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Abstract: This paper proposes a discrete particle swarm 
optimization (DPSO) for the solution of the shortest path problem 
(SPP). The proposed DPSO termed as DPSO_SPP adopts a new 
solution representation which incorporates a search 
decomposition procedure and random selection of priority value. 
The purpose of this representation is to reduce the searching space 
of the particles, leading to a better solution. Detailed descriptions 
of the new solution and the DPSO_SPP algorithm are elaborated. 
Computational experiments involve an SPP dataset from previous 
research and road network datasets. The DPSO_SPP is compared 
with a genetic algorithm (GA) using naive and new solution 
representation. The results indicate that the proposed DPSO_SPP 
is highly competitive and shows good performance in both 
frequency of obtaining an optimal solution and rate of 
convergence in comparison with the GA_SPP, PSO, and GA. In 
particular, DPSO_SPP with the use of inertia weight had shown 
better solution to SPP compared to constriction coefficient (CF). 
The quality of the solution achieved through DPSO_SPP for all 
datasets indicated higher potential in achieving the optimum 
results for SPP, serving as a good ground to further test the 
algorithm on larger datasets.  

 
Keywords: discrete particle swarm optimization, genetic 

algorithm, random selection, search decomposition, priority value, 
shortest path problem. 

I. Introduction 
The shortest path problem (SPP) has been widely discussed 
over several decades. Although extensive research has been 

done in variants of SPP with the development of an exact 
algorithm [1][2] and heuristic algorithms [3][4][5], a faster 
solution is still required. This solution is crucial because SPP is 
a core problem in several domains such as transportation [6] 
and vehicle routing [7][8]. Some research [6][9][10][11][12], 
committed to the improvement of SPP solutions and computer 
memory usage, enhanced the well-known Dijkstra algorithm 
and k-Shortest path algorithms. Even though they can yield 
optimal or near optimal solutions, the algorithmic approach has 
still required an exhaustive search and consumed more 
processing time, due to the nature of algorithms.  
Taking a different approach, Gen and Lin [13] introduced 
random key-based GA using a real value priority-based 
encoding for solving SPP. Their approach improved the ability 
to reach an optimal solution as well as processing time. 
However, a method using particle swarm optimization (PSO) 
outperformed the GA. A range of random discrete priority 
values (PVs) representing all of the nodes in a network graph 
offered 95% optimal solution for PSO, but this method required 
between 100 and 3000 iterations using 30 populations of 
particles. Another PSO implementation [4] on a stochastic SPP 
required more than 50 populations of particles for 100% 
convergence (traversing until destination node) for 10 nodes but 
less than 80% of convergence for 15 nodes using 150 
populations. This work relied on the use of probability 
distribution of the cost for each edge using real value. 

The drawbacks of PSO implementation in these methods 
inspired us to further the work of Mohemmed et al [5], 

recognizing the usefulness of discrete value representing the 
position of the particles and its potential to obtain fast optimal 
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solutions. Hence, this paper investigated a new solution to SPP 
with the objective function to find the minimum distance. A 
single source and a single destination for the SPP are 
considered. The linear SPP is adopted from Santos et al [10] 
and Gen and Lin [13] is defined as follows:  
Let G = (N, E) be a weighted directed graph where N = {N0, N1, 
N2,...,Nn} represents the set of nodes.  N0 is the source node (the 
vehicle location), while Nn is the destination node (PFA).  E is 
the set of edges, where for each edge (i, j) ∈ E, a non-negative 
value Cij represents the length of edge (i, j), or equivalently, the 
distance between node i and node j.  The objective is to find the 
path from the vehicle location to the PFA with minimum 
distance. The SPP is mathematically formulated as follows: 

 
                                                             (1)                                          

 
subject to: 

    

 –   =                     (2) 

                                                 (3) 
 

where 
 
i = index of nodes, i   

j = index of nodes, j   

Xij = binary variable which is 1 if the node i to node j is 
traversed, otherwise it is 0. 
 

Constraints 2 ensure that the path starts at N0, end at Nn, and 
either pass through or avoid every other node j. Constraint 3 
indicates the binary decision variables of the problem. The 
objective function 1 calculates the distance of the shortest path. 
This paper addresses this problem with the aim to improve the 
processing time of the algorithm and its solution. 
The remainder of this paper is organized as follows. Section II 
discusses PSO and Section III explains both the naive and new 
solution representations. Section IV explains the proposed 
DPSO with search decomposition and random selection. 
Section V discusses the computational experiment and 
discussion. Section VI presents the conclusions and 
recommendation for future research. 

II. Particle Swarm Optimization 
PSO is a population-based stochastic approach, categorized 
under swarm intelligence [14], for the solution of continuous 
and discrete problems. This method was initiated by Kennedy 
and Eberhart in the mid 1990s [15]. Basically, PSO indicates 
the velocity and position of particles in a multi-dimensional 
space. By updating both velocity and position, the global best 
(Gbest) is derived from the simulated social behavior of a group 
of particles [16]. PSO is able to explore regions of the search 
space and exploit the search to refine feasible solutions. The 

ability of searching strategies is based on parameters; 
acceleration constants and inertia weight [17][18]  that have 
been applied in the PSO algorithm. 

A considerable amount of research has been directed toward 
the modification of canonical PSO to solve several types of 
continuous problem. The inventors of PSO explored discrete 
binary PSO with special attention to discrete problems, leading 
to a new way of updating the position of particles [19] to 
accommodate discrete binary problems. This was further 
improved by several studies using a benchmark dataset [20][21] 
and a real world problem [22][23] of discrete nature. The use of 
DPSO with multiple (rather than binary) discrete values to solve 
combinatorial problems in SPP were explored by [5].  
In this work, equation 4, 5, and 6 were employed for velocity 
and position updates. Equation 4 shows the constriction 
coefficient (CF) value derived from acceleration constant 
parameters. Equation 5 performs the calculation of new velocity 
while Equation 6 executes the position updates. Both velocity 
and position are in positive integers. 

                                                            (4) 

 
where . 

Vid(new)=CF  Vid(old) + C1  r1  (Pbest(id) - Xid(old) + C2  r2  
(Gbest(id)-Xid(old))                                                                               (5) 

    Xid(new)=Xid + Vid(new)                                                               (6) 

 
The discrete multi value for particle representation has 
demonstrated some decrease in the search space that encourages 
fast convergence and optimal solution. Due to the high number 
of iterations in the work of Mohemmed et al [5], a modification 
is needed particularly in the selection of particles. The 
movement of particles are in the n-dimension, where n is the 
total number of nodes. The movement of particles can be 
reduced with the embedded decomposition procedure [24]. A 
detailed explanation of the naive and new solutions is given in 
Section IV. 

III. Solution Representation 

A.  Naive solution representation 
In the naive solution representation the position values of the 
particles are represented with PVs; each node has its own PV, 
and PVs were randomly initialized. Figure 1 demonstrates that 
all nodes from N0 to Nn are represented using multi discrete 
values of PVs, in which a row of PVs corresponds to one 
particle. PVs are randomly assigned to each node in a specific 
range, i.e, [-100, 100] and selected according to its maximum 
value. It does not matter whether PV values go from minimum 
to maximum value or from maximum to minimum; the essential 
is that the PVs be sorted according to this method. The details of 
the selection process can be found in [5]. 
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Figure 1. Solution representation [5] 
 

This solution, however, required more than 100 iterations for a 
small-scale SPP, with a number of nodes between 15 and 70. It 
can be seen that the movement of particles depends on the 
number of nodes represented in the n-dimension’s space of 
search. However, since the values of PVs in the form of multi 
discrete values present some limitations to the movement of 
particle positions in the search space, the iteration number 
should be reduced for faster convergence and to obtain an 
optimal solution. Therefore, we propose a means of reducing 
the search space by emphasizing a new way to select PVs and to 
maintain the use of discrete values for PVs. This solution is 
explained in the next section. 

B.  New solution representation 
The idea of representing a new particle position came from the 
fundamental concept of the search process in a graph [25]. We 
propose a bounded decision for PV selection, using a search 
decomposition procedure. The procedure, adapted from the 
work of Mohemmed et al [5], is as shown in Figure 2. This 
procedure enables some limitation of the search space in the 
movement of particles. The search decomposition imposes the 
expansion of nodes from source node/parent node, as illustrated  
in Figure 3. At the Level 1, a source node is selected, N0. As 
shown in Figure 4, N0 is expanded into two paths/branches, 
N0-N1, and N0-N2. This level designates sub-particle number 1. 
Then, an array of two PVs is considered. The PVs that represent 
each of nodes, N1 and N2, are randomly selected. The selected 
PV of the particular node is assigned to a minimum value of 
PVs, for example, PV2 in Figure 5 is assigned to -100. Then, a 
path of at Level 2 is expanded, showing the number of PVs and 
the assignment of a minimum PV for the selected node/ path, 
respectively. At the Level 1, node N2 is selected to expand, 
while at the Level 2, N5 is selected and finally, at the third level, 
only one PV value is taken into account, and finally the 
traversing arrives the destination node, D1. From this 
illustration the total distance (fitness value) is calculated from 
the generated route of N0 - N2- N5 -D1. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 2. A search decomposition procedure 

 

 

 
 
 
 
 
 
 
 
 

Figure 3. The illustration of search decomposition into 
branches 

N0 - N1 N0 - N2 
 

PV1 PV2 
5 -3 

       
PV1 PV2 
5 -100 

 
Sub-particle Number 1 

Figure 4. Illustration of a sub-particle for the Level 1 

N2 - N5 N2 - N6 
 

PV1 PV2 
15 22 

   
PV1 PV2 
-100 22 

 
Sub-particle Number 2 

Figure 5. Illustration of a sub particle represented by PVs at the 
Level 2 

In summary, the initialization of PVs depends on the number of 
nodes, and the path selection is based on the random selection of 
PVs during the expansion of the graph. Theoretically, this idea 
would reduce the search space compared to that obtained in the 
naive solution for SPP. The implementation of this solution 
representation in DPSO algorithm is discussed in the next 
section. 

N0 N1 N 2 ... N n-1 
 

Nn 
 

 
PV0 

 
PV2 PV3 ..... PV n-1 PVn 

1:  Do 
2:   If there is no leaf 
3:   Failure 
4:   Else 
5:  Expand nodes 
6:  Choose only one path in a random selection 
7:     Assign the PV of the selected path with  PVmin 
8:   Calculate distance of the selected path 
9: While (all nodes expanded or there is no leaf to expand) 

N6 

Level 3 

(Distance) 

Level 1 

Level 2 

N0 

N1 N2 

D1 
 

 

N5 N3 N4 
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IV. DPSO with Search Decomposition 
Procedure 
The new solution representation discussed above is therefore 
implemented in a modified PSO named as DPSO_SPP, as 
shown in Figure 6. The algorithm starts with the normal process 
of PSO initialization, which initializes the number of 
populations, coefficient values, and then C1 and C2 in step 2 and 
step 3, respectively. Step 4 is the initialization PV and 
velocities. Step 5 performs the steps for the search 
decomposition with random selection. In this step, only one 
path is selected and node with PVmin is selected upon selection of 
the path as demonstrated in Figure 6. After all the nodes are 
expanded, the Pbest and Gbest of each particle are calculated. 
Pbest is the total distance for each particle, whereas Gbest is the 
minimum total distance obtained from all particles. The 
iteration proceeds from step 7 until step 20 until a maximum 
iteration is achieved. In this iteration, each particle is 
respectively updated with a new velocity update and position. 
The new velocity and new position value are in the form of 
positive integers. Then, PV for all sub-particles is updated using 
step 11. Step 12 performs the decomposition and random 
selection of PV. Pbest(new) and Gbest(new) are calculated in step 
13 and 14, respectively. Steps 15 through 19 are the conditions 
for the selection of the best current fitness for each iteration. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 6. DPSO_SPP algorithm 

V. Computational Experiment and Discussion 
This section discusses the results of implementing the new 

solution compared with the naive solution for SPP. A 
comparative study was done comparing the results of the 
proposed DPSO (DPSO_SPP), GA using the new solution 
(GA_SPP), PSO using the naive solution, and GA using the 

naive solution. The main aim was to observe any improvement 
in solutions when compared to the previous solution. 

A. Experimental setup 
Parameters as suggested in [5] are applied as shown in Table 1. 
The value of inertia weight is selected from the range of this 
parameter suggested by Shi & Eberhart [26]. Routes for the 
road network datasets were obtained from GIS MAP software. 
These routes were transformed into a graphic abstraction. This 
graph was then transformed into an adjacency matrix 
comprising a distance value for the valid node, with a value of 0 
representing the invalid node. All experiments were conducted 
on PCs with Intel(R) Core(TM) 2 Duo E8400 3.00 GHz and 
2.00 GB RAM under Windows Vista. The algorithms were 
applied using Java language. The performance of the 
DPSO_SPP, GA_SPP, PSO and GA using a SPP0 dataset from 
[5] and SPP1 until SPP13 are datasets from a road network 
dataset during flash flood evacuation in Kota Tinggi. Table 2 is 
the list of SPP datasets. Routes for the road network datasets 
were obtained from GIS MAP software. These routes were 
transformed into a graphic abstraction. The graph was then 
transformed into an adjacency matrix comprising a distance 
value for the valid node, with a value of 0 representing the 
invalid node. 

 
Table 1. List of parameters 

Parameter Value 

PVmax -100 

PVmin 100 

C1 2.05 

C2 2.05 

Initial Vmin -10 

Initial Vmax 10 

Initial weight, w 1.2   [26] 

   
Table 2. List of datasets for SPP 

Dataset Number of node Dataset Number of node 

SPP0 [5] 20 SPP7 30 

SPP1 13 SPP8 22 
SPP2 36 SPP9 29 
SPP3 13 SPP10 33 
SPP4 22 SPP11 26 
SPP5 26 SPP12 19 
SPP6 37 SPP13 38 

1: Begin 
2: Initialize number of  population 
3: Declare  C1 and C2 
4: Initialize PV, Vmin and Vmax for all particles in 
random 
5: Perform search decomposition procedure 
6: Calculate Pbest and Gbest 
7: Do 
8:   For each particle  
9:     Calculate V(new)using equation (2.1) 
10: Calculate PV(new)using equation (2.2) 
11: Update PV for all sub particles 
12: Perform step 5 
13: Calculate Pbest (new) 
14: Calculate Gbest (new) 
15: If (Gbest (new) >Gbest) 
16:     Assign Gbest(old) as the best current fitness 
17: If (Gbest (new) =<Gbest) 
18:     Gbest(old))= Gbest (new) 
19:    Assign Gbest(new) as the best current fitness 
20: While (maximum iteration is achieved) 
21: End 
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B. Performance of DPSO_SPP in terms of obtaining an 
optimal solution 
 The results tabulated in this section are based on the application 
of CF to DPSO_SPP as recommended from [5]. To illustrate the 
performance of the new solution representation, all of the 
algorithms were tested using two population numbers, i.e.10 
and 20 populations. Figure 7(a) and 7(b) show the results of 
DPSO_SPP and PSO with 100 iterations for 10 populations and 
20 populations, respectively. The graph in Figure 7 shows the 
current Gbest value (currGbest) and the best current fitness 
(Gbest). Figure 7(a) demonstrates near-optimal solution 
achievement at each of iteration, DPSO_SPP obtained optimal 
solution (Gbest=1.42) at 53th iteration, since in this method the 
movement of particles is bounded in a limited range with the 
implementation of a decomposition procedure. 
The proof of this implementation can be seen in Figure 7(b), 
which shows that DPSO_SPP with 20 populations obtained a 
fast optimal solution at the 3rd iteration whereas PSO obtained 
the optimal solution at the 8th iteration. It is interesting to note 
that DPSO_SPP has shown potential in obtaining a higher rate 
of optimal solutions for SPP. The results recorded in Figure 7(a) 
and 7(b) indicate that the size of the population had influenced 
the solutions. It is reasonable to expect that with more random 
particles moving in the search space, the possibility of finding 
the best fitness particles is higher.  

 

 
 

(a) 
 

 
 

(b) 

 Figure 7. Comparisons of DPSO_SPP and PSO using SPP0 
dataset (a) 10 populations, (b) 20 populations 

Furthermore, all algorithms were tested to see the frequency of 
obtaining an optimal solution based on 30 experiments using the 
SPP0 dataset and three different sized populations (Table 3), 
giving attention to the iteration numbers. Overall, the new 
solution representation showed a higher percentage of optimal 
solutions. DPSO_SPP and GA_SPP obtained 25% to 100% for 
the optimal solution compared to PSO and GA with less than 
20%. 

 

Table 3. Performance of algorithms based on frequency of 
obtaining an optimal solution 

It is somewhat surprising that DPSO_SPP at the 30th iteration 
using population size of 30 achieved 100% optimal solutions, 
while GA_SPP obtained 100% at the 40th iteration, using a 
similar sized population. This finding shows that the capability 
of DPSO_SPP is more promising with the incorporation of 
search decomposition with random selection. In addition, the 
results for GA_SPP support the implementation of a new 
solution representation, as demonstrated in Table 3.  
In contrast to the solution representation applied in Mohemmed 
et al [5] that requires more than 100 iterations, the new solution 
representation embedded in DPSO_SPP requires only 30 
iterations with 30 populations to reach an optimal solution for 
all of the 30 experiments. The results were competitive to 
GA_SPP where it requires 40 iterations to successfully obtain 
an optimal solution for a similar number of experiments. 
Although the experiments involved a small dataset, based on the 
solution quality that was achieved using DPSO_SPP, it 
indicates that DPSO_SPP has a higher potential for finding a 
fast optimal solution for SPP. The above results indicate that the 
proposed solution representation and DPSO_SPP can be 
considered for different sizes of SPP datasets.  
However, further results to confirm this solution is 
demonstrated using the 13 road network dataset. The similar 
parameters were used; 30 populations, 30 experiments with a 

Number of Iterations 

 
Frequency of obtaining optimal solution 

(%) 
 

10 
 

20 
 

 
30 

 

 
40 

 

 
50 

 

 
100 

Algorithm Population 
size 

DPSO_SPP 

10 26.7 50 80 80 26 100 

20 66.7 80 93.3 100 100 100 
30 86.7 90 100 100 100 100 

GA_SPP 

10 33.3 53.3 40 93.3 29 100 

20 46.7 83.3 93.3 96.7 100 96.7 

30 26 93.3 96.7 100 100 100 

PSO 

10 3.3 3.3 0 3.3 0 0 

20 3.3 6.7 10 0 13.3 3.3 

30 13.3 3.3 16.7 20 10 10 

GA 

10 0 6.7 6.7 10 0 6.7 

20 10 3.3 10 6.7 0 3.3 

30 10 0 6.7 3.3 3.3 13.3 
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maximum of 30 iteration. The comparison results of using CF 
and inertia weight = 1.2 for DPSO_SPP and PSO are based on 
percentage of failure rate of convergence and the percentage of 
obtaining optimal solutions. The results are shown in Table 4.  
For SPP1, neither DPSO_SPP nor GA_SPP datasets had a 
failure rate, while DPSO_SPP obtained 100% optimal solution. 
However, other algorithms have failed to achieve an optimal 
solution with 96.67% of convergence using CF. In contrast PSO 
failed to generate any result using inertia weight. In this case, 
CF and inertia weight influenced the results of PSO.  
The performance of DPSO_SPP and GA_SPP for SPP2, SPP3, 
SPP5, and SPP11 proved better than PSO and GA. DPSO_SPP 
and GA_SPP may have a good sequence of PV in finding 
valid nodes with a minimum distance. Subsequently, it can be 
seen that the branching procedure with random selection of PV 
plays a significant role in obtaining an optimal solution.  
For SPP4, the results for DPSO_SPP was found to perform 
better than the other algorithms using inertia weight, providing 

33.33% frequency of getting optimal solutions whereas 
GA_SPP had only obtained 16.67%. So far, the findings of 
SPP0, SPP1, SPP2, SPP3, SPP4, SPP5, and SPP11 seemed 
consistent, with DPSO_SPP and GA_SPP revealing good 
performance with a new solution representation embedded in 
them.  
However, the results of SPP6 provide 20% frequency of optimal 
solution for DPSO_SPP using CF. The same results obtained by 
GA_SPP. In contrast, DPSO_SPP provides an approximate 
76.67% (using CF) for the failure rate of convergence while 
GA_SPP with 80% failure rate. The use of inertia weight for 
DPSO_SPP has reduced the percentage of failure rate while the 
percentage of getting the optimal solution is improved to 
23.33%. The use of inertia weight seems to give better result 
when compared to CF for this dataset. 
 

 
Table 4. Comparison results using road network dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* FR- Failure rate of convergence (%), F - frequency of obtaining optimal solution (%) 
 
 

Dataset 

DPSO_SPP 

GA_SPP  

PSO [5] 

GA [5] 

CF Inertia weight CF Inertia weight 

FR 
(%) F (%) FR (%) F (%) FR (%) F (%) FR (%) F (%) FR (%) F (%) FR (%) F (%) 

SPP1 0 100 0 100 0 0 96.67 0 - - 96.67 0 

SPP2 0 100 0 100 0 100 - - - - - - 

SPP3 0 100 0 100 0 100 - - - - - - 

SPP4 0 3.33 0 33.33 3.33 16.67 96.7 0 - - 96.7 0 

SPP5 0 100 0 100 0 100 - - - - - - 

SPP6 76.67 20 66.67 23.33 80 20 - - - - - - 

SPP7 16.67 83.33 10 90 10 90 - - - - - - 

SPP8 6.67 93.33 0 96.67 86.67 0 - - - - - - 

SPP9 6.67 93.33 0 93.33 13.33 0 - - - - - - 

SPP10 10 60 3.33 56.67 5 0 - - - -   

SPP11 0 100 0 100 0 100 - - - - - - 

SPP12 0 100 0 100 0 100 0 73.33 0 73.33 0 83.33 

SPP13 6.67 90 0 100 0 73.33 26.67 73.33 30 70 23.33 70 

  583 Yusoff, Ariffin and Mohamed



 

 

For SPP7, DPSO_SPP with an inertia weight outperformed 
DPSO_SPP with CF. GA_SPP offered similar results to 
DPSO_SPP. This may be resulted from fewer branches 
generated from this dataset for during search decomposition. In 
contrast, both PSO and GA did not give any results. The 
frequency of obtaining optimal solution has increased about 
3.34% compared to the use of CF for DPSO_SPP with inertia 
weight for SPP8. The improvement is also in its convergence 
rate. The DPSO_SPP with inertia weight has outperformed 
other algorithm. The results for DPSO_SPP with inertia weight 
for SPP9, SPP11, and SPP12 have shown a similar 
performance.  
The above results had indicated that DPSO_SPP with weight 
perform better that DPSO_SPP with CF in frequency of 
obtaining an optimal solution. However, results for DPSO_SPP 
with inertia weight for SPP10 provides a decrease of 3.33% 
compared to DPSO_SPP using CF. On the other hand, it 
provides 3.33% of failure of convergence which is slightly 
lower than with CF. Compared to GA_SPP there was no 
optimal solution obtained. Overall, DPSO_SPP with the use of 
inertia weight = 1.2 had shown better solution to SPP compared 
to CF. Thus, a further comparison result for the four algorithms 
is shown in Appendix 1, 2, and 3. The comparison results is 
based on the use of inertia weight = 1.2 using 30 experiments 
and 30 populations with the maximum of 200 iterations. On the 
whole, DPSO_SPP algorithm has shown better performance 
compared to GA_SPP, PSO, and GA in fitness value and 
processing time.  

C. Discussion  
This paper enhanced of the work of Mohemmed et al [5] due to 
the use of discrete value (positive integer) that represents the 
position of the particles in PSO. It is somewhat surprising that 
DPSO_SPP with random selection as the new solution 
representation for SPP solution gave significant results for all 
road network dataset in its failure rate and frequency of 
obtaining an optimal solution. These results are due to the 
search decomposition procedure with random selection of the 
PV that was embedded in the new solution provides a boundary 
to the searching space. Consequently, the probability of getting 
optimal solution is higher and has reduced the failure rate of 
convergence compared to the output given by the solution of 
[5]. Compared to the solution of [5], which required more than 
100 iterations, the new solution representation embedded in 
DPSO_SPP required only 30 iterations using 30 populations to 
obtain 100% optimal solution for 30 experiments for dataset 
SPP0, SPP2, SPP3, SPP5, SPP11, SPP12 and SPP13.  
Although GA_SPP was shown to be competitive with 
DPSO_SPP in terms of failure rate and percentage of optimal 
solution for some datasets, the failure rate obtained for GA_SPP 
is higher than that of DPSO_SPP, showing that GA_SPP 
achieved a lower quality solution compared to that of 
DPSO_SPP. This is because the formula for new velocity and 
new position adopted from the canonical PSO played an 
important role in finding a better solution for DPSO_SPP, 
whereas GA_SPP has no updating formula for PV. GA_SPP 
only perform its crossover to produce new off-spring.   

Even though the experiments involve a small dataset, the quality 
of the solution achieved through DPSO_SPP for all datasets has 
indicated higher potential in achieving the optimum results for 
spp. In addition, the use of inertia weight has shown better 
performance to DPSO_SPP compared to the use of cf parameter 
in velocity updates. the finding indicate that the use of inertia 
weight (inertia = 1.2) that was suggested in Shi and Eberhart 
[26], provides good results compared to CF (CF > 4) as 
suggested in Mohammed et al [5].  

VI. Conclusion and Recommendation 
 
This study demonstrates the improvement of the solutions for 
SPP when using a DPSO with search decomposition and 
random selection of PV. Compared to the naive solution 
representation, which required more than 100 iterations, the 
new solution representation embedded in DPSO_SPP required 
only 30 iterations using 30 populations to obtain an optimal 
solution for all of the 30 experiments for SPP0. The results for 
DPSO_SPP are competitive with those for GA_SPP which 
require 40 iterations to successfully obtain optimal solution for 
a similar number of experiments and similar dataset. Although 
the experiments involve a small dataset, the quality of the 
solution achieved through DPSO_SPP for all datasets indicated 
higher potential in achieving the optimum results for SPP, 
serving as a good ground to further test the algorithm on larger 
datasets.  
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Appendix 1: Comparison results for SPP0 until SPP4 using inertia weight 
 
 

Dataset 
  

PSO [5] GA [5] DPSO_SPP GA_SPP 

Total 
Distance 

(KM) 
 

PT (s) 
 Iter 

Total 
Distance 

(KM) 

PT (s) 
 

Iter 
 

Total 
Distance 

(KM) 
 

PT (s) 
 

Iter 
 

Total 
Distance 

(KM) 

PT (s) 
 Iter 

SPP0 

Avg 0.227 0.008 1 0.221 0.010 1 0.217 0.005 1 0.218 0.009 1 

Min 0.142 0.000 1 0.142 0.000 1 0.142 0.000 1 0.142 0.000 1 
Max 0.351 0.016 1 0.310 0.031 1 0.275 0.016 1 0.349 0.032 1 

Std. Dev 0.045 0.008 0 0.040 0.009 0 0.035 0.008 0 0.048 0.010 0 

SPP1 

Avg - - 200 - - 200 1.248 0.012 1 1.254 0.014 1 
Min - - 200 - - 200 1.219 0.000 1 1.219 0.000 1 
Max - - 200 - - 200 1.266 0.016 1 1.270 0.063 1 

Std. Dev - - 0 - - 0 0.023 0.007 0 0.021 0.011 0 

SSP2 

Avg - - 200 - - 200 38.550 0.015 1 38.550 0.017 1 
Min - - 200 - - 200 38.549 0.005 1 38.549 0.009 1 
Max - - 200 - - 200 38.580 0.023 1 38.580 0.030 1 

Std. Dev - - 0 - - 0 0.006 0.003 0 0.006 0.003 0 

SSP3 

Avg - - 200 - - 200 3.565 0.015 1 3.586 0.019 1 
Min - - 200 - - 200 3.507 0.000 1 3.507 0.000 1 
Max - - 200 - - 200 4.521 0.031 1 4.521 0.032 1 

Std. Dev - - 0 - - 0 0.202 0.008 0 0.261 0.015 0 

SSP4 

Avg - - 200 - - 200 2.410 0.003 17 2.447 0.004 11 
Min - - 200 - - 200 1.794 0.000 1 2.380 0.000 1 
Max - - 200 - - 200 2.694 0.031 91 2.879 0.031 40 

Std. Dev - - 0 - - 0 0.184 0.008 20 0.147 0.008 12 
* PT - processing time (second), iter - number of iteration 
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Appendix 2: Comparison results for SPP5 until SPP9 using inertia weight

Datasets 
 

 PSO [5] GA [5] DPSO_SPP GA_SPP 

 

Total 
Distance 

(KM) 
 

PT (s) 
 Iter 

Total 
Distance 

(KM) 

PT (s) 
 

Iter 
 

Total 
Distance 

(KM) 
 

PT (s) 
 

Iter 
 

Total 
Distance 

(KM) 

PT (s) 
 Iter 

SPP5 

Avg - - 200 - - 200 1.979 0.011 2 2.243 0.010 1 

Min - - 200 - - 200 1.857 0.000 1 1.857 0.000 1 

Max - - 200 - - 200 2.744 0.031 5 3.133 0.031 2 

Std. Dev - - 0 - - 0 0.278 0.011 1 0.400 0.009 0 

SPP6 

Avg - - 200 - - 200 4.068 0.003 20 4.090 0.006 30 

Min - - 200 - - 200 4.047 0.000 1 4.047 0.000 1 

Max - - 200 - - 200 4.147 0.016 42 4.147 0.016 103 
Std. Dev - - 0 - - 0 0.041 0.006 12 0.050 0.008 28 

SPP7 
 

Avg - - 200 - - 200 2.546 0.008 1 2.553 0.011 1 

Min - - 200 - - 200 2.538 0.000 1 2.538 0.000 1 
Max - - 200 - - 200 2.770 0.016 2 2.770 0.031 3 

Std. Dev - - 0 - - 0 0.043 0.008 0 0.059 0.011 0 

SPP8 
 

Avg - - 200 - - 200 2.421 0.006 1 2.456 0.011 1 
Min - - 200 - - 200 2.288 0.000 1 2.456 0.000 1 
Max - - 200 - - 200 2.456 0.016 3 2.456 0.078 3 

Std. Dev - - 0 - - 0 0.069 0.008 0 0.000 0.018 0 

SPP9 
 

Avg - - 200 - - 200 1.727 0.011 1 1.769 0.009 1 
Min - - 200 - - 200 1.719 0.000 1 1.719 0.000 1 
Max - - 200 - - 200 1.951 0.031 2 2.299 0.016 2 

Std. Dev - - 0 - - 0 0.043 0.010 0 0.128 0.008 0 
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Appendix 3: Comparison results for SPP10 until SPP13 using inertia weight 
 

 

Dataset 
 

 PSO [5] GA [5] DPSO_SPP GA_SPP 

 
 

Total Distance (KM) 
 

PT (s) 
 Iter Total Distance (KM) PT (s) 

 
Iter 

 
Total Distance (KM) 

 
PT (s) 

 
Iter 

 
Total Distance 

(KM) 
PT (s) 

 Iter 

 
 

SPP10 
 

Avg - - 200 - - 200 3.458 0.011 1 3.474 0.009 1 

Min - - 200 - - 200 3.285 0.000 1 3.453 0.000 1 

Max - - 200 - - 200 3.548 0.031 2 3.548 0.032 2 

Std. 
Dev - - 0 - - 0 0.061 0.010 0 0.028 0.010 0 

SPP11 
 

Avg - - 200 - - 200 1.720 0.004 1 1.725 0.013 1 

Min - - 200 - - 200 1.720 0.000 1 1.720 0.000 1 
Max - - 200 - - 200 1.720 0.016 1 1.877 0.031 1 
Std. 
Dev - - 0 - - 0 0.000 0.007 0 0.029 0.009 0 

SPP12 
 

Avg 0.779 0.088 1 0.773 0.008 1 0.771 0.006 1 0.771 0.013 1 

Min 0.771 0.000 1 0.771 0.000 1 0.771 0.000 1 0.771 0.000 1 
Max 0.937 0.031 1 0.782 0.032 1 0.771 0.032 1 0.771 0.032 1 
Std. 
Dev 0.030 0.009 0 0.004 0.010 0 0.000 0.009 0 0.000 0.010 0 

SPP13 
 

Avg  - 200 - - 200 0.603 0.005 1 0.930 0.010 1 
Min - - 200 - - 200 0.603 0.000 1 0.603 0.000 1 
Max - - 200 - - 200 0.603 0.016 1 2.645 0.032 1 
Std. 
Dev - - 0 - - 0 0 0.007 0 0.697 0.012 0 

 
588 Discrete Particle Swarm Optimization with a Search Decomposition and Random Selection for the Shortest Path Problem


	I. Introduction
	II. Particle Swarm Optimization
	III. Solution Representation
	A.  Naive solution representation
	B.  New solution representation

	IV. DPSO with Search Decomposition Procedure
	V. Computational Experiment and Discussion
	A. Experimental setup
	B. Performance of DPSO_SPP in terms of obtaining an optimal solution
	C. Discussion

	VI. Conclusion and Recommendation
	Acknowledgment
	References



