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Abstract: mage restoration isan essential pre-processing step
for many image analysis and vision system applications. The
task is to recover a good estimate of the original image from a
blurred and noisy observation without altering and changing
useful structure in the image such as discontinuities and edges.
Several researches have been developed for the scalar image
restoration (i.e. grayscale), but a few methods exist for the multi
channel or color images. In this paper, we propose an
edge-preserving regularization model that deblur and restore
color images. The regularization model incorporates Partial
Differential Equations (PDEs) approaches. The PDEs have
remarkable advantages: they perform an anisotropic diffusion
in the orthogonal direction of the gradient vector, thus
preserving the natural edge of the image. To illustrate the
effective performance of our edge-preserving regularization
model, we present some experimental results on synthetic and
photographic images.

color plays a central role in digital cinematogrgpdigital
cameras; video displays; visual inspection; autenzatalysis
and much more. The color image processing is more
complicated due to the increased dimensionality thoé

problem and the need to extract and exchange imfiiom

from and among all bands. Mathematically, the olesbr
degraded color channe| (=1,2,3 for RGB color) can be
modeled as a linear convolution process definedthsy

following equation [3]:

g =h*f +n 1)
where: * denotes the convolution operatgr;tiie original
color component; ;his the corresponding blurring kernel,
known as the point spread function (PSF) in thatponent;
n; is the corresponding additive noise supposed tarbiei.d
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|. Introduction

The problem of image restoration has been extelysiveblur is

Simultaneous treatment of these two types of dedied
(blur and noise) by a classical linear filter is
unfeasible. Indeed, since the noise resultinggh+ifequency
spatial fluctuations; its elimination by a low pditer alters
the contours and produces very blurred image. htrast, the
interpreted as low-frequency fluctuationgts

studied for its practical importance in image pssigg as suppression needs a high-pass filter which may iynmise
well as its theoretical interest. The purpose ofage which leads to a poor quality image. Thus, theoresion is
restoration is to recover the original scene fromdegraded necessary to solve this kind of problem. In thedsad linear
observation, due to various imperfections and m&si image restoration, the PSF is known a priory aluhg list of
limitations in the image formation and transmissionestoration methods had been appeared in thetliterfy] [8]
processes. This degradation often takes the forblusfand [13][34], such as: Inverse filtering, Wiener filieg,

noise. The blur has many origins such as: atmospheleast-squares filtering, Iterative image restoratiod others.

turbulence, camera motion, out of focus and othkerghe
frequency domain, the blur has a form of bandwiiitlr
which affects the high frequencies of the imagalileg to
edges’ image degradation. The noise may generat¢éhby
thermal fluctuations, quantize effects and propertiof
communication channels. It affects the perceptuality of
the image, decreasing not only the appreciatioefimage
but also the performance of the task for whichithage has
been intended. The challenge in the image restoras to
design methods which can selectively deblur andosma
degraded image without altering edges and losigigifstant
features. Recently, the multichannel (e.g., colomnage
restoration problem has attracted much attentionthi@
research community [15][20][21] [22]. It is well-&wn that

However, there are many situations where the PShois
explicitly known and the true image must be idesif
directly from the observed image; dy using some
information about the original image and the PSithese
cases, the blind deconvolution approach is usedthnis a
very important subset of image restoration [1]. Wan
algorithms and approaches have been proposed suthea
Iterative Blind Deconvolution algorithm (IBD) [4BB], the
Simulated Annealing algorithm (SA) [6], the NAS-RIF
algorithm [2], the Anisotropic Regularization alghm [5]
and others. All these algorithms try to solve thind
deconvolution problem by minimizing an error metnibich
optimizes the true image and the PSF. The challenigefind
the original image from the degraded one with urkmdlur
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information. However, almost of these methods keadnder
optimal solution and are not effective regardingtiges and
discontinuities preservation. This inconveniencerisnarily

due to the ill-posed problem of the restorationcpss [10]
[11] which require an adequate and robust regwtiam. To

adopt effectively the local structures of the imayed to
preserve discontinuities, it should be recommeriedise of
a non linear regularization. Total variation
regularization [18] [25] is well-known for discontiities

preservation. Recently, a new approach based otiaParthe minima of ;] must

Differential Equations (PDEs) [16] has emerged asae
powerful and successful approach for studying aetsaof
problems including image restoration, image segatgmt,
and image denoising. In our approach, we incorpothé
PDEs as a prior model to regularize the inversdlpro of
restoration. The main idea is to perform an anigbt
diffusion of the color components in the orthogodiaéction
to the gradient of the luminance, thus preservimgaurs and
discontinuities.

This paper is organized as follow: In section 2, rexew the
mathematical foundation of the PDESs regularizatioting on
both scalar and color images. In section 3, wegmtethe
proposed method and discuss the estimation of theehs
parameters. In the last section, we exhibit theegrpental

results applied on both synthetic and on a real GJPE

photographic images.

II. PDEsRegularization

The use of variational and PDEs methods has sogmifiy

grown and becomes an interesting research topticerpast
few years. Several approaches have been proposedkie

the problem of regularizing noisy images while premg

possible discontinuities [12][14]. These approadies been
proven to be very useful for image enhancementorason

and segmentation. Another important advantagheoPDEs
approaches is the possibility of achieving higheshe
accuracy, and stability with a great flexibly of merical

scheme resolution. In the following we will reviethe

mathematical foundations of the PDEs regularizat@rthe

scalar images and its extension for color images.

A. Regularization in scalar images

As previously mentioned, the problem of restoratisnan
ill-posed inverse problem that requires a
regularization. The principle of regularization igo

introduce smoothing constraints on the solutiorettuce the
influence of noise. Consider a spatial 2D-domainated by
Q with Neumann boundary conditions @f2. A noisy
blurred scalar image g can be regularized by mizimgi the
following energy functional,J12] :

JA(f):I(g—h* f)ZdQ+/1j¢(|Df|)dQ @)

Where ¢(.) being an increasing function which controls the

regularization behavior and should satisfy somelitmms to

ensure the edge-preservifgf| is the modulus of the image
gradient;A is a parameter that controls data smoothing. The

first term in equation (2) ensures fidelity of thata; the
second term imposes roughness penalty or smootHnebg

particular case of=0, the energy is reduced to the attached
term on the data and the problem corresponds to t

least-squares method which leads to an unstablgisal
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Furthermore, the choice of tl#.) functions is an important
point to ensure a satisfied solution. The case @#€) has a
pure quadratic formp(|Vf]) = |Vf|? corresponding to a
guadratic regularization or a Tikhonov regulariaat{10], it
leads to an over-smoothed solution because higliegres at
edges of the reconstructed image are penalized
over-proportionally. In the remainder of this sentiwe will

(TV)show how to choose thep(.) functions for a good

compromise. Consider equation (2), any functioedlizing
verify the Euler-Lagrange
equationgV/,=0), which give a necessary condition that must
be verified by f to reach the minimum of, Jthat is:

a‘]/i h : ¢quD
—4 =hO(g-h0Of)-Ad 0f)=0
of (9 ) v( |of | )

Whereh: denotes the mirror-kernel of h(x,y)=h(-x,-y).

We note that the divergence term in equation (3)lasely
related to the anisotropic diffusion of Perona dtalik [17],
with an additional term which forces the soluti@maining
data. By using a gradient descent algorithm witlasdificial
time t, equation (3) becomes:

of

—=-01J
at A

3)

=hO(hOf -g)+ /ldiv(w’qDfo)Df) (4)

ﬂz 0 on 0Q
on

f(t=0)=f,

By developing the divergence term of (4), we obtain

o _~ B : ¢ (Of))
t_hD(th 0)+A [¢ (Of)f,, + I ferl ©

=h OhOf - g)+4 [c,f,, +c, f]

Where: f,, = n*Hn and f;; = {*H ¢ are respectively the
second spatial derivatives of f in the directionk the
gradient; = Vf/|Vf|, and its orthogonaf = n* ; H denotes
the Hessian of f. According to these definitiamsthe image
discontinuities, we have a diffusion along(hormal to the
edge) weighted with, = ¢"(|Vf|) and a diffusion alongf
(tangential to the edge) weighted with= ¢'(|Vf])/IVf].

In figurel, we represent a contour C separating two
homogeneous regions of the image, the isophotes line

900dorrespond to f(x,y)=c. In this case, the veetds normal to

the contour C, the set,() is then a moving orthonormal basis
whose configuration depends on the current cootelipaint
(x,y)- In the neighborhood of a contour C, the imagesents a
strong gradient. To better preserve these disaaitis, it is
preferable to diffuse only in the direction parbiteC (i.e. in
the &-direction). In this case, we have to annul theffadent

of f,, (c,=0), and to suppose that the coefficientpfibes not
vanish.

n  flxy)>c
(oo (x1,y1)

f(x,y)<c
f(x,v)=

E?gure 1. Image contour and its moving orthonormal basis

Emn)



Blind Photographic Images Restoration with Discontinuities Preservation 611

So it appears the following conditions for the ceoof the direction 6, = Vf()/|IVf (D] . However, this luminance

¢() functions to be edge preserving: function is not being able to detect iso-luminaocgstours. To
i)¢ (0)= Oandg (0)=0 overcome these problems, we propose using Di Zenzo’
i i i — >0 gradient norm [20][14] which is based on the swfac
")‘Dhnjocn “Dlmocf =a differential geometry. It consists on defining altispectral
c tensor associated to a vector field [35]. Thisvadidooking
i) lim ¢, = lim ¢, = 0and lim -~ =0 for the local variations in the image. Consideritige
O~ 7 (O ¢ ot~ ¢, differential vector d[23]:

Condition (i) avoids inverse diffusion along and &.
Condition (ii) allows isotropic diffusion for lowrgdient with _57| (l| 10

s e . dl = —dx+—dy (10)
no preferred diffusion directions sincg and & do not X ay

represent significant orientations. Condition (ii@llows The vector norm corresponds to-
anisotropic diffusion to preserve discontinuities the high P T

gradient. Among functions satisfies conditiei)sii) —iii), we Hlez —dI"dl = dx| sy s, ||dx

choice the hyper surface function [33], while pgsirF ‘Df‘: dy| |s,; S, ||dy (11)

Auk) =(U/K)? +1-1 6) R A LR P P

This function introduces a paramet&r or conductance
parameter whickacts as a gradient threshold influencing th&Vith f, : K" component channel
anisotropic smoothing process. To avoid any intglim the  The structure tensdss;] defines the local variations of the
solution, some authors suggest using a regulariggd color image and has the corresponding eigenvalues [29]:
smoothed) version of the image gradient, in whitle t Y 2
gradient of f is replaced by [14]: a, = 1t S ¥ (S; ) +4sh (12)
Of , = 0(G, * f
s =HG* ) ) Su* S =[S, = 8,)" + 485
2

where G. is a Gaussian with standard deviatéon a.=
Moreover, the hyper surface function (6) preseris t
particularity to be convex which simplifies the iopization e orthogonal eigenvectors (in the algebraic Sefisand

procedure. Equation (4) can be solved numerically$ing a g_ are the corresponding variation orientations:
gradient descent method, in which we substifér#t with the

discrete difference (f-f ")/At [29], the step timet must be 6. = larcta _ 28,
chosen less than 0.25 to ensure the stabilityefPDE. This 2 S1™Sy,
leads to the following iterative equation:

(13)

) 6=0+Z
ntl _ gn N I ¢'QDf6 'k) n (8) 2
frd = f +Aﬂhthf—m+AdNG—Eﬁf—DQ)

=8

The highest eigenvalue of the multispectral terisen
corresponds to the square norm of the gradient.

Basically such PDEs regularization should adagdiffsision
behaviour to the local geometry of the image defing the

edge indicators and edge orientations.

B. Regularization in color images

In this subsection, we will extend the PDEs
regularization seen previously to the color imagas. .

general, the color image can be expressed by tHgé RG
color system, in which we define a vectorial apgtiien

-a-

I(x,y) : Q O R? ~ R®which associates to pixel (x,y)2, Figure2. lllustration of the color gradient; -a- original
its three component values in the RGB color space: color image; -b- Norm color gradierjt{| = [a, -a_).
Li(x,y) Ir(x,y) An appropriate choice for the norm of the gradigitit
I(x,y) = [Lx,y)| = Ic(x,y) 9)

I3(x,y) Ig(x,y) |D||:\/a+ —a. (14)

The simplest way to process color images is toidengach These indicators of discontinuities as illustrabedigure 2
color components independently of the others. Unfately, contribute to the anisotropic diffusion processatthis
this solution is not optimal because the strongedation isotropic smoothing is allowed wher ~ a-, and to carryout
among channels Another approach is to reduce thea directional diffusion (in the- direction) when a+ >>o- (i.e
dimensionality of the vector image to a scalar dne discontinuities).

evaluating the luminance function given bg(1) = ¥, I?

,with the corresponding gradient noWn= ||Vf(I)|| and the
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The iterative deconvolution process is derived fréime blurred image. In contrast, if its value is too #méhe
Perona-Malik PDEs [17] which is extended to thee¢hr diffusion process will stop the smoothing. To avdhrds
component color image that is: difficulty and obtaining an optimal value of k, viopose

using a robust statistical measure ‘the Median Alieo
¢j(‘|:|f "L k)0f" - (15) Deviation’ (MAD) [28] [30] :
— ) k = 1482MAD(0f|)

of"

_ . ~ | MAD(|0f ) = mediar(norm(Of | - mediar(|f |))
Whereh: Fjenotes_ the m|rr.or-kerll'lel O“"(X'V)=h('xf¥)-¢,(-) Where f: is the grayscale version of the imageea&rin
being an increasing function which controls theutegzation  ich the gradient magnitude is lower thawik be blurred
behavior and should satisfy some conditions to ensthe ,5re strongly than areas with a higher gradientnitade.
edge-preserving [14][19];|Vf| : denotes the norm of the This tends to smooth uniform regions, while presenthe
color gradient which derived from (14). However,eth edges. The choice of the regularization parameitea crucial
unknown blur hi makes the equation more complidatgeed and a difficult problem in the theory of regulatipa. This
the blur is closely related to color bands. Toussdthis parameter controls the closeness to the data vémsusrior
complexity, we assume a spatio-spectral invariafitiee blur  knowledge of the solution. Too small values.gfield overly
that is h = h for all bands. We have to note that thi®scillatory estimates owing to either noise or digmuities;

£7" = £+ Al O(g, - f," Oh) + A div (

(18)

approximation is valid in the case of relativelyashilur. too large values of yields over smoothed estimates. The
optimal choice of. can be obtained by considering the blur

111. Proposed method signal to noise ratio (BSNR) [13]:
The proposed method is based on three main steps, a A= 1
summarized in figure 4: First, the blur is estindafeom the BSNR (19)
grayscale version of the degraded color image. 1Bkcihe BSNR=10I Var(y)

. . . Oglo( 2 )
norm of the color gradient is estimated and updétt the o

feedback of the three estimated color bands. Thind, where Var(y)ands® : denote respectively the variance of the
iterative procedure of equation (15) is used, oeotto restore blurred image and the variance of the additive ev@iussian
the three spectral bandg,(fs, fg) of the original color image. noise (with standard deviatios). To estimate the noise’s
In the following, we will give more details desdign of variance, we propose using the Discrete Wavelet
estimating the blur and the model's parameters. Decomposition (DWT) [31] which provides an appragpei
basis for separating noisy signal from the imagmai By
applying DWT, the image is divided into four sulbnda as
We propose applying an iterative blind deconvolutimsed jllustrated in figure 3 (LL1, LH1, HL1, and HH1)rise from

on the Richardson algorithm [26] which is widely used forseparable applications of vertical and horizoriters.

restoring astronomical images [2The algorithnfollows an
iterative procedure, alternating between the esénad the
image f and the estimate of the blur h. After alifation of LL2 HL2
the variables f and h, where f = g and & @nity impulse), we
have [9]:

A. Blur estimation

HL1

LH2 HH2

R+l = Zﬁf"n [fn ﬁnifn] (16)

Fn1 _ " [pn 9
f T3y7n [h * ”in*fn] LH1 HH1

The stopping criterion is given by the relative moerror
(RNE) :

|Em+iomn)? Figure3. lllustration of two levels DWT decomposition

~ 12
=7

<10™* (a7)
The sub-bands labeled LH1, HL1 and HH1 represemt t
finest scale wavelet coefficients (i.e. detail) ilhthe

where h : denotes the estimated blur which is related ¢o trsubband LL1 corresponds to coarse level coeffisighe

original blur by A =h+Ah , with Ah the error of approximation). The variances” is then estimated from the

estimation. Obviously, this method can also esémgte subband HH1 in the first scale [32] :

original image, but the problem lays in the GibBsiltations

nearly discontinuities in the restored image.

2 _ mediargY;

)
0.6745

B. Parameters estimation
The image quality is widely depending on the patanse
(A k), known as hyperparameters. These parameters
dependent on each other and may lead to differstlts if
chosen inappropriately. The conductance parameterttke
¢(.) function must be chosen carefully. If its valgetdo
large, the diffusion process will over-smooth aedds to a

(20)

e\rlhereYi,— : wavelet coeffients in the sub-band HH1.
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Figure4. Block diagram of the proposed method

In the first experimental, we test the performamndethe
algorithm with an artificially generated blurredage sized
V. Experimental results 128x128 pixels, figure 5.b, obtained by convolvireg
Gaussian blur sized 5x5 and added with a zero-mean
Gaussian noise, having SNR=14.58 dB. The initidlize
In this section, we present the numerical resliitstrating the  parameters are fixed to: N=450 (the number offiiena) and
efficiency and the effectiveness of the proposgdrithm. To  At=.24. The model's parameters are estimated t0.3450
evaluate the color image quality in the simulatiests, we use 2=0.63. The restored image figure 5.c, shows a fbgmitly
an objective measure PSNR defined by: improvement. The edges and discontinuities haven bee
(No)? (21) recovered and preserved with a good suppressionisé. In
figures 5.d, 5.e, 5.f, 5.9, we present the origiaatl the
estimated blur by using the iterative alternatingcedure in
where Ny : the maximum fluctuation in the input image equation (16). The result is satisfactory; the ioagblur is
Nmax =255 when the components of a pixel are encodegl onwell estimated. The second test was performed thigrsame

PSNR=10log,,

bits; MSE : denotes the Mean Square Error, given by image by using a mean filter which simulates anaddbcus
1 MmN 3 . 2 (22) blur h sized 3x3 :
MSE=_——— fnl, )~ 100, ))
3MN ;;;‘ ‘ 111
where f;,, : the original color image components indexed by h :1 111 (22)
m (m= 1,2,3) f,,: the restored image components . Clearly 9 111

this objective measure can be used only in simarfasince it

uses the original image in its computation. And added with a Gaussian noise having SNR=10.68
dB. The model's parameters are estimated to: k0.56
2=0.81. As shown in figure 6, the proposed approach
shows that the image and the PSF can be recovesed e
under the presence of high noise level and blur.
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-d- -e-
-f- -0-
Figure5. Gaussian blur simulatiora- Synthetically

image;-b- Blurred and noisy image; Restored image wit

PSNR=26.57 dB; -d- Original PSF;®Estimated PSF wit

RNE=0.85 1¢;-f- Mesh plot of the original PS-g- Mesh
plot of the estimated P!

In the following, we will compare our proposed mbdie
some existing methodsuch as: the Fastotal Variation
algorithm (FTV) [24]; the Wiener approa [13], the
Lucy-Richardson algorithm [27]the Constrained Lea
Square (i.e. regularized filter) [8], the iterativielind
deconvolution (IBD) [4] In this test, we simulate ¢
out-of-focus blur (i.e. mean filtesized 3x3) in iphotographic
imageadded with a Gaussian noise (SNR=27.12dB). R
that the results are compared in terms of noiseatezh and
discontinuities preservation. The model's paransetare
estimated to: k = 0.12, =0.57.The results i figure 7 show
that our method and thEV one have similar performanc
They can successfully remove noise and blur andyme
good quality image. Nevertheless, our method seerbstter
preserve and enhance discontinuities as shespecially on
the leaves hues). The other methéetsd to inder optimal
solution and are not effectiveegaring to edges and

Benzarti and Amiri

discontinuities preservation. They remove the blur but
introduce Gibbs oscillations with a heavily am@dinoiselt
should be noted that the image quality is veryiseago the
PSF’ssupport initialization and especially to the partanef
regularization.

-d- e

Figure6. Out of focus blur simulation-a- Synthetically
image; -b-Degraded imag-c- Restored image with
PSNR=27.61 dB; -dMesh plot of the original PS-e- Mesh
plot of the estimated PSF with RNE=0.32*,

The assumption of a Gaussian noise to estimatattiee is
not always true in a real case; it is sometimefulise make a
manual refinement of this parameter to avoid-optimal
solution. Obviously the vial quality image decision is
always subjective
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||
s
:

A . <

Figure7. Out of focus blur simulatior-a- Original image with details zoom; -Degraded image with details zoo-c-

Wiener DeconvolutionrPSNR=21.86dBd- Richardson deconvolution, PSNR=18.64dB; f&e Constrained LeaSquare,

PSNR=21.08 -fThe iterative blind deconvolution (IBIPSNR=19.24 dB;-g-Fa3tv deconvolutior,PSNR=23.05dB; —h-
Proposed method with details zoom, PSNR=23.7
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We also test the performance of the algorithm JPEG real
photographic image figure 8 (from the Web site)ed
238x411. This image seems to be noisy and pooitguiabr
the algorithm we initialized the PSF’s support 8 3izeand
the number of iterations N=850the PSF's suppo
initialization andespecially to the parameter of regularizat
The assumption of a Gaussian noise to estimatéattes is
not always true in a real case; it is sometimefulise make a
manual themodel's parameters are estimated to: k = 0A
=0.56. As shown in figures 8.the restored image has a gc
quality with significantly enhanced edc A cross-sectional
analysis of the image in figure 8.d, shows the noise and

the artefacts have been reduclt should be noted that the
image quality is very sensie torefinement of this parameter
to avoid subsptimal solutior Obviously the visual quality
image decision is always subject

V. Conclusion

In this paper, we have proposed w&dge-preserving
regularization modethat deblurs and restores color im.

This approach has the particularity to associat®wlolution
and anisotropic diffusion. This allows a great ity of

processing and contributes to: eliminate the bileducing
noise and preserving natural edges of the imagler Coages
processig is not a trivial task because the strong -band
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correlation. The anisotropic diffusion is well sdtfor scalar
images; its extension to color images, needs tlkeofighe
differential geometry of surfaces formalism. Thigrhalism
allows defining a common tensor gradient to represke
image’s discontinuities on each spectral band. Expntal
results on synthetic and digital picture are vagnusing and
provide very good quality images in terms of noisguction
and discontinuities preservation. This approach basn
tested with a particular case of a Gaussian arabiiaf focus
blur, but can be generalized for any kind of blad ather
applications. Future works will include multispedtimages
other than RGB space and an adaptative locallynpetexrs
estimation.
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