
Horizontal Format Data Mining
with Extended Bitmaps

Buddhika De Alwis1, Supun Malinga2, Kathiravelu Pradeeban3, Denis Weerasiri4, Shehan Perera5

1,2,3,4 WSO2 Inc., Sri Lanka.
5 Department of Computer Science and Engineering,

University of Moratuwa, Sri Lanka.

1buddhikac@wso2.com
2supunm@wso2.com

3pradeeban@wso2.com
4denis@wso2.com
5shehan@uom.lk

Abstract: Analysing the data warehouses to foresee the
patterns of the transactions often needs high computational
power and memory space due to the huge set of past history of
the data transactions. With the fragmented data along with
the current trend of distributed systems, most of the
fundamental algorithms that are initially proposed to find the
association among the itemsets in the data warehouses are
inefficient either in throughput or the utilization of the
resources.

 Apriori algorithm is a mostly learned and implemented
algorithm that mines the data warehouses to find the
associations. However, Apriori is generally not an optimized
algorithm. More variations, improvements, and alternatives
have been suggested to overcome the inefficiency of Apriori
algorithm, either as a whole or to specific sets of data. In any
case, a fraction of improvement in the algorithm often
improves the mining considerably. Frequent item set mining
with vertical data format has been proposed as an
improvement over the basic Apriori algorithm, which mines
the data sets of vertical form, opposed to the typical horizontal
format data as in case of Apriori.

In this paper we are proposing an algorithm as an
alternative to Apriori algorithm, which will use bitmap indices
in conjunction with a horizontal format data set converted to
a vertical format data structure to mine frequent itemsets
leveraging efficiencies of bitmap based operations and vertical
format data orientation.

Keywords: Data mining, Association Rule, Apriori, Vertical
format mining, Bitmap Indices, Data Analysis, Data
Warehousing.

I. Introduction

Data Mining is an emerging concept or a tool in database
concepts, which is young, yet powerful and promising [1],
[2]. Knowledge discovery, prediction, clustering, and
classifications through pattern recognition are some of the
key design aspects of data mining. Most of the existing
techniques on the associations are based on analysing the
data warehouses - the existing bulk data of transaction
history. Given the existence of a set of items, association
rules enable the prediction of the existence of one or more
other items based on the knowledge gathered by classifying
the data warehouses.

Foreseeing the user behaviour from the customer analysis of
the past years is a topic of interest in this user-oriented
marketing era. Database Engineers and scientists have been
working on the associations of the transactions and derived
many algorithms for effective decision making. Most of the
existing techniques are based on analysing the data
warehouses - the existing bulk data of transaction history
[1].
The choice of the algorithm to retrieve the relationship
between the variables for a given application is a
challenging task, which is often a compromise where the
accuracy, efficiency, latency, throughput, and security
matter, as resources are limited. Several algorithms leading
to optimal and sub-optimal conclusion have been developed
and practiced on the datasets to extract patterns and gather
the association among the variables or items. Given the
existence of a set of items, association rules enable the
prediction of the existence of one or more other items based
on the knowledge gathered by classifying the data
warehouses.
Association rule learning is mostly explained by one of its
common applications – retrieving the association between
the items that customers purchase. As an analogy, it is
referred as keeping track of the customers' baskets or
market basket analysis [1]. Association rules are commonly
used in mining web usage [3], intrusion detection [4], and
bioinformatics [5].
Statistical bias caused by suggesting a hypothesis by non-
representative data or a narrow sample to match the
hypothesis is defined as data-snooping bias, which often
leads to a wrong decision in scientific calculations which
include a highly distributed network [6]. This leads to a
wrong decision in calculations, hence these factors also
should be taken in to consideration when choosing the
algorithm.
Apriori algorithm [1] is considered the fundamental
algorithm for mining for associations. Hybrid algorithms
converging the classification and association rule mining
have also been suggested [7]. With the explosive growth of
the data base size, scalability for the data mining algorithms
becomes crucial to be able to work with very large data sets
effectively. In this paper, a hybrid frequent item-set mining
method extending Apriori algorithm is proposed.

International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 4 (2012) pp. 514–521
c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

II. Preliminaries

Traditionally, the algorithms of data analysis assumed that
the input database contains a relatively smaller number of
records. It becomes impossible to deploy the databases fully
in the main memory, with the explosion of growth in their
size. Extracting data from the hard drive is considerably
slower than accessing the data located in memory. Hence
the data mining algorithms should be scalable to be able to
work with very large databases effectively. An algorithm is
called 'scalable', if sustained capacity of main memory,
with an increase in the number of records in the input
database, its execution time increases linearly. Hence
efficient scalable algorithms for data mining in very large
data sets are widely studied.

A. Market Basket Analysis
Finding frequent item sets plays an important role in data
mining as the first step in determining association rules.
Association rule learning is mostly explained by market
basket analysis [1] – retrieving the association between the
items that customers purchase. Here products or sets of
items (item-sets) which occur in many transactions are
found.

Table 1. Transactional data

TID List of item_IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

Each of the patterns of behaviour of buyers identified
through this analysis can be used to place the goods in the
shops or restructure pages in the catalogues.
A set consists of i goods, called i-set-element (i-item-set).
The percentage of transactions containing a given set,
called the support (provision) set. It is believed that in
order for a set of interest, its support must be above a user-
defined minimum, such sets are called 'frequent'. Table 1
[8] describes several transactions (T100, T200, ..), stored in
a relational database. Corresponding column mentions the
relevant list of item ids for the particular transaction. As an
example “T200” transaction contains “I2” and “I4” item
ids.
In frequent item-set mining, we derive rules based on two
measurements called minimum support and the minimum
confidence that reflect the usefulness and certainty of the
discovered rules. Typically, association rules are considered
interesting if they satisfy both a minimum support threshold
and a minimum confidence threshold [1].

B. Algorithm Apriori

This algorithm defines several stages. At the i-th stage
identifies all frequent i-element sets. Each stage consists of
two steps: the formation of candidates (candidate
generation) and the counting of candidates (candidate
counting). At the step of forming the candidates, algorithm
creates a lot of candidates from the i-element sets. At the
step of counting candidates algorithm scans the database of
transactions, computing support sets of candidates. After
scanning, the algorithm discards the candidates, ensuring
that less than a user-defined minimum and saves only the
common i-element sets.
During the 1st phase of the selected set of candidates
contains all 1-element sets. Algorithm calculates their
support during the step counting candidates. Thus, after the
first phase all frequent 1-element sets are known. Reasoning
in a straight line, a candidate can "burn" all pairs of goods.
However, Apriori reduces the number of sets of candidate
sifting - a priori - those candidates who may not be
frequent, based on information received at previous stages
of the information on which of the sets are the most
abundant. Screenings are based on the simple assumption
that if the set is frequent, all its subsets must also be
frequent. Thus, before the counting of candidates step
algorithm can reject any candidate set, a subset of which is
not frequent. This process is continued until the number of
frequent n-item-sets becomes zero, where n determines the
no. of children in the item-set.
Consider the database presented in Table 1. Suppose that
the minimum support count threshold is 2. That is, to be a
frequent item-set, there should be at least two transactions,
consisted of the particular item-set. In the first stage, all the
products individually are sets of candidates and counted
during the counting step, the candidate. At the second
stage, the candidate may be only a couple of items, each of
which is frequently encountered. For example, initially all
the sets of single items ({I1}, {I2}, {I3}, {I4} and {I5})
have a support count of 6, 7, 6, 2, and 2 respectively. So
initially all five items become frequent item-sets.
Thus, the second stage of the algorithm will form the
following list of sets of candidates. Table 2 shows the item
sets along with their support counts. Now frequent 2-item-
sets are {I1,I2}, {I1,I3}, {I1,I5}, {I2,I3}, {I2,I4} and
{I2,I5} as the other item-sets don't have the minimum
support count.

Table 2. Item sets and the support counts

Itemset Sup. Count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

 515 Alwis et al.

Likewise this process is continued until the no of frequent
n-item-sets become zero, where n determines the no. of
children in the item-set.
Apriori counts not only the provision of all frequent sets,
but also ensuring those sets of candidates, which could not
be discarded a priori. The set of all sets of candidates,
which are rare, but whose software calculates the Apriori
algorithm, called the negative region (negative border).
Thus, the set belongs to a negative area if it can not be
attributed to the frequent, but so are its subsets.

C. Algorithm Optimization

Many optimizations to the primary data mining algorithms
are proposed over the time. They focus on a narrow sub set
of datasets or cater the mining of the data broadly.

1) Pruning
Mannila et al. proposed pruning techniques to reduce the
size of candidate set [9] as an optimization. Pruning
strategy for the algorithm is based on a characteristic: a
frequent item-set is a set, if and only if all its subsets are
frequent.

2) Dynamic hashing and pruning
Park et al. suggested a hash based algorithm (DHP), which
generates candidate large itemsets efficiently, while
reducing the size of the transaction data base [10]. Number
of candidate itemsets generated by DHP is smaller than that
generated using existing algorithms, making it efficient for
large itemsets, specifically for the large 2-itemsets.

3) Parallel Data mining
Park et al., extended DHP into a parallel data mining
algorithm, facilitating parallel generation of the candidate
itemsets and parallel determination of large itemsets [11].

4) Transaction Reduction
Agrawal et al. proposed this algorithm to reduce the number
of transactions scanned in the future iterations [12], [13]. A
transaction that does not contain any frequent k-itemsets
can not contain any frequent (K +1) itemsets, hence can be
removed.

5) Partition
Savasere et al. designed a Partition-based highly parallel
algorithm [14], which logically divides the data base into
several disjoint blocks. Each considered separately a sub-
block and it generates all the frequent sets. The generated
frequency of collection is used to generate all possible
frequent sets, and followed by the final calculation of the
degree of support of these itemsets. Sub-block size is
chosen to allow each sub-block be placed in the main
memory, each stage scanned only once.
This algorithm is highly parallel, and can be allocated to
each sub-block of a processor that generates a frequency
set. Frequency set is resulting, after the end of each cycle.
The processor to generate the overall communication
between the candidate k-itemsets. Usually here the
communication process is a major bottleneck in algorithm
execution time; while on the other hand, each individual
processor generates frequent set time is also a bottleneck.
Other methods are shared between multiple processors in a
hash tree to generate frequent sets. More information on the

generated set of parallel frequency method in the literature
[14] found.

6) Sampling
A subset of the sample is taken for mining in the sampling
based mining techniques, in the algorithm proposed by
Mannila et al. [9]. Toivonen further developed this
algorithm [15], where the rules are produced with the first
extracted sample from the whole dataset. The remaining of
the dataset is used to authenticate the dataset that is chosen.
Sampling based algorithms significantly reduced the I /O
costs, nevertheless with inaccurate results often and
distortions in the data, known as data-skew.

7) Dynamic itemset counting
Dynamic itemset counting technology [16] proposed by
Brin et al. marks the starting point of the database divided
into blocks. The results of algorithm need fewer database
scans than Apriori.

8) Equivalence CLASS Transformation (ECLAT)
Algorithm developed by Zaki [17] is used to mine the data
sets efficiently using vertical data formats.

9) Vertical format data mining
Apriori algorithm mines frequent patterns from a horizontal
data format which represents the items categorized into
particular transactions, where vertical data format
represents data as transactions categorized into particular
items.
Hence, for a particular item, there is a set of corresponding
transaction ids. Instead of horizontal data format, Apriori
can be extended to use vertical data format for efficient
mining. Table III shows the transactional data represented
in Table I, in the vertical format.
As can be seen from the Table 3, the vertical format data
mining only has to parse the dataset once to get the
itemsets. For the itemset generation from the 2nd itemset, it
only needs to refer the previous itemset. This eliminates the
need to parse through the dataset each time to count the
frequency of itemsets, for each round. Hence, relative to the
algorithms developed for the use on databases with the
horizontal layout of data, the algorithms developed for the
vertical representation tend to be more optimal.

Table 3. Transactional data represented in the vertical
format

Item ID List of TIDs Support
Count

I1 T100, T400, T500,
T700, T800, T900

6

I2 T100, T200, T300,
T400, T600, T800, T900

7

I3 T300, T500, T600,
T700, T800, T900

6

 I4 T200, T400 2

I5 T100, T800 2

10) VIPER
VIPER [18], [19] is a general purpose algorithm, with no
special requirement for the underlying database, based on

 516 Horizontal Format Data Mining with Extended Bitmaps

the vertical format representation. VIPER also uses
compressed bit-vectors (referred to as 'snakes') to store data,
with optimized generation of snakes, intersection, counting,
and storage. VIPER is one of the algorithms motivated by
the vertical format mining, as vertical format mining is
more efficient than its horizontal format mining.

III. Horizontal Format Data Mining with
Extended Bitmaps

We propose the algorithm 'Horizontal Format Data Mining
with Extended Bitmaps', for mining a data set in a
horizontal format, by converting it to a data structure of
vertical format along with bitmaps indices to store the
itemset data.

A. Parsing the dataset to create 1st itemset and bitmaps
The first and only parsing of the dataset is done here.

• Creating the master array.
• Creating bitmaps relevant to each item in master array.
Here bitmaps are used to store the individual bits
compactly, exploiting the bit level parallelism effectively.
In a bit map, 1 indicates the existence.
As in Figure 1, masterArray is an array of Item objects of
all items in the dataset. Under each item, there is an array
of other items occurring together with it in transactions
which we call from, which we refer from now on as
AssociatedItems. Under each AssociatedItem, we store a bit
vector indicating the presence of the AssociatedItem for
every transaction where the Item is found. Basically, length
of bit vectors give the number of transactions that its root
Item in masterArray is found. If the AssociatedItem is in the
transaction, bit vector value for that transaction will be 1
(true), otherwise 0 (false).

a – masterArray; in – Item n;
b – associatedItemArray; c – BitSet

Figure 1. Main data storage structure of the extended
vertical data mining.

B. Remove redundant associated items
Here for better memory utilisation, the redundant duplicate
mappings (AssociatedItems) are pruned from the main data
structure such as, Item i1 mapped to AssociatedItem i2 and
Item i2 mapped to AssociatedItem i1 in the masterArray.

C. Pruning itemsets according to apriori property
Association mining is carried out solely in this step, in three
major phases. The core logic of Apriori property is used;
but implementation is done using the manipulation of bit
vectors.
1) 1st frequency itemset extraction
The items not satisfying the minimum support are removed
from the masterArray [1].

2) 2nd frequency itemset extraction
Here we iterate through the associatedItemArrays for each
Item in masterArray. For each AssociatedItem, the
cardinality of its bit vector is compared with the minimum
support value. AssociatedItems having less than the
minimum support are removed.

3)Extracting frequency itemsets above two
For mining frequency item sets of three or above, we start
intersecting bit vectors of AssociatedItems, compare result
bit vectors' cardinality with minimum support value, and
remove the AssociatedItems as Apriori property suggests.
This will take place for increasing frequency itemset values
and stop when no more frequent item sets are present. In
this recurring step, two main data structures [Figure 2,
Figure 3] are used.

Figure 2. Pattern structure

Pattern structure Figure 2 is used to store each resultant
bit vector from intersection of bit vectors and the itemset
ids for those intersected bit vectors' belonging items. As
Pattern is also a representation of item sets, we can use it as
a frequent itemset itself.

Figure 3. Candidates structure

Candidates structure Figure 3, is used to store the frequent
item sets of each level of itemset size. Here each candidate
level is an array of patterns. Each level indicates the

 517 Alwis et al.

frequency itemset level. Hence frequent itemsets of length
one will be under level one, frequent itemsets of length two
will be under level two and so on. Once the above steps are
completed, the frequent item sets are retrieved by iterating
through the candidate structure.

IV. Analysis

We discussed the algorithm, “Horizontal format data
mining with extended bitmaps”. Here we are going to
analyze the algorithm with a simple data set.

Table 4. Sample data set for the analysis
TID List of item_IDs

T100 I1, I2, I5

T200 I2, I4

T300 I1, I2

T400 I2, I5

Table 4 shows the data set to be considered for this
analysis. Here we are taking a very simple data set for the
ease of analysis. In this analysis, we will use the proposed
algorithm to find the frequent item sets with the minimum
support = 2.

A. Building the master array and the bitmaps

We first build the master array with all the items in the
sample data set. Then go through the first transaction
T100 = {I1, I2, I5}.
The associated item array is built with the items in the first
transaction. I2 and I5 are linked to I1 in the master array, as
the associated items in the associated item array for I1.
Similarly, I5 is stored in the associated item array of I2, as
shown in Figure 4.

Figure 4. Data structure after going through T100

We avoid the redundancy by storing I1 in the associated
item array of I2 for the same transaction, as {I1, I2} and
{I2, I1} are identical for the transaction. Hence associated
item arrays built with T100: {I1, I2, I5} and {I2, I5}.
Under each associated item in the respective associated
item arrays, a bit is used to indicate the existence of the
item.

The items in the transaction are counted and stored in the
master array. Here I1, I2, and I5 are indicated by '1' in the
master array, to show that the item exists once.
Similarly for the next transaction T200 = {I2, I4}, I2 is
updated with the count of 2, and I4 with 1, in the master
array.
Associated Item Array of I2 is updated. Here I4 is linked to
I5 in the array of I2. {I2, I5, I4}.
A '0' is used under I4 of the associated item array of I2 to
indicate that for T100, only I5 was associated to I2.
Similarly the '0' for T200 under the bitmap of I5, in the
associated item array of I2 show that I5 wasn't associated
with I2.
From Figure 5, we can read that,
T100 = {I1, I2 (1), I5 (1)} = {I1, I2, I5}
T100 = {I2, I5 (1), I4 (0)} = {I2, I5}
T200 = {I2, I5 (0), I4 (1)} = {I2, I4}

Figure 5. Data structure after T200

Figure 6 shows the data structure in our notation, updated
with T300 = {I1, I2}.

Figure 6. Data structure after T300

 518 Horizontal Format Data Mining with Extended Bitmaps

Figure 7. shows the final data structure, with T400, where
all the master array is updated with all the transactions, and
the relevant bit maps are created for each item in the master
array. Reading the associated item arrays for each item in
the master array shows the below.
I1, I2 (1), I5 (1) = {I1, I2, I5}
I1, I2 (1), I5 (0) = {I1, I2}
I2, I5 (1), I4 (0) = {I2, I5}
I2, I5 (0), I4 (1) = {I2, I4}
I2, I5 (1), I4 (0) = {I2, I5}

Figure 7. Final Data structure

B. Pruning itemsets

Figure 8. Frequent itemset
As shown in Figure 8, since our minimum support is 2, I4 is
removed from further calculations, as it doesn't satisfy the
minimum support level.

For each AssociatedItem, the cardinality of its bit vector is
compared with the minimum support value.
AssociatedItems having less than the minimum support are
removed. Hence only {I1, I2} and {I2, I5} remain.
Now we have to extract the frequency itemsets above two.
We start intersecting the bit vectors of AssociatedItems.
Intersecting {I1, I2} with {I1, I5} and {I2, I5} with {I2,
I4}. We compare result bit vectors' cardinality with
minimum support value 2. Here, as depicted in Figure 9, the
intersection shows that {I1, I2, I5} appears once, and {I2,
I5, I4} doesn't appear as a frequent set.
Since these do not satisfy the minimum support level of 2,
we stop here.

Figure 9. Final Frequent Item Sets

From the algorithm, we derive that {I1, I2} and {I2, I5} are
the frequent sets that satisfy the minimum support.

V. Experimental Study

The algorithm was implemented and benchmarked in a
system with 2 GB memory and 2.5 Ghz core 2 Duo
Processor, against an implementation of Apriori algorithm
for the datasets chosen from Frequent Itemset Mining
Dataset Repository [20], along with different values of
minimum support, as both the algorithms mine the datasets
in horizontal form. Here both Apriori and the Horizontal
Format Data-mining with Extended Bitmaps algorithm are
designed for the databases having the horizontal layout.

Table 5. T= 10; I = 4; D = 10K
Minimum

Support (%)
T10I4D10K
Apriori (sec) HFDM-EB (sec)

0.75 1934.4 10.6
1 1365.4 10.5
2 238.4 10.4
5 1.6 9.6

 519 Alwis et al.

Table 5, Table 6, and Table 7 compare the performance of
the algorithms. The minimum support vs time taken are
plotted for (T = 10, I = 4, D = 10K), (T = 10, I = 4, D =
100K), and (T = 40, I = 10, D = 100K), which are shown in
Figure 10, Figure 11, and Figure 12 respectively. Time is
shown in the log scale.

Figure 10. T= 10; I = 4; D = 10K

Table 6. T = 10; I = 4; D = 100K
Minimum

Support (%)
T10I4D100K
Apriori (sec) HFDM-EB (sec)

0.75 21039.1 134.2
1 12600.5 132.1
2 2365.1 131.7
5 1.3 132.1

Figure 11. T= 10; I = 4; D = 100K

Table 7. T = 40; I = 10; D = 100K
Minimum

Support (%)
T40I10D100K
Apriori (sec) HFDM-EB (sec)

5 232 10.9
10 19 10.8
20 0.5 10.6
40 0.3 10.4

Figure 12. T = 40; I = 10; D = 100K

The time taken to build the bitmap is independent of the
number of frequent item sets. But Apriori's time drops
drastically when the number of frequent items is low. Thus
Apriori was having a higher performance at high support
levels where number of frequent item sets found is low.

VI. Conclusion and future work

Large companies for decades accumulated data on their
customers, suppliers, products and services. Due to high
rate of development of e-commerce working in Web start-
ups can turn into a huge enterprise in a matter of months,
rather than something those years. And, as a consequence,
will grow rapidly and their databases.
Data mining, also called 'knowledge discovery in databases'
[21] provides organizations with the tools developed to
analyse the large collection of information to find trends,
patterns and relationships that can help in making strategic
decisions. In this paper we have proposed an efficient
algorithm for Association Rule Mining, which recovers the
associations as the Apriori on a data set in horizontal
format, utilizing the bitmaps.
We have implemented the algorithm in Java, which may be
more efficient, if implemented in C or a lower level
language, so that we can control the memory allocation, in
the most optimal way for the algorithm, as we want.
For each data item, a bitmap is created for each associated
item. If there are n associated items for a data item, then the
number of candidate sets generated is n(n-1). So there can
be redundant bitmaps created for the same data item pairs.
Currently, redundant pairs are pruned after creating the
vertical format. But, if there is a dynamic pruning
mechanism to prune redundant data item pairs while
creating the vertical format memory can be well optimized.
The algorithm lends well to Map Reduce like distributed
data mining since mining of each data item is independent
of others. Each master array index is self contained, and
hence can be mined in parallel. So this algorithm can be
enhanced to work in a distributed environment with or
without a shared memory. Here data structure generation
becomes the Map phase, where the result accumulation
becomes the Reduce phase, as in Map-Reduce.
For some larger data sets that are having many items per
transaction, the algorithm fails to withstand due to utilizing
prohibitive amount of memory. It can be mitigated by using

 520 Horizontal Format Data Mining with Extended Bitmaps

compressed bitmap [22] implementation instead of plain

bitmaps, so the memory is utilized better.

References

Author Biographies

 521 Alwis et al.

[1] Jiawei Han and Micheline Kamber. “Data Mining, Concepts and

Techniques,” 2nd Edition, 2006.
[2] Abraham Silberschatz, Henry F.Korth, and S.Sudarshan.

“Database System Concepts,” 5th Edition. McGraw-Hill, Inc.,
New York, San Francisco, Washington, DC, 2005.

[3] Jaideep Srivastava , Robert Cooley , Mukund Deshpande,
Pang-Ning Tan. “Web Usage Mining: Discovery and
Applications of Usage,” Department of Computer Science and
Engineering, University of Minnesota. ACM SIGKDD
Explorations Newsletter, v.1 n.2, January 2000.

[4] Wenke Lee , Salvatore J. Stolfo, "Data mining approaches for
intrusion detection," in Proceedings of the 7th conference on
USENIX Security Symposium, p.6-6, January 26-29, 1998, San
Antonio, Texas.

 [5] Elisabeth Georgii, Lothar Richter, Ulrich Rückert and Stefan
Kramer. “Analyzing microarray data using quantitative
association rules,” Bioinformatics 2005, 21(Suppl 2):ii123-ii129.

[6] Ioannidis, John P. A. (August 30, 2005). "Why Most Published
Research Findings Are False". PLoS Medicine (San Francisco:
Public Library of Science) 2 (8).
doi:10.1371/journal.pmed.0020124. ISSN 1549-1277.

[7] Behrouz Minaei-Bidgoli1, William F. Punch. “Using Genetic
Algorithms for Data Mining - Optimization in an Educational
Web-based System,” Genetic Algorithms Research and
Applications Group (GARAGe). Department of Computer
Science & Engineering. Michigan State University. Online:
www.lon-capa.org/papers/v90-gapaper.pdf [Accessed: 25th
December, 2009]

[8] Wei-Qing Sun, Cheng-Min Wang, Tie-Yan Zhang, and Yan
Zhang. 2009. “Transaction-item association matrix-based
frequent pattern network mining algorithm in large-scale
transaction database.” W. Trans. on Comp. 8, 8 (Aug. 2009),
1327-1336.

[9] H. Mannila, H. Toivonen, and A. Verkamo. Efficient algorithm
for discovering association rules. AAAI Workshop on
Knowledge Discovery in Databases, pp 181-192, Jul. 1994.

[10] J.S. Park, M.S. Chen, and PS Yu. “An effective hash-based
algorithm for mining association rules”. In Proceedings of ACM
SIGMOD International Conference on Management of Data,
pp 175-186, May 1995.

[11] J.S. Park, M.S. Chen, and P.S. Yu. “Efficient parallel data
mining of association rules,” 4th International Conference on
Information and Knowledge Management, Baltimore,
Maryland, Nov. 1995.

[12] R. Agrawal, and R. Srikant. “Fast algorithms for mining
association rules,” in Proceedings of. 1994 Int. Conf. Very
Large Databases (VLDB'94), Sep. 1994.

[13] J. Han and Y. Fu. “Discovery of multiple-level association rules
from large databases,” in Proceedings of. Int. Conf. Very Large
Databases (VLDB'95), pp 402-431, Sep. 1995.

[14] A. Savasere, E. Omiecinski, and S. Navathe. “An efficient
algorithm for mining association rules in large databases,” in
Proceedings of the 21st International Conference on Very
Large Database, pp 432-443, Sep. 1995.

[15] H. Toivonen. “Sampling large databases for association rules,”
in Proceedings of the 22nd International Conference on Very
Large Database, Bombay, India, pp 134-145, Sep. 1996.

[16] S. Brin, R. Motwani, JD Ullman, and S. Tsur. “Dynamic itemset
counting and implication rules for market basket data,” in
Proceedings of ACM SIGMOD International Conference On
the Management of Data, pp 255-264, May 1997.

[17] M. J. Zaki. “Scalable algorithms for association mining,” IEEE
Trans. Knowledge and Data Engineering, 12:372–390, 2000.

[18] Shenoy, P. and Haritsa, J. and Sudarshan, S. and Bhalotia, G.
and Bawa, M. and Shah, D. (2000) “VIPER: A Vertical
Approach to Mining Association Rules.” In: ACM SIGMOD
International Conference on Management of Data (SIGMOD
2000), May 16-18, 2000 , Dallas, Texas.

[19] Shenoy, P. and Haritsa, J. and Sudarshan, S. and Bhalotia, G.
and Bawa, M. and Shah, D. “Turbo-Charging Vertical Mining
of Large Databases”.

[20] Frequent Itemset Mining Dataset Repository. [Online].
Available: http://fimi.cs.helsinki.fi/data/ [Accessed: 25th
December, 2009]

[21] UM Fayyad et al., Eds. “Advances in Knowledge Discovery and
Data Mining,” AAAI/MIT Press, Menlo Park, Calif., 1996.
Advances in Knowledge Discovery and Data Mining, AAAI /
MIT Press, Menlo Park, Calif., 1996.

[22] Kesheng Wu, Ekow Otoo and Arie Shoshani. “Optimizing
Bitmap Indices with Efficient Compression.” ACM
Transactions on Database Systems, v31, pages 1 - 38, March,
2006.

Buddhika De Alwis received his B.Sc (Hons) in Computer Science and
Engineering from University of Moratuwa in 2010. He is currently a software
engineer at WSO2 Inc. His research interests include data mining, distributed
and cloud computing.

A. Supun Malinga is a software Engineer at WSO2 Inc. He received his
B.Sc (Hons) in Computer Science and Engineering from University of
Moratuwa. His research interests include Distributed computing, SOA,
middleware.
Kathiravelu Pradeeban obtained his B.Sc (Hons) in Computer Science and
Engineering from the University of Moratuwa. He is a software engineer at
WSO2 Inc., currently working with WSO2 Cloud Middleware Platform. His
research interests include distributed computing, data mining, and SOA web
services.

 W.A. Denis Dhananjaya Weerasiri is a software engineer at WSO2 Inc. He

received his B.Sc (Hons) in Computer Science and Engineering from
University of Moratuwa in 2010. His research interests include cloud
computing, distributed computing and business process management.
Amal Shehan Perera is a senior lecturer in computer science at the
Department of Computer Science and Engineering, University of Moratuwa,
Sri Lanka. He served as a senior visiting research scholar at North Dakota
State University in 2009. He has multiple research publications and a
co-owner of a US patent. His areas of interest include data mining, database
systems, and software engineering. He won the ACM KDD Cup 2006 for data
mining in collaboration with Prof. William Perrizo. He obtained his MSc and
PhD from North Dakota State University under the guidance of Prof. Perrizo
and his BSc from University of Colombo, Sri Lanka.

	I. Introduction
	II. Preliminaries
	B. Algorithm Apriori
	C. Algorithm Optimization

