
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 4 (2012) pp. 578- 588
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Marina Yusoff1, JunaidahAriffin2, Azlinah Mohamed1

1Intelligent System Group
Faculty of Computer and Mathematical Sciences

UniversitiTeknologi MARA
40450 Shah Alam, Selangor

Malaysia
marinay, azlinah}@tmsk.uitm.edu.my

2Institute for Infrastructure Engineering & Sustainable Management,
Flood-Marine Excellence Centre,

Faculty of Civil Engineering
UniversitiTeknologi MARA
40450 Shah Alam, Selangor,

Malaysia
junaidahariffin@yahoo.com

Abstract: This paper proposes a discrete particle swarm
optimization (DPSO) for the solution of the shortest path problem
(SPP). The proposed DPSO termed as DPSO_SPP adopts a new
solution representation which incorporates a search
decomposition procedure and random selection of priority value.
The purpose of this representation is to reduce the searching space
of the particles, leading to a better solution. Detailed descriptions
of the new solution and the DPSO_SPP algorithm are elaborated.
Computational experiments involve an SPP dataset from previous
research and road network datasets. The DPSO_SPP is compared
with a genetic algorithm (GA) using naive and new solution
representation. The results indicate that the proposed DPSO_SPP
is highly competitive and shows good performance in both
frequency of obtaining an optimal solution and rate of
convergence in comparison with the GA_SPP, PSO, and GA. In
particular, DPSO_SPP with the use of inertia weight had shown
better solution to SPP compared to constriction coefficient (CF).
The quality of the solution achieved through DPSO_SPP for all
datasets indicated higher potential in achieving the optimum
results for SPP, serving as a good ground to further test the
algorithm on larger datasets.

Keywords: discrete particle swarm optimization, genetic

algorithm, random selection, search decomposition, priority value,
shortest path problem.

I. Introduction
The shortest path problem (SPP) has been widely discussed
over several decades. Although extensive research has been

done in variants of SPP with the development of an exact
algorithm [1][2] and heuristic algorithms [3][4][5], a faster
solution is still required. This solution is crucial because SPP is
a core problem in several domains such as transportation [6]
and vehicle routing [7][8]. Some research [6][9][10][11][12],
committed to the improvement of SPP solutions and computer
memory usage, enhanced the well-known Dijkstra algorithm
and k-Shortest path algorithms. Even though they can yield
optimal or near optimal solutions, the algorithmic approach has
still required an exhaustive search and consumed more
processing time, due to the nature of algorithms.
Taking a different approach, Gen and Lin [13] introduced
random key-based GA using a real value priority-based
encoding for solving SPP. Their approach improved the ability
to reach an optimal solution as well as processing time.
However, a method using particle swarm optimization (PSO)
outperformed the GA. A range of random discrete priority
values (PVs) representing all of the nodes in a network graph
offered 95% optimal solution for PSO, but this method required
between 100 and 3000 iterations using 30 populations of
particles. Another PSO implementation [4] on a stochastic SPP
required more than 50 populations of particles for 100%
convergence (traversing until destination node) for 10 nodes but
less than 80% of convergence for 15 nodes using 150
populations. This work relied on the use of probability
distribution of the cost for each edge using real value.

The drawbacks of PSO implementation in these methods
inspired us to further the work of Mohemmed et al [5],

recognizing the usefulness of discrete value representing the
position of the particles and its potential to obtain fast optimal

Discrete Particle Swarm Optimization with a
Search Decomposition and Random Selection

for the Shortest Path Problem

Dynamic Publishers, Inc., USA

solutions. Hence, this paper investigated a new solution to SPP
with the objective function to find the minimum distance. A
single source and a single destination for the SPP are
considered. The linear SPP is adopted from Santos et al [10]
and Gen and Lin [13] is defined as follows:
Let G = (N, E) be a weighted directed graph where N = {N0, N1,
N2,...,Nn} represents the set of nodes. N0 is the source node (the
vehicle location), while Nn is the destination node (PFA). E is
the set of edges, where for each edge (i, j) ∈ E, a non-negative
value Cij represents the length of edge (i, j), or equivalently, the
distance between node i and node j. The objective is to find the
path from the vehicle location to the PFA with minimum
distance. The SPP is mathematically formulated as follows:

 (1)

subject to:

 – = (2)

 (3)

where

i = index of nodes, i

j = index of nodes, j

Xij = binary variable which is 1 if the node i to node j is
traversed, otherwise it is 0.

Constraints 2 ensure that the path starts at N0, end at Nn, and
either pass through or avoid every other node j. Constraint 3
indicates the binary decision variables of the problem. The
objective function 1 calculates the distance of the shortest path.
This paper addresses this problem with the aim to improve the
processing time of the algorithm and its solution.
The remainder of this paper is organized as follows. Section II
discusses PSO and Section III explains both the naive and new
solution representations. Section IV explains the proposed
DPSO with search decomposition and random selection.
Section V discusses the computational experiment and
discussion. Section VI presents the conclusions and
recommendation for future research.

II. Particle Swarm Optimization
PSO is a population-based stochastic approach, categorized
under swarm intelligence [14], for the solution of continuous
and discrete problems. This method was initiated by Kennedy
and Eberhart in the mid 1990s [15]. Basically, PSO indicates
the velocity and position of particles in a multi-dimensional
space. By updating both velocity and position, the global best
(Gbest) is derived from the simulated social behavior of a group
of particles [16]. PSO is able to explore regions of the search
space and exploit the search to refine feasible solutions. The

ability of searching strategies is based on parameters;
acceleration constants and inertia weight [17][18] that have
been applied in the PSO algorithm.

A considerable amount of research has been directed toward
the modification of canonical PSO to solve several types of
continuous problem. The inventors of PSO explored discrete
binary PSO with special attention to discrete problems, leading
to a new way of updating the position of particles [19] to
accommodate discrete binary problems. This was further
improved by several studies using a benchmark dataset [20][21]
and a real world problem [22][23] of discrete nature. The use of
DPSO with multiple (rather than binary) discrete values to solve
combinatorial problems in SPP were explored by [5].
In this work, equation 4, 5, and 6 were employed for velocity
and position updates. Equation 4 shows the constriction
coefficient (CF) value derived from acceleration constant
parameters. Equation 5 performs the calculation of new velocity
while Equation 6 executes the position updates. Both velocity
and position are in positive integers.

 (4)

where .

Vid(new)=CF Vid(old) + C1 r1 (Pbest(id) - Xid(old) + C2 r2
(Gbest(id)-Xid(old)) (5)

 Xid(new)=Xid + Vid(new) (6)

The discrete multi value for particle representation has
demonstrated some decrease in the search space that encourages
fast convergence and optimal solution. Due to the high number
of iterations in the work of Mohemmed et al [5], a modification
is needed particularly in the selection of particles. The
movement of particles are in the n-dimension, where n is the
total number of nodes. The movement of particles can be
reduced with the embedded decomposition procedure [24]. A
detailed explanation of the naive and new solutions is given in
Section IV.

III. Solution Representation

A. Naive solution representation
In the naive solution representation the position values of the
particles are represented with PVs; each node has its own PV,
and PVs were randomly initialized. Figure 1 demonstrates that
all nodes from N0 to Nn are represented using multi discrete
values of PVs, in which a row of PVs corresponds to one
particle. PVs are randomly assigned to each node in a specific
range, i.e, [-100, 100] and selected according to its maximum
value. It does not matter whether PV values go from minimum
to maximum value or from maximum to minimum; the essential
is that the PVs be sorted according to this method. The details of
the selection process can be found in [5].

 579 Yusoff, Ariffin and Mohamed

 Particle Number 1

Figure 1. Solution representation [5]

This solution, however, required more than 100 iterations for a
small-scale SPP, with a number of nodes between 15 and 70. It
can be seen that the movement of particles depends on the
number of nodes represented in the n-dimension’s space of
search. However, since the values of PVs in the form of multi
discrete values present some limitations to the movement of
particle positions in the search space, the iteration number
should be reduced for faster convergence and to obtain an
optimal solution. Therefore, we propose a means of reducing
the search space by emphasizing a new way to select PVs and to
maintain the use of discrete values for PVs. This solution is
explained in the next section.

B. New solution representation
The idea of representing a new particle position came from the
fundamental concept of the search process in a graph [25]. We
propose a bounded decision for PV selection, using a search
decomposition procedure. The procedure, adapted from the
work of Mohemmed et al [5], is as shown in Figure 2. This
procedure enables some limitation of the search space in the
movement of particles. The search decomposition imposes the
expansion of nodes from source node/parent node, as illustrated
in Figure 3. At the Level 1, a source node is selected, N0. As
shown in Figure 4, N0 is expanded into two paths/branches,
N0-N1, and N0-N2. This level designates sub-particle number 1.
Then, an array of two PVs is considered. The PVs that represent
each of nodes, N1 and N2, are randomly selected. The selected
PV of the particular node is assigned to a minimum value of
PVs, for example, PV2 in Figure 5 is assigned to -100. Then, a
path of at Level 2 is expanded, showing the number of PVs and
the assignment of a minimum PV for the selected node/ path,
respectively. At the Level 1, node N2 is selected to expand,
while at the Level 2, N5 is selected and finally, at the third level,
only one PV value is taken into account, and finally the
traversing arrives the destination node, D1. From this
illustration the total distance (fitness value) is calculated from
the generated route of N0 - N2- N5 -D1.

Figure 2. A search decomposition procedure

Figure 3. The illustration of search decomposition into
branches

N0 - N1 N0 - N2

PV1 PV2
5 -3

PV1 PV2
5 -100

Sub-particle Number 1

Figure 4. Illustration of a sub-particle for the Level 1

N2 - N5 N2 - N6

PV1 PV2
15 22

PV1 PV2
-100 22

Sub-particle Number 2

Figure 5. Illustration of a sub particle represented by PVs at the
Level 2

In summary, the initialization of PVs depends on the number of
nodes, and the path selection is based on the random selection of
PVs during the expansion of the graph. Theoretically, this idea
would reduce the search space compared to that obtained in the
naive solution for SPP. The implementation of this solution
representation in DPSO algorithm is discussed in the next
section.

N0 N1 N 2 ... N n-1

Nn

PV0

PV2 PV3 PV n-1 PVn

1: Do
2: If there is no leaf
3: Failure
4: Else
5: Expand nodes
6: Choose only one path in a random selection
7: Assign the PV of the selected path with PVmin
8: Calculate distance of the selected path
9: While (all nodes expanded or there is no leaf to expand)

N6

Level 3

(Distance)

Level 1

Level 2

N0

N1 N2

D1

N5 N3 N4

 572 A Continuous Learning for Solving a Face Recognition Problem

580 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem

IV. DPSO with Search Decomposition
Procedure
The new solution representation discussed above is therefore
implemented in a modified PSO named as DPSO_SPP, as
shown in Figure 6. The algorithm starts with the normal process
of PSO initialization, which initializes the number of
populations, coefficient values, and then C1 and C2 in step 2 and
step 3, respectively. Step 4 is the initialization PV and
velocities. Step 5 performs the steps for the search
decomposition with random selection. In this step, only one
path is selected and node with PVmin is selected upon selection of
the path as demonstrated in Figure 6. After all the nodes are
expanded, the Pbest and Gbest of each particle are calculated.
Pbest is the total distance for each particle, whereas Gbest is the
minimum total distance obtained from all particles. The
iteration proceeds from step 7 until step 20 until a maximum
iteration is achieved. In this iteration, each particle is
respectively updated with a new velocity update and position.
The new velocity and new position value are in the form of
positive integers. Then, PV for all sub-particles is updated using
step 11. Step 12 performs the decomposition and random
selection of PV. Pbest(new) and Gbest(new) are calculated in step
13 and 14, respectively. Steps 15 through 19 are the conditions
for the selection of the best current fitness for each iteration.

Figure 6. DPSO_SPP algorithm

V. Computational Experiment and Discussion
This section discusses the results of implementing the new

solution compared with the naive solution for SPP. A
comparative study was done comparing the results of the
proposed DPSO (DPSO_SPP), GA using the new solution
(GA_SPP), PSO using the naive solution, and GA using the

naive solution. The main aim was to observe any improvement
in solutions when compared to the previous solution.

A. Experimental setup
Parameters as suggested in [5] are applied as shown in Table 1.
The value of inertia weight is selected from the range of this
parameter suggested by Shi & Eberhart [26]. Routes for the
road network datasets were obtained from GIS MAP software.
These routes were transformed into a graphic abstraction. This
graph was then transformed into an adjacency matrix
comprising a distance value for the valid node, with a value of 0
representing the invalid node. All experiments were conducted
on PCs with Intel(R) Core(TM) 2 Duo E8400 3.00 GHz and
2.00 GB RAM under Windows Vista. The algorithms were
applied using Java language. The performance of the
DPSO_SPP, GA_SPP, PSO and GA using a SPP0 dataset from
[5] and SPP1 until SPP13 are datasets from a road network
dataset during flash flood evacuation in Kota Tinggi. Table 2 is
the list of SPP datasets. Routes for the road network datasets
were obtained from GIS MAP software. These routes were
transformed into a graphic abstraction. The graph was then
transformed into an adjacency matrix comprising a distance
value for the valid node, with a value of 0 representing the
invalid node.

Table 1. List of parameters

Parameter Value

PVmax -100

PVmin 100

C1 2.05

C2 2.05

Initial Vmin -10

Initial Vmax 10

Initial weight, w 1.2 [26]

Table 2. List of datasets for SPP

Dataset Number of node Dataset Number of node

SPP0 [5] 20 SPP7 30

SPP1 13 SPP8 22
SPP2 36 SPP9 29
SPP3 13 SPP10 33
SPP4 22 SPP11 26
SPP5 26 SPP12 19
SPP6 37 SPP13 38

1: Begin
2: Initialize number of population
3: Declare C1 and C2
4: Initialize PV, Vmin and Vmax for all particles in
random
5: Perform search decomposition procedure
6: Calculate Pbest and Gbest
7: Do
8: For each particle
9: Calculate V(new)using equation (2.1)
10: Calculate PV(new)using equation (2.2)
11: Update PV for all sub particles
12: Perform step 5
13: Calculate Pbest (new)
14: Calculate Gbest (new)
15: If (Gbest (new) >Gbest)
16: Assign Gbest(old) as the best current fitness
17: If (Gbest (new) =<Gbest)
18: Gbest(old))= Gbest (new)
19: Assign Gbest(new) as the best current fitness
20: While (maximum iteration is achieved)
21: End

 581 Yusoff, Ariffin and Mohamed

B. Performance of DPSO_SPP in terms of obtaining an
optimal solution
 The results tabulated in this section are based on the application
of CF to DPSO_SPP as recommended from [5]. To illustrate the
performance of the new solution representation, all of the
algorithms were tested using two population numbers, i.e.10
and 20 populations. Figure 7(a) and 7(b) show the results of
DPSO_SPP and PSO with 100 iterations for 10 populations and
20 populations, respectively. The graph in Figure 7 shows the
current Gbest value (currGbest) and the best current fitness
(Gbest). Figure 7(a) demonstrates near-optimal solution
achievement at each of iteration, DPSO_SPP obtained optimal
solution (Gbest=1.42) at 53th iteration, since in this method the
movement of particles is bounded in a limited range with the
implementation of a decomposition procedure.
The proof of this implementation can be seen in Figure 7(b),
which shows that DPSO_SPP with 20 populations obtained a
fast optimal solution at the 3rd iteration whereas PSO obtained
the optimal solution at the 8th iteration. It is interesting to note
that DPSO_SPP has shown potential in obtaining a higher rate
of optimal solutions for SPP. The results recorded in Figure 7(a)
and 7(b) indicate that the size of the population had influenced
the solutions. It is reasonable to expect that with more random
particles moving in the search space, the possibility of finding
the best fitness particles is higher.

(a)

(b)

 Figure 7. Comparisons of DPSO_SPP and PSO using SPP0
dataset (a) 10 populations, (b) 20 populations

Furthermore, all algorithms were tested to see the frequency of
obtaining an optimal solution based on 30 experiments using the
SPP0 dataset and three different sized populations (Table 3),
giving attention to the iteration numbers. Overall, the new
solution representation showed a higher percentage of optimal
solutions. DPSO_SPP and GA_SPP obtained 25% to 100% for
the optimal solution compared to PSO and GA with less than
20%.

Table 3. Performance of algorithms based on frequency of
obtaining an optimal solution

It is somewhat surprising that DPSO_SPP at the 30th iteration
using population size of 30 achieved 100% optimal solutions,
while GA_SPP obtained 100% at the 40th iteration, using a
similar sized population. This finding shows that the capability
of DPSO_SPP is more promising with the incorporation of
search decomposition with random selection. In addition, the
results for GA_SPP support the implementation of a new
solution representation, as demonstrated in Table 3.
In contrast to the solution representation applied in Mohemmed
et al [5] that requires more than 100 iterations, the new solution
representation embedded in DPSO_SPP requires only 30
iterations with 30 populations to reach an optimal solution for
all of the 30 experiments. The results were competitive to
GA_SPP where it requires 40 iterations to successfully obtain
an optimal solution for a similar number of experiments.
Although the experiments involved a small dataset, based on the
solution quality that was achieved using DPSO_SPP, it
indicates that DPSO_SPP has a higher potential for finding a
fast optimal solution for SPP. The above results indicate that the
proposed solution representation and DPSO_SPP can be
considered for different sizes of SPP datasets.
However, further results to confirm this solution is
demonstrated using the 13 road network dataset. The similar
parameters were used; 30 populations, 30 experiments with a

Number of Iterations

Frequency of obtaining optimal solution

(%)

10

20

30

40

50

100

Algorithm Population
size

DPSO_SPP

10 26.7 50 80 80 26 100

20 66.7 80 93.3 100 100 100
30 86.7 90 100 100 100 100

GA_SPP

10 33.3 53.3 40 93.3 29 100

20 46.7 83.3 93.3 96.7 100 96.7

30 26 93.3 96.7 100 100 100

PSO

10 3.3 3.3 0 3.3 0 0

20 3.3 6.7 10 0 13.3 3.3

30 13.3 3.3 16.7 20 10 10

GA

10 0 6.7 6.7 10 0 6.7

20 10 3.3 10 6.7 0 3.3

30 10 0 6.7 3.3 3.3 13.3

582 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem

maximum of 30 iteration. The comparison results of using CF
and inertia weight = 1.2 for DPSO_SPP and PSO are based on
percentage of failure rate of convergence and the percentage of
obtaining optimal solutions. The results are shown in Table 4.
For SPP1, neither DPSO_SPP nor GA_SPP datasets had a
failure rate, while DPSO_SPP obtained 100% optimal solution.
However, other algorithms have failed to achieve an optimal
solution with 96.67% of convergence using CF. In contrast PSO
failed to generate any result using inertia weight. In this case,
CF and inertia weight influenced the results of PSO.
The performance of DPSO_SPP and GA_SPP for SPP2, SPP3,
SPP5, and SPP11 proved better than PSO and GA. DPSO_SPP
and GA_SPP may have a good sequence of PV in finding
valid nodes with a minimum distance. Subsequently, it can be
seen that the branching procedure with random selection of PV
plays a significant role in obtaining an optimal solution.
For SPP4, the results for DPSO_SPP was found to perform
better than the other algorithms using inertia weight, providing

33.33% frequency of getting optimal solutions whereas
GA_SPP had only obtained 16.67%. So far, the findings of
SPP0, SPP1, SPP2, SPP3, SPP4, SPP5, and SPP11 seemed
consistent, with DPSO_SPP and GA_SPP revealing good
performance with a new solution representation embedded in
them.
However, the results of SPP6 provide 20% frequency of optimal
solution for DPSO_SPP using CF. The same results obtained by
GA_SPP. In contrast, DPSO_SPP provides an approximate
76.67% (using CF) for the failure rate of convergence while
GA_SPP with 80% failure rate. The use of inertia weight for
DPSO_SPP has reduced the percentage of failure rate while the
percentage of getting the optimal solution is improved to
23.33%. The use of inertia weight seems to give better result
when compared to CF for this dataset.

Table 4. Comparison results using road network dataset

* FR- Failure rate of convergence (%), F - frequency of obtaining optimal solution (%)

Dataset

DPSO_SPP

GA_SPP

PSO [5]

GA [5]

CF Inertia weight CF Inertia weight

FR
(%) F (%) FR (%) F (%) FR (%) F (%) FR (%) F (%) FR (%) F (%) FR (%) F (%)

SPP1 0 100 0 100 0 0 96.67 0 - - 96.67 0

SPP2 0 100 0 100 0 100 - - - - - -

SPP3 0 100 0 100 0 100 - - - - - -

SPP4 0 3.33 0 33.33 3.33 16.67 96.7 0 - - 96.7 0

SPP5 0 100 0 100 0 100 - - - - - -

SPP6 76.67 20 66.67 23.33 80 20 - - - - - -

SPP7 16.67 83.33 10 90 10 90 - - - - - -

SPP8 6.67 93.33 0 96.67 86.67 0 - - - - - -

SPP9 6.67 93.33 0 93.33 13.33 0 - - - - - -

SPP10 10 60 3.33 56.67 5 0 - - - -

SPP11 0 100 0 100 0 100 - - - - - -

SPP12 0 100 0 100 0 100 0 73.33 0 73.33 0 83.33

SPP13 6.67 90 0 100 0 73.33 26.67 73.33 30 70 23.33 70

 583 Yusoff, Ariffin and Mohamed

For SPP7, DPSO_SPP with an inertia weight outperformed
DPSO_SPP with CF. GA_SPP offered similar results to
DPSO_SPP. This may be resulted from fewer branches
generated from this dataset for during search decomposition. In
contrast, both PSO and GA did not give any results. The
frequency of obtaining optimal solution has increased about
3.34% compared to the use of CF for DPSO_SPP with inertia
weight for SPP8. The improvement is also in its convergence
rate. The DPSO_SPP with inertia weight has outperformed
other algorithm. The results for DPSO_SPP with inertia weight
for SPP9, SPP11, and SPP12 have shown a similar
performance.
The above results had indicated that DPSO_SPP with weight
perform better that DPSO_SPP with CF in frequency of
obtaining an optimal solution. However, results for DPSO_SPP
with inertia weight for SPP10 provides a decrease of 3.33%
compared to DPSO_SPP using CF. On the other hand, it
provides 3.33% of failure of convergence which is slightly
lower than with CF. Compared to GA_SPP there was no
optimal solution obtained. Overall, DPSO_SPP with the use of
inertia weight = 1.2 had shown better solution to SPP compared
to CF. Thus, a further comparison result for the four algorithms
is shown in Appendix 1, 2, and 3. The comparison results is
based on the use of inertia weight = 1.2 using 30 experiments
and 30 populations with the maximum of 200 iterations. On the
whole, DPSO_SPP algorithm has shown better performance
compared to GA_SPP, PSO, and GA in fitness value and
processing time.

C. Discussion
This paper enhanced of the work of Mohemmed et al [5] due to
the use of discrete value (positive integer) that represents the
position of the particles in PSO. It is somewhat surprising that
DPSO_SPP with random selection as the new solution
representation for SPP solution gave significant results for all
road network dataset in its failure rate and frequency of
obtaining an optimal solution. These results are due to the
search decomposition procedure with random selection of the
PV that was embedded in the new solution provides a boundary
to the searching space. Consequently, the probability of getting
optimal solution is higher and has reduced the failure rate of
convergence compared to the output given by the solution of
[5]. Compared to the solution of [5], which required more than
100 iterations, the new solution representation embedded in
DPSO_SPP required only 30 iterations using 30 populations to
obtain 100% optimal solution for 30 experiments for dataset
SPP0, SPP2, SPP3, SPP5, SPP11, SPP12 and SPP13.
Although GA_SPP was shown to be competitive with
DPSO_SPP in terms of failure rate and percentage of optimal
solution for some datasets, the failure rate obtained for GA_SPP
is higher than that of DPSO_SPP, showing that GA_SPP
achieved a lower quality solution compared to that of
DPSO_SPP. This is because the formula for new velocity and
new position adopted from the canonical PSO played an
important role in finding a better solution for DPSO_SPP,
whereas GA_SPP has no updating formula for PV. GA_SPP
only perform its crossover to produce new off-spring.

Even though the experiments involve a small dataset, the quality
of the solution achieved through DPSO_SPP for all datasets has
indicated higher potential in achieving the optimum results for
spp. In addition, the use of inertia weight has shown better
performance to DPSO_SPP compared to the use of cf parameter
in velocity updates. the finding indicate that the use of inertia
weight (inertia = 1.2) that was suggested in Shi and Eberhart
[26], provides good results compared to CF (CF > 4) as
suggested in Mohammed et al [5].

VI. Conclusion and Recommendation

This study demonstrates the improvement of the solutions for
SPP when using a DPSO with search decomposition and
random selection of PV. Compared to the naive solution
representation, which required more than 100 iterations, the
new solution representation embedded in DPSO_SPP required
only 30 iterations using 30 populations to obtain an optimal
solution for all of the 30 experiments for SPP0. The results for
DPSO_SPP are competitive with those for GA_SPP which
require 40 iterations to successfully obtain optimal solution for
a similar number of experiments and similar dataset. Although
the experiments involve a small dataset, the quality of the
solution achieved through DPSO_SPP for all datasets indicated
higher potential in achieving the optimum results for SPP,
serving as a good ground to further test the algorithm on larger
datasets.

Acknowledgment

This study has been made possible under the support of the
Ministry of Science and Technology Malaysia through the
Science Fund and Universiti Technology MARA.

References
[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan.

"Faster algorithms for the shortest path problem", Journal
of Association for Computing Machinery, 37(2), pp.
213-223, 1990.

[2] R. Seidel."On the all-pairs-shortest-path problem" In
Proceeding of 24th Annual ACM STOC, pp. 745-749,
1992.

[3] L. Fu, D. Sun, and L. R. Rilett. "Heuristic shortest path
algorithms for transportation applications: State of the art",
Journal of Computers and Operation Research, 33, pp.
3324-3343, 2006.

[4] S. Momtazi, S. Kafi, and H. Beigy. "Solving stochastic
path problem: particle swarm optimization approach",
Lecture Notes of Artificial Intelligence, 5027, pp. 590-600,
2008.

[5] A. W. Mohemmed, N. C. Sahoo, and T. K. Geok. "Solving
shortest path problem using particle swarm optimization",
Journal of Applied Soft Computing, 8(4), pp. 1643-1653,
2008.

[6] R. H. Möhring, H. Schilling, B. Schutz, D. Wagner, and T.
Willhalm. "Partitioning graphs to speedup Dijkstra's
algorithm", ACM Journal of Experimental Algorithmics,
11(28), pp. 1-29, 2006.

[7] S.W. Lin, K. C.Ying, Z.-J. Lee, and H. S. Chen. "Vehicle
routing problems with time windows using simulated
annealing", In Proceeding of IEEE International

584 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem

Conference on Systems, Man and Cybernetics.(SMC '06),
2006, pp. 645-650, 2006.

[8] T. J. Ai, and V. Kachitvichyanukul. "A particle swarm
optimization for the vehicle routing problem with
simultaneous pickup and delivery", Journal of Computers
and Operations Research, 36(5), pp.1693-1702, 2009.

[9] M. H. Xu, Y. Q. Liu, Q. L. Huang, Y. X. Zhang, and G. F.
Luan. "An improved Dijkstra's shortest path algorithm for
sparse network", Journal of Applied Mathematics and
Computation, 185, pp. 247-254, 2007.

[10] L. Santos, J. Coutinho-Rodrigues, and J.R. Current."An
improved solution algorithm for the constrained shortest
path problem", Journal of Transportation Research Part B
41, pp.756-771, 2007.

[11] A. Sedeño-Noda, and C. González-Martín. "On the K
shortest path tree problem", European Journal of
Operational Research, 202, pp.628-635, 2010.

[12] J. B. Orlin, K. Madduri, K. Subramani, and M.
Williamson." A faster algorithm for the single source
shortest path problem with few distinct positive lengths",
Journal Discrete Algorithms, 8, pp.189-198, 2010.

[13] M. Gen, and L. Lin."A new approach for shortest path
problem by random key-based GA", In Proceeding of
Genetic and Evolutionary Computation (GECCO), pp.
1411-1412, 2006.

[14] A. P. Engelbrecht. Computational Inteligence: An
Introduction, John Wiley & Sons, pp. 10, 2002.

[15] R. C. Eberhart, and J. Kennedy. "A new optimizer using
particle swarm theory", In Proceeding of the Sixth
International Symposium on Micro Machine and Human
Science, pp. 39 - 43, 1995.

[16] A. R. Guner, and M. Sevkli. "A discrete particle swarm
optimization algorithm for uncapacitated facility location
problem", Journal of Artificial Evolution and
Applications, 2008(10), pp. 1-9, 2008.

[17] A. P. Engelbrecht, Computational inteligence: An
introduction: John Wiley & Sons, pp. 187-195, 2002.

[18] Y. Shi and R. C. Eberhart. "Empirical study of particle
swarm optimization", In Proceedings of the 1999 Congress
on Evolutionary Computation, 1999.

[19] J. Kennedy and R. C. Eberhart. "A discrete binary version
of the particle swarm algorithm", In Proceeding of IEEE
International Conference on Systems, Man, and
Cybernetics, pp. 4104-4108, 1997.

[20] R. C. Eberhart and Y. Shi. "Comparing inertia weights and
constriction factors in particle swarm optimization", In
Proceeding of Congress on Evolutionary Computation, pp.
84 - 88, 2000.

[22] L. T. Bui, O. Soliman, and H. A. Abbass. "A modified
strategy for the constriction factor in particle swarm
optimization", Lecture Notes in Computer Science, 4828,
Springer-Verlag Berlin / Heidelberg, pp. 333-344, 2007.

[23] T. Gong and A. L. Tuson. "Particle swarm optimization for
quadratic assignment problems-a forma analysis
approach", Journal of Computational Intelligence
Research, 4, pp. 177-185, 2008.

[24] L. Fu, D.Sun, and L. R. Rilett." Heuristic shortest path
algorithms for transportation applications: State of the art",
Journal of Computers and Operation Research, 33,
pp.3324-3343, 2006.

[25] S. Russell, and P. Norvig. Artificial intelligence: A modern
approach, 3rd ed., Pearson Education, 2003.

[26] Y. Shi and R. C. Eberhart. "A Modified Particle Swarm
Optimizer", In Proceeding of IEEE International
Conference on Evolutionary Computation, pp. 69 - 73,
1998.

Author Biographies

Marina Yusoff is currently a PHD student in
Universiti Teknologi MARA. Prior to this she was a
lecturer in Universiti Teknologi MARA and worked as
a senior executive of Information Technology in
SIRIM Berhad, Malaysia. She holds a Bachelor Degree
in Computer Science from the University of Science
Malaysia, and MSC in Information Technology from
Universiti Teknologi MARA. She is interested in the
development of intelligent application, modification
and enhancement artificial intelligence techniques
include particle swarm optimization, neural network,
genetic algorithm, and ant colony. She has presented
her research in many conferences locally and
internationally.

Junaidah Ariffin is currently a Professor of Civil
Engineering and the Head of the Flood-Marine
Excellence Centre, Universiti Teknologi MARA Shah
Alam, Malaysia. She holds a PhD in water Resources
Engineering from the University of Science Malaysia.
She is responsible for research projects related to flood
forecasting, operations and planning, inundation
models, flood evacuations and sediment transport in
rivers amounting to more than RM1 million. Her long
list of publications on the above can be found from the
university website. Currently she teaches the subject on
erosion and sedimentation to the Masters graduates and
fluid mechanics for the undergraduates. She is also the
editor and reviewer of 3 international journals.

Azlinah Mohamed (MSc Artificial Intelligence,
University of Bristol UK, PhD Universiti Kebangsaan
Malaysia) is a Professor currently working in Universiti
Teknologi MARA. Prior to this she was a tutor in
University of Bristol and a Research Fellow in
Universiti Kebangsaan Malaysia. Prof. Dr. Azlinah’s
current areas of interest are Hybrid Techniques, Pattern
Recognition, and Web-based Decision Support Systems
using intelligent agents in electronic government
applications. She has presented her research in many
conferences and published her work in journals
internationally and locally. Besides that, she has also
contributed as an examiner and reviewer to many
conferences, journals and universities academic
activities. In addition, she had also held administration
post pertaining to academic development at the
university level. Currently, she is the Special Officer on
Academic Affairs and Development to the Vice
Chancellor of the University.

 585 Yusoff, Ariffin and Mohamed

Appendix 1: Comparison results for SPP0 until SPP4 using inertia weight

Dataset

PSO [5] GA [5] DPSO_SPP GA_SPP

Total
Distance

(KM)

PT (s)
 Iter

Total
Distance

(KM)

PT (s)

Iter

Total
Distance

(KM)

PT (s)

Iter

Total
Distance

(KM)

PT (s)
 Iter

SPP0

Avg 0.227 0.008 1 0.221 0.010 1 0.217 0.005 1 0.218 0.009 1

Min 0.142 0.000 1 0.142 0.000 1 0.142 0.000 1 0.142 0.000 1
Max 0.351 0.016 1 0.310 0.031 1 0.275 0.016 1 0.349 0.032 1

Std. Dev 0.045 0.008 0 0.040 0.009 0 0.035 0.008 0 0.048 0.010 0

SPP1

Avg - - 200 - - 200 1.248 0.012 1 1.254 0.014 1
Min - - 200 - - 200 1.219 0.000 1 1.219 0.000 1
Max - - 200 - - 200 1.266 0.016 1 1.270 0.063 1

Std. Dev - - 0 - - 0 0.023 0.007 0 0.021 0.011 0

SSP2

Avg - - 200 - - 200 38.550 0.015 1 38.550 0.017 1
Min - - 200 - - 200 38.549 0.005 1 38.549 0.009 1
Max - - 200 - - 200 38.580 0.023 1 38.580 0.030 1

Std. Dev - - 0 - - 0 0.006 0.003 0 0.006 0.003 0

SSP3

Avg - - 200 - - 200 3.565 0.015 1 3.586 0.019 1
Min - - 200 - - 200 3.507 0.000 1 3.507 0.000 1
Max - - 200 - - 200 4.521 0.031 1 4.521 0.032 1

Std. Dev - - 0 - - 0 0.202 0.008 0 0.261 0.015 0

SSP4

Avg - - 200 - - 200 2.410 0.003 17 2.447 0.004 11
Min - - 200 - - 200 1.794 0.000 1 2.380 0.000 1
Max - - 200 - - 200 2.694 0.031 91 2.879 0.031 40

Std. Dev - - 0 - - 0 0.184 0.008 20 0.147 0.008 12
* PT - processing time (second), iter - number of iteration

582 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem

586 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem

Appendix 2: Comparison results for SPP5 until SPP9 using inertia weight

Datasets

 PSO [5] GA [5] DPSO_SPP GA_SPP

Total
Distance

(KM)

PT (s)
 Iter

Total
Distance

(KM)

PT (s)

Iter

Total
Distance

(KM)

PT (s)

Iter

Total
Distance

(KM)

PT (s)
 Iter

SPP5

Avg - - 200 - - 200 1.979 0.011 2 2.243 0.010 1

Min - - 200 - - 200 1.857 0.000 1 1.857 0.000 1

Max - - 200 - - 200 2.744 0.031 5 3.133 0.031 2

Std. Dev - - 0 - - 0 0.278 0.011 1 0.400 0.009 0

SPP6

Avg - - 200 - - 200 4.068 0.003 20 4.090 0.006 30

Min - - 200 - - 200 4.047 0.000 1 4.047 0.000 1

Max - - 200 - - 200 4.147 0.016 42 4.147 0.016 103
Std. Dev - - 0 - - 0 0.041 0.006 12 0.050 0.008 28

SPP7

Avg - - 200 - - 200 2.546 0.008 1 2.553 0.011 1

Min - - 200 - - 200 2.538 0.000 1 2.538 0.000 1
Max - - 200 - - 200 2.770 0.016 2 2.770 0.031 3

Std. Dev - - 0 - - 0 0.043 0.008 0 0.059 0.011 0

SPP8

Avg - - 200 - - 200 2.421 0.006 1 2.456 0.011 1
Min - - 200 - - 200 2.288 0.000 1 2.456 0.000 1
Max - - 200 - - 200 2.456 0.016 3 2.456 0.078 3

Std. Dev - - 0 - - 0 0.069 0.008 0 0.000 0.018 0

SPP9

Avg - - 200 - - 200 1.727 0.011 1 1.769 0.009 1
Min - - 200 - - 200 1.719 0.000 1 1.719 0.000 1
Max - - 200 - - 200 1.951 0.031 2 2.299 0.016 2

Std. Dev - - 0 - - 0 0.043 0.010 0 0.128 0.008 0

 587 Yusoff, Ariffin and Mohamed

Appendix 3: Comparison results for SPP10 until SPP13 using inertia weight

Dataset

 PSO [5] GA [5] DPSO_SPP GA_SPP

Total Distance (KM)

PT (s)
 Iter Total Distance (KM) PT (s)

Iter

Total Distance (KM)

PT (s)

Iter

Total Distance

(KM)
PT (s)

 Iter

SPP10

Avg - - 200 - - 200 3.458 0.011 1 3.474 0.009 1

Min - - 200 - - 200 3.285 0.000 1 3.453 0.000 1

Max - - 200 - - 200 3.548 0.031 2 3.548 0.032 2

Std.
Dev - - 0 - - 0 0.061 0.010 0 0.028 0.010 0

SPP11

Avg - - 200 - - 200 1.720 0.004 1 1.725 0.013 1

Min - - 200 - - 200 1.720 0.000 1 1.720 0.000 1
Max - - 200 - - 200 1.720 0.016 1 1.877 0.031 1
Std.
Dev - - 0 - - 0 0.000 0.007 0 0.029 0.009 0

SPP12

Avg 0.779 0.088 1 0.773 0.008 1 0.771 0.006 1 0.771 0.013 1

Min 0.771 0.000 1 0.771 0.000 1 0.771 0.000 1 0.771 0.000 1
Max 0.937 0.031 1 0.782 0.032 1 0.771 0.032 1 0.771 0.032 1
Std.
Dev 0.030 0.009 0 0.004 0.010 0 0.000 0.009 0 0.000 0.010 0

SPP13

Avg - 200 - - 200 0.603 0.005 1 0.930 0.010 1
Min - - 200 - - 200 0.603 0.000 1 0.603 0.000 1
Max - - 200 - - 200 0.603 0.016 1 2.645 0.032 1
Std.
Dev - - 0 - - 0 0 0.007 0 0.697 0.012 0

588 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem

	I. Introduction
	II. Particle Swarm Optimization
	III. Solution Representation
	A. Naive solution representation
	B. New solution representation

	IV. DPSO with Search Decomposition Procedure
	V. Computational Experiment and Discussion
	A. Experimental setup
	B. Performance of DPSO_SPP in terms of obtaining an optimal solution
	C. Discussion

	VI. Conclusion and Recommendation
	Acknowledgment
	References

