the maximum coverage problem, the particles
were attracted to the highest demand region of the search
space, avoiding the convergence to a single point. We also
observed that the particles were arranged only around the
highest peak of the function. It suggests the addition of a
new mechanism in future work for even better solutions.

VIII. Conclusions

We proposed a new approach to solve the problem of max-
imum coverage in cellular networks using Particle Swarm
Optimization. Since it is not a classical PSO approach, we
adapted the PSO algorithm by associating the RBS positions
to the particles positions. We developed two mechanisms to
create diversity and the results showed that they performed
well. We proposed to include a novel term in the equation
used to update the velocity in order to disperse the particles

Figure. 16: Evolution of the average value, the average value
plus the standard deviation and the average value minus the
standard deviation for Dcover.

Figure. 17: Evolution of the average value, the average value
plus the standard deviation and the average value minus the
standard deviation for Aoverlap.

Figure. 18: Example of network obtained for function F1

with 10 RBS and R = 5km for each RBS.
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Table 8: Results for Function F2 and radius 10 km.
Configuration Dcover Aoverlap

I 99.06 ± 7.55 15.76 ± 3.01
II 103.04 ± 8.37 13.22 ± 2.28
III 98.86 ± 13.09 26.58 ± 16.12
IV 96.41 ± 13.20 19.09 ± 12.28

Table 9: Results for GA experiments.
Configuration elitism (% of population)

0 10 20
I 1,7 ± 1,1 1,4 ± 1,2 2,3 ± 1,34
II 8,0 ± 10,54 0,4 ± 0,66 0,3 ± 0,45
III 41,7 ± 2,09 0,1 ± 0,30 0,0 ± 0,0
IV 1,7 ± 1,09 1,8 ± 1,16 2,7 ± 2,75
V 0,6 ± 0,8 0,1 ± 0,30 0,5 ± 0,5
VI 40,4 ± 3,74 0,0 ± 0,0 0,0 ± 0,30

from a crowded region and distribute it in the region around
the peaks of demands.
We analyzed the influence of the parameter selection in the
performance of the algorithm and showed that different sets
of acceleration coefficients generate a different behavior for
the algorithm during the optimization process.
We also showed that it is possible to assign the RBS chan-
nels using a Genetic algorithm, where the main purpose is to
avoid co-channel interference.
We believe it is necessary to include some other features to
deal with niches in the cases where the demand function
is highly multimodal. Furthermore, we intend to incorpo-
rate constraints in the search space, for example to represent
physical obstacles in the region and other interference issues.
Other future work concerns to include the antenna parame-
ters in the optimization process.
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