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Abstract: Image restoration is an essential pre-processing step 
for many image analysis and vision system applications. The 
task is to recover a good estimate of the original image from a 
blurred and noisy observation without altering and changing 
useful structure in the image such as discontinuities and edges. 
Several researches have been developed for the scalar image 
restoration (i.e. grayscale), but a few methods exist for the multi 
channel or color images. In this paper, we propose an 
edge-preserving regularization model that deblur and restore 
color images.  The regularization model incorporates Partial 
Differential Equations (PDEs) approaches. The PDEs have 
remarkable advantages: they perform an anisotropic diffusion 
in the orthogonal direction of the gradient vector, thus 
preserving the natural edge of the image. To illustrate the 
effective performance of our edge-preserving regularization 
model, we present some experimental results on synthetic and 
photographic images.  
 

Keywords: Photographic images, Blind deconvolution, PDE, 
Anisotropic diffusion, Regularization, Edge-preserving. 

 

I. Introduction 

The problem of image restoration has been extensively 
studied for its practical importance in image processing as 
well as its theoretical interest. The purpose of image 
restoration is to recover the original scene from the degraded 
observation, due to various imperfections and physical 
limitations in the image formation and transmission 
processes. This degradation often takes the form of blur and 
noise. The blur has many origins such as: atmospheric 
turbulence, camera motion, out of focus and others. In the 
frequency domain, the blur has a form of bandwidth filter 
which affects the high frequencies of the image leading to 
edges’ image degradation. The noise may generate by: the 
thermal fluctuations, quantize effects and properties of 
communication channels. It affects the perceptual quality of 
the image, decreasing not only the appreciation of the image 
but also the performance of the task for which the image has 
been intended. The challenge in the image restoration is to 
design methods which can selectively deblur and smooth a 
degraded image without altering edges and losing significant 
features. Recently, the multichannel (e.g., color) image 
restoration problem has attracted much attention in the 
research community [15][20][21] [22]. It is well-known that 

color plays a central role in digital cinematography; digital 
cameras; video displays; visual inspection; automatic analysis 
and much more. The color image processing is more 
complicated due to the increased dimensionality of the 
problem and the need to extract and exchange information 
from and among all bands. Mathematically, the observed 
degraded color channel gi (i=1,2,3 for RGB color) can be 
modeled as a linear convolution process defined by the 
following equation  [3]:  

 

iiii nfhg += *                            (1)                

 
where: * denotes the convolution operator; fi: the original 
color component; hi: is the corresponding blurring kernel, 
known as the point spread function (PSF) in that component; 
ni is the corresponding additive noise supposed to be an i.i.d 
Gaussian process.  
Simultaneous treatment of these two types of degradation 
(blur and noise) by a classical linear filter is 
unfeasible. Indeed, since the noise resulting in high-frequency 
spatial fluctuations; its elimination by a low pass-filter alters 
the contours and produces very blurred image. In contrast, the 
blur is interpreted as low-frequency fluctuations; its 
suppression needs a high-pass filter which may amplify noise 
which leads to a poor quality image. Thus, the restoration is 
necessary to solve this kind of problem. In the standard linear 
image restoration, the PSF is known a priory and a long list of 
restoration methods had been appeared in the literature [7] [8] 
[13][34], such as: Inverse filtering, Wiener filtering, 
Least-squares filtering, Iterative image restoration and others. 
However, there are many situations where the PSF is not 
explicitly known and the true image must be identified 
directly from the observed image gi by using some 
information about the original image and the PSF. In these 
cases, the blind deconvolution approach is used, which is a 
very important subset of image restoration [1]. Many 
algorithms and approaches have been proposed such as: the 
Iterative Blind Deconvolution algorithm (IBD) [4] [36], the 
Simulated Annealing algorithm (SA) [6], the NAS-RIF 
algorithm [2], the Anisotropic Regularization algorithm [5] 
and others. All these algorithms try to solve the blind 
deconvolution problem by minimizing an error metric which 
optimizes the true image and the PSF. The challenge is to find 
the original image from the degraded one with unknown blur 
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information. However, almost of these methods lead to under 
optimal solution and are not effective regarding to edges and 
discontinuities preservation. This inconvenience is primarily 
due to the ill-posed problem of the restoration process [10] 
[11] which require an adequate and robust regularization. To 
adopt effectively the local structures of the image and to 
preserve discontinuities, it should be recommended the use of 
a non linear regularization. Total variation (TV) 
regularization [18] [25] is well-known for discontinuities 
preservation. Recently, a new approach based on Partial 
Differential Equations (PDEs) [16] has emerged as a more 
powerful and successful approach for studying a variety of 
problems including image restoration, image segmentation, 
and image denoising. In our approach, we incorporate the 
PDEs as a prior model to regularize the inverse problem of 
restoration. The main idea is to perform an anisotropic 
diffusion of the color components in the orthogonal direction 
to the gradient of the luminance, thus preserving contours and 
discontinuities. 
This paper is organized as follow: In section 2, we review the 
mathematical foundation of the PDEs regularization acting on 
both scalar and color images. In section 3, we present the 
proposed method and discuss the estimation of the model’s 
parameters. In the last section, we exhibit the experimental 
results applied on both synthetic and on a real JPEG 
photographic images.  

II. PDEs Regularization  

The use of variational and PDEs methods has significantly 
grown and becomes an interesting research topic in the past 
few years. Several approaches have been proposed to tackle 
the problem of regularizing noisy images while preserving 
possible discontinuities [12][14]. These approaches have been 
proven to be very useful for image enhancement, restoration 
and segmentation.  Another important advantage of the PDEs 
approaches is the possibility of achieving high-speed, 
accuracy, and stability with a great flexibly of numerical 
scheme resolution. In the following we will review the 
mathematical foundations of the PDEs regularization for the 
scalar images and its extension for color images. 
 

A. Regularization in scalar images 

As previously mentioned, the problem of restoration is an 
ill-posed inverse problem that requires  a good 
regularization. The principle of regularization is to 
introduce smoothing constraints on the solution to reduce the 
influence of noise. Consider a spatial 2D-domain denoted by 
Ω with Neumann boundary conditions on ∂Ω.  A noisy 
blurred scalar image g can be regularized by minimizing the 
following energy functional Jλ [12] : 
 

(2)                                                                                                                             
                                                                                                                                                                          

Where ϕ(.) being an increasing function which controls the 
regularization behavior and should satisfy some conditions to 
ensure  the edge-preserving; |��| is the modulus of  the image 
gradient; λ is a parameter that controls data smoothing. The 
first term in equation (2) ensures fidelity of the data; the 
second term imposes roughness penalty or smoothness. In the 
particular case of λ=0, the energy is reduced to the attached 
term on the data and the problem corresponds to the 
least-squares method which leads to an unstable solution. 

Furthermore, the choice of the ϕ(.)  functions is an important 
point to ensure a satisfied solution. The case where ϕ(.)  has a 
pure quadratic form: ��|��|� 	 |��|
  corresponding to a 
quadratic regularization or a Tikhonov regularization [10], it 
leads to an over-smoothed solution because high gradients at 
edges of the reconstructed image are penalized 
over-proportionally. In the remainder of this section, we will 
show how to choose the ϕ(.) functions for a good 
compromise. Consider equation (2), any function f realizing 
the minima of Jλ must verify the Euler-Lagrange 
equations ����=0), which give a necessary condition that must 
be verified by f to reach the minimum of   Jλ  , that is: 
 

(3)        

 
Where 
�: denotes the mirror-kernel of h, 
�(x,y)=h(-x,-y).  
We note that the divergence term in equation (3) is closely 
related to the anisotropic diffusion of Perona and Malik [17], 
with an additional term which forces the solution remaining 
data. By using a gradient descent algorithm with an artificial 
time t, equation (3) becomes: 
 

    (4) 
 
 
 
 
 
By developing the divergence term of (4), we obtain 
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Where: ��� 	 ��� �  and ��� 	 ��� �  are respectively the 
second spatial derivatives of f in the directions of the 
gradient � 	 ��/|��|, and its orthogonal  � 	 �� ; H denotes 
the Hessian of  f . According to these definitions, on the image 
discontinuities, we have a diffusion along η (normal to the 
edge) weighted with �� 	 ����|��|� and a diffusion along ξ  

(tangential to the edge) weighted with �� 	 ���|��|�/|��|.  
In figure1, we represent a contour C separating two 
homogeneous regions of the image, the isophote lines 
correspond to f(x,y)=c. In this case, the vector η is normal to 
the contour C, the set (ξ,η) is then a moving orthonormal basis 
whose configuration depends on the current coordinate point 
(x,y). In the neighborhood of a contour C, the image presents a 
strong gradient. To better preserve these discontinuities, it is 
preferable to diffuse only in the direction parallel to C (i.e. in 
the ξ-direction). In this case, we have to annul the coefficient 
of fηη (cη=0), and to suppose that the coefficient of fξξ does not 
vanish. 

          
Figure 1.  Image contour and its moving orthonormal basis 
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So it appears the following conditions for the choice of the    ϕ( ) functions to be edge preserving:  
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Condition (i) avoids inverse diffusion along η and ξ. 
Condition (ii) allows isotropic diffusion for low gradient, with 
no preferred diffusion directions since η and ξ do not 
represent significant orientations. Condition (iii) allows 
anisotropic diffusion to preserve discontinuities for the high 
gradient. Among functions satisfies conditions -i) -ii) –iii),  we 
choice the hyper surface function [33], while posing u= f∇ : 

            11)/(),( 2 −+= kukuφ                        (6)                                                    

 
This function introduces a parameter k or conductance 
parameter which acts as a gradient threshold influencing the 
anisotropic smoothing process. To avoid any instability in the 
solution, some authors suggest using a regularized (or 
smoothed) version of the image gradient, in which the 
gradient of f is replaced by [14]: 
 

                   (7) 
where Gδ :  is a Gaussian with standard deviation δ. 
Moreover, the hyper surface function (6) presents the 
particularity to be convex which simplifies the optimization 
procedure. Equation (4) can be solved numerically by using a 
gradient descent method, in which we substitute ∂f/∂t with the 
discrete difference (f n+1-f n)/∆t [29], the step time ∆t must be 
chosen less than 0.25 to ensure the stability of the PDE. This 
leads to the following iterative equation: 
 

(8)                                                                                                                             
 
 
Basically such PDEs regularization should adapt its diffusion 
behaviour to the local geometry of the image defined by the 
edge indicators and edge orientations. 
 

B. Regularization in color images 

In this subsection, we will extend the PDEs 
regularization seen previously to the color images. In 
general, the color image can be expressed by the RGB 
color system, in which we define a vectorial application         
I(x,y) : Ω ⊂ R2 → R3 which associates to pixel (x,y) є Ω, 
its three component values in the RGB color space:     
 

����, �� 	 �����, ���
��, ��� ��, ��! 	 ��"��, ���#��, ���$��, ��!                     (9)             

 
The simplest way to process color images is to consider each 
color components independently of the others. Unfortunately, 
this solution is not optimal because the strong correlation 
among channels. Another approach is to reduce the 
dimensionality of the vector image to a scalar one by 
evaluating the luminance function given by : ���� 	 ∑ �&
'&(�  
,with the corresponding gradient norm ) 	 *�����* and the 

direction +, 	 �����/*�����* . However, this luminance 
function is not being able to detect iso-luminance contours. To 
overcome these problems, we propose using Di Zenzo’s 
gradient norm [20][14] which is based on the surfaces 
differential geometry. It consists on defining a multispectral 
tensor associated to a vector field [35]. This allows looking 
for the local variations in the image. Considering the 
differential vector dI [23]:  
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With fk : k

th component channel.  
The structure tensor [sij] defines the local variations of the 
color image I and has the corresponding eigenvalues [29]: 
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The orthogonal eigenvectors (in the algebraic sense) θ+ and 
θ− are the corresponding variation orientations: 
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The highest eigenvalue of the multispectral tensor then 
corresponds to the square norm of the gradient.  
 

 
Figure 2.  Illustration of the color gradient; -a- original 
color image; -b- Norm color gradient (

−+ −=∇ ααI ). 

An appropriate choice for the norm of the gradient will: 

   −+ −=∇ ααI                       (14)   

 
These indicators of discontinuities as illustrated in figure 2 
contribute to the anisotropic diffusion process; that is 
isotropic smoothing is allowed when α+ ~ α-, and to carry out 
a directional diffusion (in the θ- direction) when   α+ >>α- (i.e 
discontinuities).  
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The iterative deconvolution process is derived from the 
Perona-Malik PDEs [17] which is extended to the three 
component color image fi, that is:  
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Where 
�: denotes the mirror-kernel of h, 
�(x,y)=h(-x,-y). ϕ(.) 
being an increasing function which controls the regularization 
behavior and should satisfy some conditions to ensure  the 
edge-preserving [14][19];  |��|  : denotes the norm of the 
color gradient which derived from (14). However, the 
unknown blur hi makes the equation more complicate. Indeed 
the blur is closely related to color bands.  To reduce this 
complexity, we assume a spatio-spectral invariance of the blur 
that is hi = h for all bands. We have to note that this 
approximation is valid in the case of relatively small blur. 

III. Proposed method 

The proposed method is based on three main steps, as 
summarized in figure 4: First, the blur is estimated from the 
grayscale version of the degraded color image. Second, the 
norm of the color gradient is estimated and updated from the 
feedback of the three estimated color bands. Third, the 
iterative procedure of equation (15) is used, in order to restore 
the three spectral bands (fR, fG, fB) of the original color image. 
In the following, we will give more details description of 
estimating the blur and the model’s parameters.  

A. Blur estimation 

We propose applying an iterative blind deconvolution based 
on the Richardson algorithm [26] which is widely used for 
restoring astronomical images [27]. The algorithm follows an 
iterative procedure, alternating between the estimate of the 
image f and the estimate of the blur h. After initialization of 
the variables f and h, where f = g and h = δ (unity impulse), we 
have [9]: 
 

   
 - .,� 	 / - 0
∑ 1 - 0 2� - . 3/ - 041 - 05                            (16) 

 

                                      � - .,� 	 1 - 0
∑ 1 - 0 2
 - . 4 3/ - 041 - 05             

 
The stopping criterion is given by the relative norm error 
(RNE) : 6/ - 0789/ - 06:

6/ - 06: ; 109>                           (17)                                                  

 

where    
?  : denotes the estimated blur which is related to the 
original blur by    
?  	 
 @ A
 , with  A
 the error of 
estimation. Obviously, this method can also estimate the 
original image, but the problem lays in the Gibbs oscillations 
nearly discontinuities in the restored image. 

B. Parameters estimation 

The image quality is widely depending on the parameters      
(λ ,k), known as hyperparameters. These parameters are 
dependent on each other and may lead to different results if 
chosen inappropriately. The conductance parameter k in the ϕ(.)  function must be chosen carefully. If its value is too 
large, the diffusion process will over-smooth and leads to a 

blurred image. In contrast, if its value is too small, the 
diffusion process will stop the smoothing. To avoid this 
difficulty and obtaining an optimal value of k, we propose 
using a robust statistical measure ‘the Median Absolute 
Deviation’ (MAD) [28] [30] : 
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Where f : is the grayscale version of the image. Areas in 
which the gradient magnitude is lower than k will be blurred 
more strongly than areas with a higher gradient magnitude. 
This tends to smooth uniform regions, while preserving the 
edges. The choice of the regularization parameter λ is a crucial 
and a difficult problem in the theory of regularization. This 
parameter controls the closeness to the data versus the prior 
knowledge of the solution. Too small values of λ yield overly 
oscillatory estimates owing to either noise or discontinuities; 
too large values of λ yields over smoothed estimates. The 
optimal choice of λ can be obtained by considering the blur 
signal to noise ratio (BSNR) [13]: 
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where  Var(y) and σ2 : denote respectively  the variance of the 
blurred image and the variance of the additive white Gaussian 
noise (with standard deviation σ). To estimate the noise’s 
variance, we propose using the Discrete Wavelet 
Decomposition (DWT) [31] which provides an appropriate 
basis for separating noisy signal from the image signal. By 
applying DWT, the image is divided into four sub-bands as 
illustrated in figure 3 (LL1, LH1, HL1, and HH1), arise from 
separable applications of vertical and horizontal filters.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Illustration of two levels DWT decomposition 

The sub-bands labeled LH1, HL1 and HH1 represent  the 
finest scale wavelet coefficients (i.e. detail)  while the 
subband LL1 corresponds to coarse level coefficients (i.e 
approximation).  The variance σ2 is then estimated from the 
subband HH1 in the first scale [32] : 
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Where Yij : wavelet coeffients in the sub-band HH1.
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Figure 4.  Block diagram of the proposed method

 

IV. Experimental results 

 
In this section, we present the numerical results illustrating the 
efficiency and the effectiveness of the proposed algorithm. To 
evaluate the color image quality in the simulation tests, we use 
an objective measure PSNR defined by: 

MSE

N
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2
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where  Nmax : the maximum fluctuation in the input image , 
Nmax =255 when the components of a pixel are encoded on 8 
bits; MSE : denotes the Mean Square Error, given by:    
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where  �B : the original color image components indexed by 

m (m= 1,2,3), �CB: the restored image components . Clearly 
this objective measure can be used only in simulation, since it 
uses the original image in its computation. 
 

    

    
    

    
                                                                                                                                                                             

In the first experimental, we test the performance of the 
algorithm with an artificially generated blurred image sized 
128x128 pixels, figure 5.b, obtained by convolving a 
Gaussian blur sized 5x5  and added with a zero-mean 
Gaussian noise, having SNR=14.58 dB. The initialized 
parameters are fixed to: N=450 (the number of iterations) and 
∆t=.24. The model’s parameters are estimated to: k=0.31, 
λ=0.63. The restored image figure 5.c, shows a significantly 
improvement. The edges and discontinuities have been 
recovered and preserved with a good suppression of noise. In 
figures 5.d, 5.e, 5.f, 5.g, we present the original and the 
estimated blur by using the iterative alternating procedure in 
equation (16). The result is satisfactory; the original blur is 
well estimated. The second test was performed with the same 
image by using a mean filter which simulates an out of focus 
blur h sized 3x3 : 
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And added with a Gaussian noise having SNR=10.68 
dB. The model’s parameters are estimated to: k=0.56, 
λ=0.81. As shown in figure 6, the proposed approach 
shows that the image and the PSF can be recovered even 
under the presence of high noise level and blur. 
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                  -d-                                    -e

                -f-                                      -g
                 

Figure 5.  Gaussian blur simulation; 
image;-b- Blurred and noisy image; -c- Restored image with 
PSNR=26.57 dB;  -d- Original PSF;-e- Estimated PSF with 
RNE=0.85 10-4;-f-  Mesh plot of the original PSF;

plot of the estimated PSF

 

 

In the following, we will compare our proposed model to 
some existing methods such as: the Fast T
algorithm (FTV) [24]; the Wiener approach
Lucy-Richardson algorithm [27], the Constrained Least 
Square (i.e. regularized filter) [8], the iterative blind 
deconvolution (IBD) [4]. In this test, we simulate an 
out-of-focus blur (i.e. mean filter sized 3x3) in a 
image added with a Gaussian noise (SNR=27.12dB). Recall 
that the results are compared in terms of noise reduction and 
discontinuities preservation. The model’s parameters are 
estimated to: k = 0.11, λ =0.57. The results in
that our method and the TV one have similar performance. 
They can successfully remove noise and blur and produce 
good quality image. Nevertheless, our method seems to better 
preserve and enhance discontinuities as shown (
the leaves hues). The other methods lead to u
solution and are not effective regard

 

 
e- 

 
g- 

Gaussian blur simulation; -a- Synthetically 
Restored image with 
Estimated PSF with 

Mesh plot of the original PSF;-g-  Mesh 
plot of the estimated PSF 

In the following, we will compare our proposed model to 
such as: the Fast Total Variation 

[24]; the Wiener approach [13], the 
the Constrained Least 

Square (i.e. regularized filter) [8], the iterative blind 
. In this test, we simulate an 

sized 3x3) in a photographic 
added with a Gaussian noise (SNR=27.12dB). Recall 

that the results are compared in terms of noise reduction and 
discontinuities preservation. The model’s parameters are 

The results in figure 7 show 
TV one have similar performance. 

They can successfully remove noise and blur and produce 
good quality image. Nevertheless, our method seems to better 
preserve and enhance discontinuities as shown (especially on 

lead to under optimal 
regarding to edges and 

discontinuities preservation. 
introduce Gibbs oscillations with a heavily amplified noise. 
should be noted that the image quality is very sensitive to the 
PSF’s support initialization and especially to the parameter of 
regularization.  

 

 

                      -a-                                                    

                        -c-  

                  -d-                                                                        

Figure 6.  Out of  focus blur simulation; 
image; -b- Degraded image;

PSNR=27.61 dB; -d- Mesh plot of the original PSF;
plot of the estimated PSF with RNE=0.32 10

 
The assumption of a Gaussian noise to estimate the latter is 

not always true in a real case; it is sometimes useful to make a 
manual refinement of this parameter to avoid sub
solution. Obviously the visu
always subjective. 

 
 

 
 
 
 
 

  They remove the blur but 
introduce Gibbs oscillations with a heavily amplified noise. It 
should be noted that the image quality is very sensitive to the 

support initialization and especially to the parameter of 

 

                                 -b- 

 

 

                                                                        -e- 

focus blur simulation; -a- Synthetically 
Degraded image;-c- Restored image with 

Mesh plot of the original PSF;-e- Mesh 
ot of the estimated PSF with RNE=0.32 10-4. 

The assumption of a Gaussian noise to estimate the latter is 
not always true in a real case; it is sometimes useful to make a 
manual refinement of this parameter to avoid sub-optimal 
solution. Obviously the visual quality image decision is 
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Figure 7.      Out of focus blur simulation; 
Wiener Deconvolution, PSNR=21.86dB;
PSNR=21.08  -f- The iterative blind deconvolution (IBD) 

Proposed  method with details zoom, PSNR=23.74dB.
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Out of focus blur simulation; -a- Original image with details zoom; -b- Degraded image with details zoom; 
PSNR=21.86dB;-d-  Richardson deconvolution, PSNR=18.64dB; -e-  The Constrained Least 

The iterative blind deconvolution (IBD) PSNR=19.24 dB;-g-Fast TV deconvolution 
Proposed  method with details zoom, PSNR=23.74dB. 

                                                                                    

 

 

 

 

Degraded image with details zoom; -c- 
The Constrained Least Square,  

TV deconvolution ,PSNR=23.05dB; –h- 
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Pixels intensity 

                           -c-                    Pixels position

.                                                                                                                             

Figure 8.  JPEG image test;-a- Original image  with its details zoom; 
image cross-section through the RGB components (Row=100 pixels) ; 

 

We also test the performance of the algorithm on a
photographic image figure 8 (from the Web site) sized 
238x411. This image seems to be noisy and poor quality. For 
the algorithm we initialized the PSF’s support to 3x3 size
the number of iterations N=850; the PSF’s support 
initialization and especially to the parameter of regularization. 
The assumption of a Gaussian noise to estimate the latter is 
not always true in a real case; it is sometimes useful to make a 
manual the model’s parameters are estimated to: k = 0.23,  
=0.56. As shown in figures 8.b, the restored image has a good 
quality with significantly enhanced edges.
analysis of the image in figure 8.d, shows that 
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Original image  with its details zoom; -b-Restored image with its details zoom;
section through the RGB components (Row=100 pixels) ; –d- Cross-section for restored image

We also test the performance of the algorithm on a JPEG real 
photographic image figure 8 (from the Web site) sized 
238x411. This image seems to be noisy and poor quality. For 
the algorithm we initialized the PSF’s support to 3x3 size and 

the PSF’s support 
especially to the parameter of regularization. 

The assumption of a Gaussian noise to estimate the latter is 
not always true in a real case; it is sometimes useful to make a 

model’s parameters are estimated to: k = 0.23,  λ 
he restored image has a good 

quality with significantly enhanced edges.  A cross-sectional 
analysis of the image in figure 8.d, shows that the noise and  

 

the artefacts have been reduced. 
image quality is very sensitive to 
to avoid sub-optimal solution.
image decision is always subjective.

V. Conclusion 

In this paper, we have proposed an 
regularization model that deblurs and restores color image
This approach has the particularity to associate deconvolution 
and anisotropic diffusion. This allows a great flexibility of 
processing and contributes to: eliminate the blur, reducing 
noise and preserving natural edges of the image. Color images 
processing is not a trivial task because the strong inter
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section for restored image

the artefacts have been reduced. It should be noted that the 
tive to refinement of this parameter 

optimal solution. Obviously the visual quality 
image decision is always subjective. 

In this paper, we have proposed an edge-preserving 
that deblurs and restores color image. 

This approach has the particularity to associate deconvolution 
and anisotropic diffusion. This allows a great flexibility of 
processing and contributes to: eliminate the blur, reducing 
noise and preserving natural edges of the image. Color images 

g is not a trivial task because the strong inter-band 
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correlation. The anisotropic diffusion is well suited for scalar 
images; its extension to color images, needs the use of the 
differential geometry of surfaces formalism. This formalism 
allows defining a common tensor gradient to represent the 
image’s discontinuities on each spectral band. Experimental 
results on synthetic and digital picture are very promising and 
provide very good quality images in terms of noise reduction 
and discontinuities preservation. This approach has been 
tested with a particular case of a Gaussian and an out of focus 
blur, but can be generalized for any kind of blur and other 
applications.  Future works will include multispectral images 
other than RGB space and an adaptative locally parameters 
estimation. 
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