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Abstract:  Analysing  the  data  warehouses  to  foresee  the 
patterns  of  the  transactions  often  needs  high  computational  
power and memory space due to the huge set of past history of  
the  data  transactions.  With  the  fragmented  data  along with 
the  current  trend  of  distributed  systems,  most  of  the 
fundamental algorithms that are initially proposed to find the 
association  among  the  itemsets  in  the  data  warehouses  are 
inefficient  either  in  throughput  or  the  utilization  of  the 
resources. 

 Apriori  algorithm  is  a  mostly  learned  and  implemented  
algorithm  that  mines  the  data  warehouses  to  find  the 
associations.  However,  Apriori  is  generally  not  an optimized 
algorithm.  More  variations,  improvements,  and  alternatives 
have  been suggested  to overcome  the inefficiency  of  Apriori 
algorithm, either as a whole or to specific sets of data. In any 
case,  a  fraction  of  improvement  in  the  algorithm  often 
improves  the mining considerably.  Frequent item set mining 
with  vertical  data  format  has  been  proposed  as  an 
improvement  over the basic  Apriori  algorithm,  which mines 
the data sets of vertical form, opposed to the typical horizontal  
format data as in case of Apriori.  

In  this  paper  we  are  proposing  an  algorithm  as  an 
alternative to Apriori algorithm, which will use bitmap indices 
in conjunction with a horizontal format data set converted to 
a  vertical  format  data  structure  to  mine  frequent  itemsets  
leveraging efficiencies of bitmap based operations and vertical  
format data orientation. 

Keywords:  Data  mining,  Association  Rule,  Apriori,  Vertical 
format  mining,  Bitmap  Indices,  Data  Analysis,  Data 
Warehousing.

I. Introduction

Data Mining is an emerging concept or a tool in database 
concepts, which is young, yet powerful and promising [1],  
[2].  Knowledge  discovery,  prediction,  clustering,  and 
classifications through pattern recognition are some of the 
key  design  aspects  of  data  mining.  Most  of  the  existing 
techniques on the  associations are  based on analysing the 
data  warehouses  -  the  existing  bulk  data  of  transaction 
history.  Given the existence  of a set  of items,  association 
rules enable the prediction of the existence of one or more 
other items based on the knowledge gathered by classifying 
the data warehouses. 

Foreseeing the user behaviour from the customer analysis of 
the  past  years  is  a  topic  of  interest  in  this  user-oriented 
marketing era. Database Engineers and scientists have been 
working on the associations of the transactions and derived 
many algorithms for effective decision making. Most of the 
existing  techniques  are  based  on  analysing  the  data 
warehouses  - the  existing bulk data  of transaction  history 
[1]. 
The  choice  of  the  algorithm  to  retrieve  the  relationship 
between  the  variables  for  a  given  application  is  a 
challenging  task,  which  is often  a compromise  where  the 
accuracy,  efficiency,  latency,  throughput,  and  security 
matter, as resources are limited. Several algorithms leading 
to optimal and sub-optimal conclusion have been developed 
and practiced on the datasets to extract patterns and gather 
the  association  among  the  variables  or  items.  Given  the 
existence  of  a  set  of  items,  association  rules  enable  the  
prediction of the existence of one or more other items based 
on  the  knowledge  gathered  by  classifying  the  data 
warehouses. 
Association rule learning is mostly explained by one of its  
common applications – retrieving  the  association between 
the  items  that  customers  purchase.  As  an  analogy,  it  is 
referred  as  keeping  track  of  the  customers'  baskets  or 
market basket analysis [1]. Association rules are commonly 
used in mining web usage [3], intrusion detection [4], and 
bioinformatics [5].
Statistical  bias caused by suggesting a hypothesis by non-
representative  data  or  a  narrow  sample  to  match  the 
hypothesis  is  defined  as  data-snooping  bias,  which  often 
leads to  a wrong decision in scientific  calculations which 
include  a  highly  distributed  network  [6].  This  leads  to  a  
wrong  decision  in  calculations,  hence  these  factors  also 
should  be  taken  in  to  consideration  when  choosing  the 
algorithm.
Apriori  algorithm  [1]  is  considered  the  fundamental  
algorithm  for  mining  for  associations.  Hybrid  algorithms 
converging  the  classification  and  association  rule  mining 
have also been suggested [7]. With the explosive growth of 
the data base size, scalability for the data mining algorithms 
becomes crucial to be able to work with very large data sets 
effectively. In this paper, a hybrid frequent item-set mining 
method extending Apriori algorithm is proposed.
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II. Preliminaries

Traditionally, the algorithms of data analysis assumed that 
the input database contains a relatively smaller number of 
records. It becomes impossible to deploy the databases fully 
in the main memory, with the explosion of growth in their  
size.  Extracting  data  from  the  hard  drive  is  considerably 
slower than accessing the data  located  in memory.  Hence 
the data mining algorithms should be scalable to be able to 
work with very large databases effectively. An algorithm is 
called  'scalable',  if  sustained  capacity  of  main  memory, 
with  an  increase  in  the  number  of  records  in  the  input 
database,  its  execution  time  increases  linearly.  Hence 
efficient  scalable algorithms for data mining in very large 
data sets are widely studied.

A. Market Basket Analysis  
Finding frequent  item sets plays an important  role in data  
mining  as  the  first  step  in  determining  association  rules.  
Association  rule  learning  is  mostly  explained  by  market  
basket analysis [1] – retrieving the association between the 
items  that  customers  purchase.  Here products  or  sets  of 
items  (item-sets)  which  occur  in  many  transactions  are 
found. 

Table 1. Transactional data

TID List of item_IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

Each  of  the  patterns  of  behaviour  of  buyers  identified
through this analysis can be used to place the goods in the  
shops or restructure pages in the catalogues.
A set consists of i  goods, called i-set-element  (i-item-set).  
The  percentage  of  transactions  containing  a  given  set,  
called  the  support  (provision)  set.   It  is  believed  that  in 
order for a set of interest, its support must be above a user-
defined  minimum,  such sets are called  'frequent'.  Table  1 
[8] describes several transactions (T100, T200, ..), stored in 
a relational  database.  Corresponding column mentions the 
relevant list of item ids for the particular transaction. As an 
example  “T200”  transaction  contains  “I2”  and  “I4”  item 
ids.
In frequent item-set mining, we derive rules based on two 
measurements  called  minimum support  and  the  minimum 
confidence  that  reflect  the usefulness and certainty  of the 
discovered rules. Typically, association rules are considered 
interesting if they satisfy both a minimum support threshold 
and a minimum confidence threshold [1].

B. Algorithm Apriori

This  algorithm  defines  several  stages.  At  the  i-th  stage 
identifies all frequent i-element sets. Each stage consists of 
two  steps:  the  formation  of  candidates  (candidate 
generation)  and  the  counting  of  candidates  (candidate 
counting).  At the step of forming the candidates, algorithm 
creates a lot of candidates from the i-element sets.  At the 
step of counting candidates algorithm scans the database of 
transactions,  computing  support  sets of candidates.   After  
scanning,  the  algorithm  discards  the  candidates,  ensuring 
that  less than a user-defined minimum and saves only the 
common i-element sets. 
During  the  1st  phase  of  the  selected  set  of  candidates 
contains  all  1-element  sets.   Algorithm  calculates  their 
support during the step counting candidates. Thus, after the 
first phase all frequent 1-element sets are known. Reasoning 
in a straight line, a candidate can "burn" all pairs of goods. 
However,  Apriori reduces the number of sets of candidate 
sifting  -  a  priori  -  those  candidates  who  may  not  be 
frequent,  based on information received at previous stages 
of  the  information  on  which  of  the  sets  are  the  most 
abundant.   Screenings are based on the simple assumption 
that  if  the  set  is  frequent,  all  its  subsets  must  also  be 
frequent.  Thus,  before  the  counting  of  candidates  step 
algorithm can reject any candidate set, a subset of which is 
not frequent. This process is continued until the number of 
frequent n-item-sets becomes zero, where n determines the 
no. of children in the item-set. 
Consider the database presented in Table 1.  Suppose that 
the minimum support count threshold is 2. That is, to be a 
frequent item-set, there should be at least two transactions, 
consisted of the particular item-set. In the first stage, all the 
products  individually  are  sets  of  candidates  and  counted 
during  the  counting  step,  the  candidate.   At  the  second 
stage, the candidate may be only a couple of items, each of 
which is frequently encountered.  For example,  initially all  
the  sets  of  single  items  ({I1},  {I2},  {I3},  {I4} and  {I5}) 
have a support  count of 6, 7, 6,  2,  and 2 respectively.  So 
initially all five items become frequent item-sets.
Thus,  the  second  stage  of  the  algorithm  will  form  the 
following list of sets of candidates. Table 2 shows the item 
sets along with their support counts. Now frequent 2-item-
sets  are  {I1,I2},  {I1,I3},  {I1,I5},  {I2,I3},  {I2,I4}  and 
{I2,I5}  as  the  other  item-sets  don't  have  the  minimum 
support count.

Table 2. Item sets and the support counts

Itemset Sup. Count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0
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Likewise this process is continued until the no of frequent 
n-item-sets  become  zero,  where  n  determines  the  no.  of 
children in the item-set.
Apriori  counts not  only the provision of all  frequent  sets, 
but also ensuring those sets of candidates, which could not 
be  discarded  a  priori.   The  set  of  all  sets  of  candidates,  
which are  rare,  but  whose software  calculates  the Apriori 
algorithm,  called  the  negative  region  (negative  border). 
Thus,  the  set  belongs to  a  negative  area  if  it  can  not  be 
attributed to the frequent, but so are its subsets.

C. Algorithm Optimization 

Many optimizations to the primary data mining algorithms 
are proposed over the time. They focus on a narrow sub set  
of datasets or cater the mining of the data broadly.

1) Pruning
Mannila  et  al.  proposed  pruning  techniques  to  reduce  the 
size  of  candidate  set  [9]  as  an  optimization.  Pruning 
strategy  for  the  algorithm  is  based  on  a  characteristic:  a 
frequent  item-set is a set,  if and only if all its subsets are  
frequent. 

2) Dynamic hashing and pruning
Park et al. suggested a hash based algorithm (DHP), which 
generates  candidate  large  itemsets  efficiently,  while 
reducing the size of the transaction data base [10]. Number 
of candidate itemsets generated by DHP is smaller than that 
generated using existing algorithms, making it efficient for 
large itemsets, specifically for the large 2-itemsets.

3) Parallel Data mining
Park  et  al.,  extended  DHP  into  a  parallel  data  mining 
algorithm,  facilitating  parallel  generation  of the candidate 
itemsets and parallel determination of large itemsets [11].

4) Transaction Reduction
Agrawal et al. proposed this algorithm to reduce the number 
of transactions scanned in the future iterations [12], [13]. A 
transaction  that  does  not  contain  any  frequent  k-itemsets 
can not contain any frequent (K +1) itemsets, hence can be 
removed. 

5) Partition
Savasere  et  al.  designed  a  Partition-based  highly  parallel  
algorithm [14],  which logically  divides the  data  base into 
several  disjoint  blocks.  Each  considered  separately  a  sub-
block and it generates all the frequent sets. The generated 
frequency  of  collection  is  used  to  generate  all  possible  
frequent  sets,  and followed by the final  calculation of the 
degree  of  support  of  these  itemsets.  Sub-block  size  is 
chosen  to  allow  each  sub-block  be  placed  in  the  main 
memory, each stage scanned only once. 
This algorithm is highly parallel,  and can  be allocated  to 
each  sub-block  of  a  processor  that  generates  a  frequency 
set.  Frequency set is resulting, after the end of each cycle. 
The  processor  to  generate  the  overall  communication 
between  the  candidate  k-itemsets.   Usually  here  the 
communication process is a major bottleneck in algorithm 
execution  time;  while  on  the  other  hand,  each  individual 
processor generates  frequent  set  time is also a bottleneck.  
Other methods are shared between multiple processors in a 
hash tree to generate frequent sets. More information on the 

generated set of parallel frequency method in the literature 
[14] found.

6) Sampling 
A subset of the sample is taken for mining in the sampling  
based  mining  techniques,  in  the  algorithm  proposed  by 
Mannila  et  al.  [9].  Toivonen  further  developed  this 
algorithm [15], where the rules are produced with the first 
extracted sample from the whole dataset. The remaining of 
the dataset is used to authenticate the dataset that is chosen.  
Sampling  based  algorithms  significantly  reduced  the  I  /O 
costs,  nevertheless  with  inaccurate  results  often  and 
distortions in the data, known as data-skew.

7) Dynamic itemset counting
Dynamic  itemset  counting  technology  [16]  proposed  by 
Brin et al. marks the starting point of the database divided  
into blocks.  The results of algorithm need fewer  database 
scans than Apriori. 

8) Equivalence CLASS Transformation (ECLAT) 
Algorithm developed by Zaki [17] is used to mine the data 
sets efficiently using vertical data formats.

9) Vertical format data mining
Apriori algorithm mines frequent patterns from a horizontal  
data  format  which  represents  the  items  categorized  into 
particular  transactions,  where  vertical  data  format 
represents  data  as  transactions  categorized  into  particular 
items. 
Hence, for a particular item, there is a set of corresponding 
transaction  ids.  Instead  of  horizontal  data  format,  Apriori  
can  be  extended  to  use  vertical  data  format  for  efficient  
mining. Table III shows the transactional  data represented 
in Table I, in the vertical format.
As can be seen from the Table 3, the vertical  format data 
mining  only  has  to  parse  the  dataset  once  to  get  the 
itemsets. For the itemset generation from the 2nd itemset, it 
only needs to refer the previous itemset. This eliminates the 
need  to  parse  through the  dataset  each  time  to count  the 
frequency of itemsets, for each round. Hence, relative to the  
algorithms  developed  for  the  use  on  databases  with  the 
horizontal  layout of data, the algorithms developed for the 
vertical representation tend to be more optimal.

Table 3. Transactional data represented in the vertical 
format

Item ID List of TIDs Support  
Count

I1 T100,  T400,  T500, 
T700, T800, T900

6

I2 T100,  T200,  T300, 
T400, T600, T800, T900

7

I3 T300,  T500,  T600, 
T700, T800, T900

6

    I4 T200, T400 2

I5 T100, T800 2

10) VIPER
VIPER [18],  [19] is a general  purpose algorithm,  with no 
special  requirement  for the  underlying  database,  based on 
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the  vertical  format  representation.  VIPER  also  uses 
compressed bit-vectors (referred to as 'snakes') to store data,  
with optimized generation of snakes, intersection, counting, 
and storage. VIPER is one of the algorithms motivated by 
the  vertical  format  mining,  as  vertical  format  mining  is 
more efficient than its horizontal  format mining.

III.  Horizontal  Format  Data  Mining  with 
Extended Bitmaps

We propose the algorithm 'Horizontal Format Data Mining 
with  Extended  Bitmaps',  for  mining  a  data  set  in  a 
horizontal  format,  by  converting  it  to  a  data  structure  of 
vertical  format  along  with  bitmaps  indices  to  store  the 
itemset data. 

A. Parsing the dataset to create 1st itemset and bitmaps
The first and only parsing of the dataset is done here.

• Creating the master array.
• Creating bitmaps relevant to each item in master array.
Here  bitmaps  are  used  to  store  the  individual  bits 
compactly,  exploiting the bit  level  parallelism effectively.  
In a bit map, 1 indicates the existence. 
As in Figure 1, masterArray is an array of Item objects of 
all items in the dataset. Under each item, there is an array 
of  other  items  occurring  together  with  it  in  transactions 
which  we  call  from,  which  we  refer  from  now  on  as 
AssociatedItems. Under each AssociatedItem, we store a bit  
vector  indicating  the  presence  of  the  AssociatedItem  for 
every transaction where the Item is found. Basically, length 
of bit vectors give the number of transactions that  its root  
Item in masterArray is found. If the AssociatedItem is in the  
transaction,  bit  vector  value  for  that  transaction  will  be 1 
(true), otherwise 0 (false).

a – masterArray; in – Item n; 
b – associatedItemArray; c – BitSet

Figure  1.  Main  data  storage  structure  of  the  extended 
vertical data mining.

B. Remove redundant associated items
Here for better memory utilisation, the redundant duplicate 
mappings (AssociatedItems) are pruned from the main data 
structure such as, Item i1  mapped to AssociatedItem i2 and 
Item i2 mapped to AssociatedItem i1 in the masterArray.

C. Pruning itemsets according to apriori property
Association mining is carried out solely in this step, in three  
major  phases.  The core  logic  of Apriori  property  is used; 
but  implementation  is done using the  manipulation  of  bit 
vectors.  
1) 1st frequency itemset extraction
The items not satisfying the minimum support are removed 
from the masterArray [1].

2) 2nd frequency itemset extraction
Here we iterate through the associatedItemArrays for each 
Item  in  masterArray.  For  each  AssociatedItem,  the 
cardinality of its bit vector is compared with the minimum 
support  value.  AssociatedItems  having  less  than  the 
minimum support are removed.

3)Extracting frequency itemsets above two
For mining frequency item sets of three or above, we start  
intersecting bit vectors of AssociatedItems, compare result 
bit  vectors'  cardinality  with  minimum  support  value,  and 
remove  the  AssociatedItems  as  Apriori  property  suggests.  
This will take place for increasing frequency itemset values 
and stop when no more frequent  item sets are  present.  In 
this  recurring  step,  two  main  data  structures  [Figure  2, 
Figure 3] are used.

Figure 2. Pattern structure

Pattern structure Figure 2 is used to store each resultant  
bit  vector  from intersection of bit  vectors and the itemset 
ids  for  those  intersected  bit  vectors'  belonging  items.  As 
Pattern is also a representation of item sets, we can use it as 
a frequent itemset itself.

Figure 3. Candidates structure

Candidates structure Figure 3, is used to store the frequent  
item sets of each level of itemset size. Here each candidate 
level  is  an  array  of  patterns.  Each  level  indicates  the 
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frequency itemset level. Hence frequent itemsets of length 
one will be under level one, frequent itemsets of length two 
will be under level two and so on. Once the above steps are  
completed, the frequent item sets are retrieved by iterating 
through the candidate structure.

IV. Analysis

We  discussed  the  algorithm,  “Horizontal  format  data 
mining  with  extended  bitmaps”.  Here  we  are  going  to 
analyze the algorithm with a simple data set.

Table 4. Sample data set for the analysis
TID List of item_IDs

T100 I1, I2, I5

T200 I2, I4

T300 I1, I2

T400 I2, I5

Table  4  shows  the  data  set  to  be  considered  for  this  
analysis. Here we are taking a very simple data set for the  
ease of analysis. In this analysis, we will use the proposed 
algorithm to find the frequent item sets with the minimum 
support = 2.

A. Building the master array and the bitmaps

We  first  build  the  master  array  with  all  the  items  in  the 
sample data set. Then go through the first transaction 
T100 = {I1, I2, I5}.
The associated item array is built with the items in the first  
transaction. I2 and I5 are linked to I1 in the master array, as 
the  associated  items  in  the  associated  item  array  for  I1. 
Similarly, I5 is stored in the associated item array of I2, as 
shown in Figure 4.
 

Figure 4. Data structure after going through T100

We  avoid  the  redundancy  by storing  I1 in  the  associated 
item array of I2 for the same transaction,  as {I1,  I2} and 
{I2, I1} are identical  for the transaction. Hence associated 
item arrays built with T100: {I1, I2, I5} and {I2, I5}.
Under  each  associated  item  in  the  respective  associated 
item arrays,  a  bit  is  used to indicate  the  existence  of the 
item.

The items in the transaction are counted and stored in the 
master array. Here I1, I2, and I5 are indicated by '1' in the  
master array, to show that the item exists once.
Similarly  for  the  next  transaction  T200  =  {I2,  I4},  I2  is 
updated with the count of 2,  and I4 with 1, in the master  
array. 
Associated Item Array of I2 is updated. Here I4 is linked to 
I5 in the array of I2. {I2, I5, I4}.
A '0' is used under I4 of the associated item array of I2 to  
indicate  that  for  T100,  only  I5  was  associated  to  I2. 
Similarly  the  '0'  for  T200 under  the  bitmap  of  I5,  in  the 
associated item array of I2 show that  I5 wasn't  associated 
with I2.
From Figure 5, we can read that,
T100 = {I1, I2 (1), I5 (1)} = {I1, I2, I5}
T100 = {I2, I5 (1), I4 (0)} = {I2, I5}
T200 = {I2, I5 (0), I4 (1)} = {I2, I4}

Figure 5. Data structure after T200

Figure 6 shows the data structure in our notation, updated  
with T300 = {I1, I2}.

Figure 6. Data structure after T300
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Figure 7. shows the final data structure,  with T400, where 
all the master array is updated with all the transactions, and 
the relevant bit maps are created for each item in the master  
array. Reading the associated item arrays for each item in 
the master array shows the below.
I1, I2 (1), I5 (1) = {I1, I2, I5}
I1, I2 (1), I5 (0) = {I1, I2}
I2, I5 (1), I4 (0) = {I2, I5}
I2, I5 (0), I4 (1) = {I2, I4}
I2, I5 (1), I4 (0) = {I2, I5}

Figure 7. Final Data structure

B. Pruning itemsets

Figure 8. Frequent itemset
As shown in Figure 8, since our minimum support is 2, I4 is  
removed from further calculations,  as it  doesn't  satisfy the 
minimum support level.

For each AssociatedItem, the cardinality of its bit vector is 
compared  with  the  minimum  support  value. 
AssociatedItems having less than the minimum support are 
removed. Hence only {I1, I2} and {I2, I5} remain.
Now we have to extract the frequency itemsets above two.  
We  start  intersecting  the  bit  vectors  of  AssociatedItems.  
Intersecting  {I1,  I2} with {I1,  I5} and {I2,  I5} with  {I2,  
I4}.  We  compare  result  bit  vectors'  cardinality  with 
minimum support value 2. Here, as depicted in Figure 9, the 
intersection shows that  {I1, I2, I5} appears once, and {I2, 
I5, I4} doesn't appear as a frequent set.
Since these do not satisfy the minimum support level of 2, 
we stop here. 

Figure 9. Final Frequent Item Sets

From the algorithm, we derive that {I1, I2} and {I2, I5} are 
the frequent sets that satisfy the minimum support.

V. Experimental Study

The  algorithm  was  implemented  and  benchmarked  in  a 
system  with  2  GB  memory  and  2.5  Ghz  core  2  Duo 
Processor,  against  an implementation of Apriori  algorithm 
for  the  datasets  chosen  from  Frequent  Itemset  Mining 
Dataset  Repository [20],  along  with  different  values  of 
minimum support, as both the algorithms mine the datasets 
in  horizontal  form.  Here  both  Apriori  and  the  Horizontal 
Format Data-mining with Extended Bitmaps algorithm are 
designed for the databases having the horizontal layout.

Table 5. T= 10; I = 4; D = 10K
Minimum 

Support (%)
T10I4D10K
Apriori (sec) HFDM-EB (sec)

0.75 1934.4 10.6
1 1365.4 10.5
2 238.4 10.4
5 1.6 9.6
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Table 5, Table 6, and Table 7 compare the performance of 
the  algorithms.  The  minimum  support  vs  time  taken  are 
plotted for (T = 10, I = 4, D = 10K), (T = 10, I = 4, D =  
100K), and (T = 40, I = 10, D = 100K), which are shown in 
Figure 10, Figure 11, and Figure 12 respectively.  Time is 
shown in the log scale.

Figure 10. T= 10; I = 4; D = 10K

Table 6. T = 10; I = 4; D = 100K
Minimum 

Support (%)
T10I4D100K
Apriori (sec) HFDM-EB (sec)

0.75 21039.1 134.2
1 12600.5 132.1
2 2365.1 131.7
5 1.3 132.1

Figure 11. T= 10; I = 4; D = 100K

Table 7. T = 40; I = 10; D = 100K
Minimum 

Support (%)
T40I10D100K
Apriori (sec) HFDM-EB (sec)

5 232 10.9
10 19 10.8
20 0.5 10.6
40 0.3 10.4

Figure 12. T = 40; I = 10; D = 100K

The time taken  to build the  bitmap is independent  of the  
number  of  frequent  item  sets.  But  Apriori's  time  drops 
drastically when the number of frequent items is low. Thus 
Apriori  was having a higher  performance  at  high  support 
levels where number of frequent item sets found is low.

VI. Conclusion and future work

Large  companies  for  decades  accumulated  data  on  their 
customers,  suppliers,  products  and  services.  Due  to  high 
rate of development of e-commerce working in Web start-
ups can turn into a huge enterprise in a matter of months, 
rather than something those years. And, as a consequence,  
will grow rapidly and their databases. 
Data mining, also called 'knowledge discovery in databases'  
[21]  provides  organizations  with  the  tools  developed  to 
analyse  the large  collection  of information  to find trends,  
patterns and relationships that can help in making strategic 
decisions.  In  this  paper  we  have  proposed  an  efficient 
algorithm for Association Rule Mining, which recovers the 
associations  as  the  Apriori  on  a  data  set  in  horizontal  
format, utilizing the bitmaps.
We have implemented the algorithm in Java, which may be 
more  efficient,  if  implemented  in  C  or  a  lower  level  
language, so that we can control the memory allocation, in 
the most optimal way for the algorithm, as we want. 
For each data item, a bitmap is created for each associated 
item. If there are n associated items for a data item, then the  
number of candidate sets generated is n(n-1). So there can 
be redundant bitmaps created for the same data item pairs.  
Currently,  redundant  pairs  are  pruned  after  creating  the 
vertical  format.  But,  if  there  is  a  dynamic  pruning 
mechanism  to  prune  redundant  data  item  pairs  while 
creating the vertical format memory can be well optimized. 
The  algorithm lends  well  to  Map Reduce  like  distributed 
data mining since mining of each data item is independent 
of  others.  Each  master  array  index  is  self  contained,  and 
hence  can  be mined  in  parallel.  So this algorithm can  be 
enhanced  to  work  in  a  distributed  environment  with  or 
without  a  shared  memory.  Here  data  structure  generation 
becomes  the  Map   phase,  where  the  result  accumulation 
becomes the Reduce phase, as in Map-Reduce.  
For some larger  data  sets that  are having many items per 
transaction, the algorithm fails to withstand due to utilizing 
prohibitive amount of memory. It can be mitigated by using 
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compressed  bitmap  [22]  implementation  instead  of  plain

 

bitmaps, so the memory is utilized better.
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