
 

 

Abstract: this paper investigates a method for instance 

selection in the context of supervised classification adapted to 

large databases. Based on the scale up concept, the method 

reduces the time required to perform the selection procedure by 

enabling the application of known condensation instance 

techniques to only small data sets instead of the whole set. The 

novelty of our approach relies in the way of hybridizing 

neighborhood and stratification approaches. The key idea is to 

consider instances found out for a given stratum to generate sub 

populations for the other strata representing critical regions of 

the feature space. Experiments performed with various data sets 

revealed the effectiveness and applicability of the proposed 

approach. 
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I. Introduction 

One of the primary, explicit challenges of the knowledge 

discovery and data mining community is the development of 

inductive learning algorithms that scale up to large data sets. 

The need is to turn towards more effective methodologies of 

data analysis which are capable of discovering the relevant 

information in reasonable scales of time and without 

parameter tuning. In the context of supervised classification, a 

database can be viewed as a training set, which is a series of 

patterns. Each training pattern is described by a set of features 

(from images, sounds, molecules...) and a class label 

specifying one of the possible categories. Comprehensibility 

and visualization are crucial issues for many applications in 

expert domain. At certain level, accurate models are not 

necessarily useful or interesting and other measures such as 

simplicity and novelty are also important. Rather than being 

interested in minute and quite often irrelevant details, the focal 

point is to reveal “phenomenal” at the level of some 

meaningful and easily comprehensible chunks of information 

that can be the object of fruitful interaction between experts. 

Before any further algorithm, it would then be well worth 

running a data reduction technique to deepen and improve the 

expert approach. The reduction deals with two complementary 

objectives. The first objective addresses feature selection [1] 

where the primary purpose is to design a more compact 

classifier with as little performance degradation as possible. 

The second objective aims at generating a minimal consistent 

set, i.e., a minimal set whose classification accuracy is as close 

as possible to those obtained using all training instances. In 

this case, we talk about condensation or instance selection 

algorithms [2]-[4]. From a database represented by a matrix 

Mmn (m being the pattern number and n the feature one), the 

idea is therefore to reduce M in both dimensions. Most of 

approaches consist of managing this double reduction problem 

sequentially. A condensation approach is applied to patterns 

represented in a reduced feature space or a feature selection 

approach is applied to a reduced set of patterns selected from 

the original feature space. This paper deals with condensation. 

A condensation problem can be set as follows: Let Z = z1, . . . , 

zp be a set of samples described by a set of features X = x1, . . . 

, xf . Each item, zj   R
f
 , is labeled, L = 1, . . . , l being the set 

of available labels. Given C1nn a nearest neighbor classifier, 

the optimization problem consists in finding the smallest 

subset SZ such that the classification accuracy of C1nn over Z is 

maximal. The ultimate objective is to clearly find the smallest 

set of instances that enables the classifier to achieve nearly 

similar or better classification accuracy compared with the 

original set. In any cases, this smallest set of instances enables 

to deduce training sets without irrelevant samples on the basis 

of well-classified patterns. While remaining a challenging 

issue, condensation methods have been extensively studied in 

the literature by several exploratory techniques [5]-[9] 

including evolutionary algorithms [10]-[12]. These methods 

are general built upon the well-known k-NN methods 

[13]-[16] and usually seek to select representative instances, 

which could be border and/or central points. The reader 

interested can refer to [17] for a more theoretical review. 

Several methods give satisfying results and, among them, the 

DROP family ones [4] are the most popular today within the 

pattern recognition community. Their aim is discarding the 

non-critical instances. Starting from the original set, they 

remove the instances step by step, in an ordered and 

decremental way. An item is removed if at least as many of its 
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well classified neighbors can be correctly classified without it. 

Today, available methodologies and algorithms are 

sufficiently mature to handle a majority of problems with small 

sizes. In return, it is well-known that, for a problem of 

non-trivial size, the optimal solution of an instance selection 

problem is computationally intractable due to the resulting 

exponential search space. Tuning parameters is not anymore 

possible for large databases. The available algorithms mostly 

lead to suboptimal solutions and are incapable of providing 

acceptable solutions in an appropriate time. The speed of 

convergence has not been taken into account in the algorithm. 

For this reason, we consider another criterion Tsz called 

tractability that defines the necessary time to obtain SZ. 

Different solutions have been investigated as the design of 

faster algorithms [18]-[20], the use of a relational 

representation or simply adopt the idea to take a random 

sample for running the data mining algorithm on it.  

Several authors have also suggested adaptive or dynamic 

sampling approaches [19]. Random sampling remains difficult 

to use due to the difficulty of determining an appropriate 

sample size, and performances depend on it.  

Through this idea, there is a danger of introducing a new bias 

into the learning, and determining an adequate sample size is a 

critical issue since theoretical results give impractical sizes.  

If various solutions to handle the cases of non-trivial size can 

be imagined and combined, they seem to be not enough 

efficient for large databases.  

More recently, several studies have proposed the use of 

scalability by approaches based on data partitioning [21]-[24]. 

The latter involves breaking the data set into subsets, learning 

from one or more of these subsets, and possibly combining the 

results. Data partitioning can be roughly done through 

“clustering” and “stratification” family approaches that in 

different views operate one “segmentation”.  

The stratification reduces the original data set size, splitting it 

into strata where the selection will be applied. The tractability 

is logically better, but the approach however requires 

application of an instance algorithm to all strata and this can be 

still time consuming. Olvera-Lopez and all propose a new fast 

instance selection method [23] for large datasets, based on 

clustering, which selects border prototypes and some interior 

prototypes. They propose to divide the training set in regions 

in order to find prototypes into small regions instead of finding 

them over the whole training set, which is very expensive. This 

approach appears to be an interesting direction but the authors 

do not explain how they handle the clustering problematic 

itself (cluster number, convergence…). An alternative 

approach consists of applying the divide-and-conquer 

principle [24] for scaling up instance selection algorithms, the 

idea being to apply in a recursive manner an instance selection 

algorithm to the selected instances of each subset regrouped in 

a new training set. This approach enables to seriously reduce 

the instance number, but does not address the tractability issue.  

Despite some successes of recent approaches, there is 

therefore a place for an improved method for selecting 

instance data. 

The object of this paper is investigating a novel hybrid 

algorithm for instance selection with the objective to 

concentrate our efforts on the tractability aspect. The 

hybridization is structured in such a way that the classifier 

tractability and efficiency are optimized.  

This algorithm manages the presence of minority classes. As a 

recall, minority classes are those that have few examples with 

respect to other classes. Our approach hybrids cluster and 

known instance selection techniques. The key idea is to 

consider instances found out for a given stratum in order to 

generate sub populations for the other strata. Instances firstly 

generated are automatically clustered allowing the populations 

representing the other strata to be fuzzy partitioned. A 

condensation algorithm applied to the sub populations 

obtained via a 1-nn procedure allows the other instances to be 

delivered.  

This paper is organized as follows. Section 2 presents the 

hybrid approach to selecting instances and section 3 is 

dedicated to experimental results. Finally, Section 4 reports 

some concluding remarks and presents direction for further 

research. 

II. Proposed approach 

Our approach is based on the standard assumption to divide 

the initial population in strata. The idea consists of combining 

the use of neighborhood and condensation techniques to 

reduce the time required to perform the selection. The strata 

are firstly generated by including the problematic of minority 

classes. Then, the idea of the method is to apply a 

condensation algorithm Cs only to one stratum in order to 

obtain a set of preliminary instances (See Figure 1).  This set is 

then automatically clustered via a proprietary algorithm 

providing several regions of interest. According to the 

clusters, interesting (influencing) patterns from the different 

strata are identified for each region to form new subsets Sri. 

Instances are therefore generated directly from Sri or subsets 

of Sri depending on the cardinality of each subset. The 

instances generated from the different regions are put together 

to constitute the final dataset. 

 

Figure 1. Ip is generated via Cs from one stratum leading to nc 

clusters. Influencing patterns (Sri) are then determined via 

1-nn procedure. Instances are then generated.   

The process gains in efficiency as instances are found from 

small pattern sets instead of over the whole strata population. 

Our method is applicable to any condensation algorithm, this 
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last one being a parameter. The original idea of using 

clustering or neighborhood approach to perform instance 

selection is not new, neither the one to divide the initial 

training set in strata. Our method hybridizes these different 

ideas and the novelty relies in the way the hybridization is 

performed. The stratification is double and selective.  

A. Data set partitioning in strata 

 

The goal is to subdivide the training set into strata regarding 

the scalability aspect by making the searching process 

tractable and taking into account the problem of minority 

classes. The number of patterns for each category is generally 

different. Suppose known a minimal size in each stratum for 

each category in presence. We can deduce the number of strata 

c by selecting the category representing the maximum number 

of patterns. We propose to subdivide the training set T 

(  c][1,i T  T i
i

 ) by considering each category 

independently. Then, for each category i, it is possible to 

partition Ti in ni subgroups or strata, each of them having a 

cardinality  ]n[1,j  /nT  T iiiij  . Each stratum Sp is 

composed of Tik ]n[1,k and c][1,i i ,  

 

]n[1,jTT iiji 
j

   (1)                    

 

The idea is to design strata by selecting the minor classes more 

frequently in order to make the class values uniformly 

distributed. Algorithm 1 consists of selecting the category 

having the largest number of subgroups, from which the 

stratum number is deduced. Then the algorithm consists of 

sequentially joining the available subgroups of the other 

categories. According to this process, some categories are not 

naturally present in some strata. Then, the completion is done 

for each stratum by randomly selecting a subgroup related to 

the categories not already included (Figure 2). 

 

 
 

Figure 2.  Example of stratum construction. As n1=5, n2=3, 

n3=2 there is 5 strata. In stratum 3 to 5, some subgroups from 

class 2 and 3 are present at least two times. 

 

Except for the category having the largest number of 

subgroups, some subgroups of the other categories are present 

in different strata. 

 

Algorithm 1. Strata construction 

Let n1; n2; . . . nc be the number of subgroups for each category, c the 

number of categories in presence and Si the data set of stratum i. 

 

1. Find s / ns = max (ni) c][1,i  

2. For i=1 to ns  ]n[1,iTS ssii  (initialization of each 

stratum with class s) 

3. For k=1 to c, For i=1 to nk,  

kq
q

ii T SS , q    [1, nk] 

4. For i=1 to ns, for k=1 to c 

iiS S  if class k is present else 

kqii T SS , q    [1, nk] is a random 

number 

 

Regarding the stratified strategy, initial training data set T is 

divided into N sets Si strata of approximately equal size, S1, S2, 

. . . ,  Sns, with a revision of class distribution within each 

subset.  

 

]n[1,i)S(T si      (2) 

 

Different approaches to manage the problem of minor 

categories can be found in [25]-[26].  

 

B. Data set partitioning in regions of interest via preliminary 

instances 

 

The goal is to select interesting patterns in each stratum from 

which instances can be generated. This set is fuzzy partitioned 

into subsets that identify regions of the feature space. The idea 

underlying our method is that instances determined for a given 

stratum can serve as references to select interesting patterns in 

the other strata. The central point is to know how to find these 

patterns. Let be a condensation algorithm CS that generates a 

set of instances from a given training set. CS is then applied to 

a stratum j giving a set of preliminary instances Isj also called 

Ip. The aim of condensation methods is to remove those 

instances that do not affect the decision boundary. Therefore Ip 

is generally very small compared to initial training set and 

gives information on the shape of the decision boundary.  

It can be advantageously used to generate instances for the 

other stratum. The goal is to make the overall process as most 

tractable as possible. Then, our strategy consists of sub 

dividing Ip in nc clusters, each of them covering a part of the 

decision boundary. Consider stratum 1 as the starting stratum 

to generate Ip. 

 

1pcjpS1p SI and ]n[1,jIII      (3)              

Each cluster has to be minimally consistent and the number the 

higher, the goal being to preserve efficiency while promoting 

the procedure computation. Many cluster approaches have 

been proposed and tested over the years have led to the 

common understanding that no universally “best” method 

exists. This understanding may be “natural,” but an extensive 

comparison has yet to be made among different validity 

measures [27].  

In our case, the idea is to have each cluster containing at least a 

minimum number of elements in the neighborhood of a given 
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volume, to avoid null or very small clusters that are 

undesirable. 

It should be underlined that even if the shape of the decision 

boundaries is complex, |Ip| is very small in most of cases. This 

enables a very fast computation and also allows to applying the 

algorithm without any manual tuning.  

We have developed a specific algorithm QUC (Quick 

Unsupervised Clustering) [28] particularly efficient to select 

critical classification prototypes from a database. An 

improved version of this algorithm QUC1 is applied to Ip in 

order to determine nc clusters.  

Then, it is possible to define around each cluster an influence 

region Ri of the searching space. Each region Ri overlaps with 

its neighbors to avoid any intersection between the cluster and 

the category boundaries. It should be mentioned that the 

centers may not be representative of all the members, the 

distance between them being too large. More generally, 

clustering methods generally lack a precise control of the 

geometric size of each cluster. Each region is then identified 

by a subset of preliminary instances instead of a virtual cluster 

center. 

 

QUC1 algorithm: 

The general outline of QUC1 algorithm is illustrated in Figure 

3 and can be depicted as follows: 
 

Let p1; p2; . . . pn be the set Ip of preliminary prototypes, kr the number 

of nearest neighbors desired, and Hi the hyper sphere related to pi. 

 

1. Select the point ps from Ip having the highest local density: 

initialize it as the first cluster (Is = ps) and update cp with ps. 

2. Deactivate all points pj from Ip belonging to Hi. The set 

consisting of the remaining points is renamed as Ipa. 

3. Select the point pi from Ipa the farest to cp.  

4. Select among the kr nearest neighbors of pi (including the 

inactive points) the point ps presenting the highest local 

density. 

5. Update cp and Is 

6. Repeat Step 3 to 5 until Ipa becomes a null set. 

 

The approach consists of a dual distance principle and 

neighborhood concept, which aims at finding prototypes 

iteratively to cover the pattern space by respecting some rules. 

Each prototype pi defines an influence region determined by 

both its kr nearest neighbors and a volume vi automatically 

calculated on the basis of information delivered by Ip. Each 

new prototype has to be simultaneously far from a given 

prototype cp while presenting a potential in classification. cp is 

the prototype presenting the minimum distance with the 

prototypes already selected. Each prototype pi defines an 

influence region determined by both its kr nearest neighbors 

and a volume vi automatically calculated on the basis of 

information delivered by Ip . 

 

)(*
Ip

1

1 ip

i

nni Idvv 


     (4) 

 

where d1nn(x) is the one nearest neighbor distance of pattern x 

and the Ip elements except x, ]1,0[ . A pattern xHi if it 

lies within a disc of radius centered at pi or if it belongs to its k 

nearest neighbors, the value being fixed regarding the minimal 

consistency aimed. According to only the nearest 

consideration, regions of higher probability density are 

covered by smaller discs, and sparser regions are covered by 

larger discs. Consequently, more points are selected from the 

regions having higher density. By including the volume vi, this 

assumption is attenuated and allows to moderate the leader 

number. It should be underlined that even if the shape of the 

decision boundaries is complex most of cases |Ip| is very small. 

This enables a very fast computation and also allows to 

applying the algorithm without any manual tuning. 

 
 

 
Figure 3. QUC1 illustration: the process enables to 

have each cluster containing at least a minimum 

number of elements in the neighborhood of a given 

volume. Possible outliers are naturally discarded 

through this procedure. 

 

It has to be underlined that kr (1.. |Ip|) can be fixed a priori or 

by considering the ratio between the number of clusters and 

the maximum desired value cmax. If a cluster Ci is mainly 

composed of instances of the same category, it is associated to 

its nearest cluster containing an instance of another category.  

The selection is then done on the basis of the distance between 

two clusters Ci and Cj denoted as dc (Ci ,Cj): 

 

),(dmin),(

)cat(y)cat(y and

Cy andCy

nm

jn im

nmjic yyCCd




   (5) 

 

where d(ym, yn) is the Euclidean distance between ym and yn 

while cat (y) identifies the category of y. 

Ci is reinforced by adding some instances of Cj of different 

categories. The first condition for an instance y  Cj to be 

recruited is to be a nearest neighbor of one instance z of Ci and 

from a different category. The second condition for y is that z 

is its nearest neighbor among the z category. Some possible 

redundancies are not handled in this version.  

The process is illustrated with an academic problem (Figures 

4-7) of 10000 patterns that does not present any classification 

difficulty when managed by neighborhood approaches. It 

consists of four well separated rectangular clusters, two for 

each category shown (Figure 4). Clustering results are 

illustrated through different elementary stratum size (from 

Figures 5 to 7). The Figure 8 depicts the “crisp” segmentation 

obtained with an elementary size of 50 patterns per category 

without operating the selection (α=100%). The 26 delivered 

instances gives 7 clusters (kr = 3) on the basis of 190 instances 

(seven are discarded). The computation time necessary to 

perform the segmentation is composed of the Cs time for 100 
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patterns, the clustering of 19 patterns and the calculations of 

1900 distances (190 for each stratum). 

 

 
Figure 4.  Basic and academic example including two 

categories, each of them represented by two rectangles 

comprising 10000 points. 
 

 
Figure 5. A circle point in the picture is an instance that 

identifies one cluster. It is linked to its nearest neighbors. 

This configuration has been obtained from one stratum of 

800 patterns (400 for each category). 

 

 
Figure 6. Configuration with 200 patterns per stratum 

 

 
Figure 7. 26 different instances recruited from one 

stratum of 100 patterns have given seven clusters.  
 

 
Figure 8. Database “segmentation” with seven 

clusters with α=100%. C3, C6 and C7 are reinforced 

with instances from respectively C4, C7 and C6. 
 

C. Instance determination in each region 

 

Let the cluster be represented by vectors z1, z2, …, zβ in 

p-dimensional Euclidean space where β is the number of 

clusters. Each cluster zi is attached to a set of instances zij 

(j=1,…, βi) where βi is the number of instances for the cluster i 

including its center and |Ip|=





1i

i .  

A classical 1-nn procedure is used to determine the members 

of each cluster on the basis of the attached instances. Patterns 

to be clustered are denoted by xk (k=1,…, n), n being the 

number of total patterns. A pattern x is defined as an 

influencing pattern for the active cluster Ca if it stands closer 

that another member from another cluster. It therefore belongs 

to its influence zone if one of the instances attached to this 

cluster is its nearest neighbor. A pattern y is attached to Ca if: 

 

  to1i
 C z

n
Cz

m

inam

))zd(y,min()zd(y,




    (6) 

but it is discarded if is not one of the ki nearest neighbors. ki is 

estimated as the ratio between the patterns concerned by the 

decision boundaries (α*n) and the number of reference 

instances (where α identifies the overall ratio of influencing 

patterns for determining the decision boundaries).  

 

This “crisp” approach is a good base but not sufficient as some 

patterns close to the decision boundaries can belong to several 

clusters. To take into account this point, a pattern x can be 

assigned to different clusters when the distances are similar. 

The matrix U = (µik) (i=1,…,β, k=1,…,n) is then introduced  to 

identify the degree of belonging of patterns xk to cluster i: 

 

kj,,0k;1,
1

jk 





i

ik    (7) 

 

This degree is calculated on the basis of dp, the distance from a 

pattern y to the cluster i: 
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),(dmin),(
 in Cz

nip zyCyd


      (8) 

 

The goal of this fuzzy partition in regions is to have a small 

overlap avoiding that the cutting between regions falls at the 

borders between categories. A simple threshold rule can be 

applied on the basis of µik. 

 

Then, for each stratum, it is possible to associate a subset of 

interesting training patterns related to each influence region. 

Each pattern is both identified by its membership of one 

specific stratum and of one or several regions of the feature 

space.  

A region is merged with another region if the number of 

members is too small. At the opposite, a region is split into 

sub-regions if it is too big. This can happen when the cluster 

number is small or in the case of heterogeneous category 

borders. The objective is to apply condensation algorithms to 

pattern set having a cardinality that does not exceed a pre 

defined value ps. This region “segmentation” is obtained by 

randomly extracting kp members from each stratum and from 

the active region to form a prototype set Sp of (ns* kp) 

cardinality. Sp is reinforced with the preliminary reference 

instances and clustered to produce a reduced set of prototypes 

Rp that identifies the sub-regions. Finally, a 1-nn procedure is 

applied to determine the sub-region members. 

 

D. Algorithm review 

 

The main operations of the standard process are the following 

ones. Firstly, it is necessary to apply a condensation algorithm 

Cs on one of size s to determine reference instances. Later, 

instead of processing a condensation algorithm Cs on a 

population containing n patterns, the approach consists of 

applying β times the algorithm Cs on small subsets.  

Most of popular condensation algorithms applied to a set of n 

patterns presents a complexity of 0(n
2
). Each operation 

presents then a complexity of 0(ni
2
), where ni is the size of the 

subset i identified by the instances attached to cluster i. If the 

subsets have different sizes, it is however possible to estimate 

the average size and therefore deduce the complexity. There 

are (α*(γ*n)) patterns distributed among β clusters giving a 

size of (α* (γ*n))/β, where γ (γ≥1) is a coefficient identifying 

the fuzzy part of the process. The recruitment of interesting 

patterns requires distance calculation and ordering in each 

stratum. The number of calculations is therefore |Ip|*ns*s. 

III. Experimental results  

Various benchmarks are therefore considered to validate the 

concept of the double optimization mechanism. As stated 

above, feature and instance selection are not independent and 

have to be considered globally. Our goal here is to focus on the 

instance part. Then, the selected data sets involve patterns 

represented by a few number of features suitable for applying 

k nearest approaches. The features are either the original ones 

or issued from a previous selection step. In our experiments, 

we have split off the data sets into training and test sets by 

applying a randomly partitioning. The condensation algorithm 

Cs selected to the stratification process is DROP4 [4]. It is 

based on two main parameters: the kf value for the filtering 

procedure and the knn value defining the k nearest neighbors 

considered in the processing. To simplify the tests, kf, knn, kp, 

kr, ps, cmax, α were respectively fixed to 1, 3, 4, 2, 300, 20, 60% 

for all the tests. Partition in strata was done to have 100 

patterns of each category in each stratum.  
The aim is to provide evidence that the performance of our 

stratification instance selection can be an interesting 

alternative to other approaches based on clustering. We 

therefore focus on the clustering approach presented in [23], 

which is conceptually the closest to ours. In this approach, the 

original training set is divided into regions via a clustering 

algorithm and prototypes are selected in each region. Like to 

the original paper, the c-means algorithm has been selected to 

perform the clustering. Different parameters have been tested 

in order to provide a fair comparison between the two 

approaches. 

A. Data sets used 

 

Nine data sets with well-known decision boundaries (except 

for one set) have been selected. Some of them have been 

downloaded from the UCI repository [29], some others are 

artificial, and the last one comes from the field of 

chemometrics. Focusing on applications dealing with 

databases of several thousand patterns, datasets including 

5000 patterns have been considered for preliminary tests. 

Some random Gaussian noise was added to each dimension to 

obtain such data sets. 

Concerning the artificial datasets, two category classification 

problems respectively in 1-D (named linear 1-D) and 2-D 

space (named square) with linear boundaries have been 

considered. We have also considered two class classification 

problems where each class follows a Gaussian distribution in 

the 8-D space. The first class is represented by a multivariate 

normal distribution with zero mean and standard deviation 

equal to 1 in each dimension; for the second class, the mean is 

also 0, but the standard deviation is 2 for each input variable. 

Furthermore, the 2-D spiral classification set, subject of many 

benchmarks, has been selected for its interesting complexity. 

The data points for the two classes Ck   (k= 1, 2) are organized 

in spiral around each other for a same number of patterns in 

each class. For the data set called “chem.” (5000 patterns, 166 

features, 4 classes) coming from the chemometric field, most 

compounds were derived from analyses of the chemicals in a 

fathead minnow acute toxicity database [30]. To focus on the 

instance aspects only, relevant features have been selected 

before via our home made Genetic Algorithm [31].  

B. Tests 

 

Different cluster numbers (from 5 to 12) have been considered 

for the evaluation. Each algorithm was run independently with 

a different seed for the random number generator. The average 

of the results obtained by each algorithm in all data sets 

evaluated is shown in Tables 2 (our approach) and 3 

(clustering approach done with 5 and 12 clusters). These tables 

are grouped in columns and, for each one, accuracy in training 

set, accuracy in test data, the number of final instances and the 

tractability are indicated. 

 

For both data sets, our algorithm has clearly a better 

tractability than the clustering approach whatever the number 

of clusters. The difference depends on the complexity of the 
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boundaries, the density distribution of each population, and 

the number of clusters. 

 

 

 Sample 

number 

Feature 

number 

Class 

number 

Linear 1-D 5000 1 2 

Square 5000 2 2 

Gauss8D 5000 8 2 

Concentric 5000 2 2 

Clouds 5000 2 2 

Spiral 5000 2 2 

Phoneme 5000 3 4 

Cancer 5000 4 4 

Chem 5000 4 4 

Table 1. Data sets used for our experiments 

 

The biggest difference is obtained with the spiral problem 

presenting a ratio of more than ten. The difference between the 

methods is less relevant when the number of clusters increases. 

In the first case, the number of regions is directly driven by the 

process itself that combines the number of preliminary 

instances found for one stratum, cmax and ps. In the second one, 

there is no indication about the appropriate number of clusters. 

Delivering relevant information without evaluating the 

complexity of the decision boundaries before is not possible.  

Concerning the number of instances found by the approaches, 

it is difficult to distinguish relevant differences between the 

methods.  

Most of time, the ratio between the results is less than 10%, 

and there is no clear advantage for a given algorithm. This can 

be easily explained; our approach is based on the same idea to 

apply a condensation algorithm to subsets of the original set. 

The difference relies only on the way to determine the subsets.  

Concerning the classification performances, the clustering 

approach gives slightly better results for most databases. For 

the chemometric database, around 2% of difference for the 

training set, when applying the clustering approach, is found. 

This is probably due to some imperfections in the division 

procedure. We should investigate in this way to improve this 

point. 

Concerning the performances, we have to mention the poor 

results for the square database obtained with the clustering 

approach. With 5 clusters, only about 85% of classification 

has been obtained whereas 92% is obtained with 12. If a 

simple modification in the native algorithm can solve this 

issue, the results bring however two remarks: the number of 

clusters remains problematic, and clustering approaches are 

not the most suitable for classification purposes. They remain 

unsupervised techniques and do not include the classification 

boundaries. 

 

Finally, we would like to point out that our proposal in this first 

version appears to be competitive with other models, 

especially regarding the tractability criterion. On the basis on 

these preliminary tests (that need, of course, to be completed 

with larger databases), the scaling up problem is well 

managed.  

 

 Train 

(%) 

Test 

(%) 
Tsz(s) 

Instance 

number 

Linear 1-D 99,8 99,7 0,06 17 

Square 98,7 99,8 0,8 67 

Gauss 8-D 86,1 85,9 0,34 280 

Concentric 97,8 98,1 0,2 145 

Clouds 83,6 83,8 0,9 211 

Spiral  95,9 96,1 0,9 421 

Phoneme 86,2 85,3 1 45 

Cancer 99,8 99,9 0,11 9 

Chem 81 81,1 1,7 472 

Table 2. Results for the 9 data sets with our approach 

 

 

 

Train 

(%) 
Test (%) Tsz(s) 

Instance 

number 

Linear 1-D 99-98 99-99 0,17-0,27 5-9 

Square 85-92 84-92 3,6-2,1 16-26 

Gauss 8-D 87-88 88-89 11,7-4,6 288-301 

Concentric 98-97 99-98 0,8-0,8 107-112 

Clouds 85-84 85-85 4,3-2,9 392-388 

Spiral 95-95 94-94 17,9-6,8 356-353 

Phoneme 88-88 86-87 5,2-3 279-287 

Cancer 99-99 99-100 0,2-0,3 12-11 

Chem 83-84 82-82 10,2-5,2 486-473 

Table 3. Results for the 9 data sets with the clustering 

approach 

 

C. Discussion and perspectives 
  

In a discovery approach we do not have to excessively worry 

about the classification accuracy. The essential is to avoid and 

change the result drastically and, especially, deliver 

understandable and viewable information that allows a better 

expert exploration support. The tractability is therefore 

critical. The method has been developed in this direction while 

keeping the idea of clustering that appears mandatory. 

The dataset used in this work are not really large and complex 

(regarding the shape of the decision boundaries) except for the 

“Chem” database. For most classification problems, patterns 

that are concerned by the decision boundaries present a very 

little ratio of the whole population, say less than 10%. A value 

of α = 60% was fixed in our test to compensate the fact that the 

same a priori small size was used for all the datasets. 

The results obtained through this preliminary version on 

various databases are very encouraging and show that the 

concept is worth to be deeper investigated. 

Some optimizations are therefore in progress to make the 

progress more automatic and reliable for managing very large 

databases and face different complexities. They concern the 

way the strata are generated and the recruitment of interesting 

patterns in each region from which the condensation 

algorithms are applied. These two points are linked and then 

have to be managed jointly. The more the preliminary 

instances are close to the true boundaries, the smaller sets can 
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be obtained leading naturally to better computation processing 

time. Similarly, the higher the cluster is, the smaller the pattern 

sets are. Accuracy related to the preliminary instances has 

however a cost; the tradeoff between accuracy and 

compactness has to be managed. 

For the first point, it has been demonstrated that there is a 

serious difficulty to define the adequate size of a random set to 

work on it instead of the whole data set. This is a critical point 

but, by now, poor attention has been paid to the relevance of 

the simple stratum information, and the problem, in the recent 

scalability approaches [21]-[24], is solved by recommending a 

priori sizes. It is however possible, by some elementary 

statistical considerations, to define a minimal size of the strata 

from which the elementary distributions for each category are 

minimally represented. If this point has not been directly 

treated, there are different studies on the field that offer some 

interesting ingredients [32], [33]. If each stratum is minimally 

represented, it is then possible to cumulate several strata to 

obtain a “meta” stratum that fits to the boundaries complexity 

where the level of accuracy is better controlled. 

For the second point, there is clearly a place to optimize the 

size of influencing patterns from which the condensation 

algorithms can be applied. The distribution Y of the nearest 

distances of the reference population can be processed and 

easily modeled via an exponential distribution from which the 

mean E(Y) and standard deviation (Y) can be computed. 

Larger values of E(Y) indicate sparse organization and 

conversely small values indicate dense organization. This 

information combined with more local considerations gives 

relevant criteria to implement a more selective process in the 

recruitment of influencing patterns. 

We should also underline that others combinative alternatives 

to apply condensation algorithms to small sets can be 

investigated and are in process. Each of them has naturally 

some strengths and weaknesses. They can be alternatively 

applied regarding the problem to be faced. 

IV. Conclusion 

In this study, a novel hybrid algorithm for instance selection in 

the context of supervised classification was investigated. 

Based on scalability concepts, it generates an efficient instance 

set in a few selection steps and manages the presence of 

minority classes. The scalability concerns the division of the 

algorithm in strata, but also the division of strata in regions 

which considerably reduces the time required to perform the 

selection. The novelty of our approach relies on the way to 

apply condensation and clustering algorithms to only small 

sets of patterns. Experiments performed with various data sets 

revealed the effectiveness and applicability of the proposed 

approach. As proved by the results, this algorithm is likely to 

give satisfactory results, within a reasonable time, when 

dealing with non trivial-size data sets.  
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