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Abstract: Component Based Software Engineering (CBSE) is
concerned with the assembly of pre–existing software compo-
nents that leads to a software system that responds to client–
specific requirements. Component selection and component
systems assembly have become two of the key issues involved
in this process.
This work presents an approach for component selection, solu-
tion based on the ratio of number of satisfied requirements to
the cost of the component as a measure to maximize our heuris-
tic decision. This paper also addresses the problem of automatic
assembly of component systems. The algorithmCSACC(Com-
ponent System Automatic Criteria-based Configurations) is pre-
sented. With our case study we show that our approach is effi-
cient and generally applicable in practical scenarios.
Keywords: Automatic configuration, Component Selection Prob-
lem, Component assembly.

I. Introduction

Since the late 90’s Component–Based Software Engineering
(CBSE) is a very active area of research and development.
CBSE [1] covers both component development and system
development with components. There is a slight difference
in the requirements and business ideas in the two cases and
different approaches are necessary. Of course, when devel-
oping components, other components can be (and often must
be) incorporated and the main emphasis is on reusability. De-
velopment using components is focused on the identification
of reusable entities and relations between them, starting from
the system requirements.
Building software applications using components signifi-
cantly reduces development and maintenance costs. Because
existing components can often be reused to build new appli-
cations, it is less expensive to finance their development.
In this paper, we address the problem of automatic compo-
nent selection. In general, there may be different alterna-
tive components that can be selected, each coming with their
own set of offered requirements and cost. We aim at a selec-
tion approach that guarantees the optimality of the generated
component-based system, an approach that considers at each
step the component with the maximum ratio of offered func-
tionalities to the cost of the component. The compatibility
of components is not discussed here, it will be treated in a
future development.

We discuss the proposed approach as follows. Related work
on Component Selection Problemis discussed in Section II.
Our approach for theComponent Selection Problem: the for-
mal statement of the Component Selection Problem, the ele-
ments/notations used for composing the system and the new
algorithm CSACC(Component System Automatic Criteria-
based Configurations) is introduced in Section III. The result
of the algorithm may be a valid solution or a partial solution
when the set of available components is not sufficient to ob-
tain a solution. An error code is used to specify the type of
obtained result. Using an example we discuss the new se-
lection decision. We conclude our paper and discuss future
work in Section V.

II. Related work

A framework for automating component retrieval and adap-
tation for software reuse is described in [2]. They used lay-
ered architecture using feature–based, signature–based and
specification-based retrieval engines to retrieve components
that completely or partially match a problem.
MaDcAr [3] provides an uniform solution for automating
both the construction of applications from scratch and the
adaptation of existing component assemblies. A MaDcAr
compliant engine computes a configuration and builds the ap-
plication, and when the execution context changes, it chooses
a more appropriate configuration and re-assembles the com-
ponents accordingly.
An algorithm for selecting COTS components with multiple
interfaces from a repository in order to implement a given
software architecture is presented in [4]. The traditionalin-
terface operators are extended to the case in which compo-
nents supports more than one interface.
The unified approach to the construction of component sys-
tems by employing methods from the area of compiler con-
struction and especially optimizing code was proposed in [5].
The approach allows to first select an optimal set of compo-
nents and adapters and afterwords to create a working system
by providing the necessary glue code.
In [15] the authors argue that ideally component models
should include both design and deployment phases, and it
should be possible to compose components in both phases.
They also demonstrate a preliminary implementation of com-
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position in both phases in a component model we have de-
fined.
The preliminary ideas for a proposal of a component selec-
tion method whose development is fast, agile and require-
ments driven is presented in [16]. The presented method is
called COTSRE and it is based on SIREN, which is a method
of RE based on the standards of this discipline and the use of
reuse requirements catalogs. The final aim of the proposal is
to achieve an RE method that guides the selection, the devel-
opment and the composition of a set of independent software
components, and whose application is the simplest possible.
In [6] constructing all possible components configurations
using parallel and serial composition was proposed. The
APCCalgorithm (All Possible Components Configurations)
is based on the idea of composition; components are used as
building blocks from a repository and assembled or plugged
together into larger blocks or systems. The main steps of
APCCalgorithm are: check disjoint in/out conditions; check
if composition is possible; compute the interdependencies
and compute all possible components configurations based
on interdependencies.
The execution elements for the component–based model pro-
posed in [6] is presented in [7]: the possible operations (prop-
agation and evaluation) and the state of execution. The con-
struction of a component-based model does not need much
time and effort. Just wire the component’s output port with
other component’s input port and the ports of the final com-
ponent system with the ports of the desired component.
The execution of the model starts with the initialization,
which consist of initialization of the input port of the first
component. Execution starts after we have chosen an assem-
bly from the set of available (generated) configurations. Ifat
a given time, both types of operation can be performed, the
propagation operation is chosen. Between many evaluation
operations, one component is chosen randomly.
The previous approach was improved by obtaining a solution
with a minimum number of components in [14]. The selec-
tion process considered the component with the maximum
number of provided operations. In this current paper we im-
prove the selection process by considering different criteria
like: the dependencies, the cost of the component and the
ratio of the number of provided operations to the cost.

III. Constructing component-based system by
automatic component selection

In Component–Based Software Engineering the construction
of cost-optimal component systems is a nontrivial task. It
requires not only to optimally select components but also to
take their interplay into account.
We assume the following situation: given a repository of
components and a specification of the component system that
we want to construct (set of final requirements), we need to
choose components and to connect them such that the target
component system fulfills the specification. The following
information must be specified: the description of the required
services (set of requirements) and the component specifica-
tions, which consist of the provided services and required
services, as well as the dependencies (contexts).
Informally, our problem is to select a set of components from

an available component set which can satisfy a given set of
requirements while minimizing number of selected compo-
nents and the cost. Each component has assigned a set of
requirements it satisfies.
Problem statement. Given a set of specified components
and a set of required operations we want to automatically ob-
tain a component assembly that offers the desired functional-
ities (by selecting at each step the component that providesa
maximum number of required operations) using a minimum
set of components with a minimum cost.

A. Formal Statement of the Component Selection Problem

Component Selection Problem (CSP) is the problem of
choosing the minimum number of components from a set of
components such that their composition satisfies a set of ob-
jectives (a variation of CSP, the cost of each component is
not considered). The notation used for formally defining CS,
as laid out in [8] with a few minor changes to improve ap-
pearance is described in what follows.
Denote bySR the set of final system requirements (target
requirements)SR = {r1, r2, ..., rn}, and bySC the set of
components available for selectionSC = {c1, c2, ..., cm}.
Each componentci can satisfy a subset of the requirements
from SR, SRci

= {ri1 , ri2 , ..., rik
}.

The goal is to find a set of componentsSol in such a way that
every requirementrj from the setSR may have assigned a
componentci from Sol whererj is in SRci

, while minimiz-
ing the number of components in the solutionSol.

B. Elements for composing the system

Component specification. One of the most popular def-
initions of a component was offered by a working group
at ECOOP (European Conference on Object-Oriented Pro-
gramming).
Definition 1 ([9]) A software component is a unit of com-
position with contractually specified interfaces and explicit
context dependencies only. A software component can be de-
ployed independently and it is subject to composition by third
parties.
Although all definitions of component differ in detail, they
assert that a component is an independent software package
that provides functionality via well-defined interfaces. More-
over, they all emphasize the importance of well–defined in-
terfaces. The interface could be an export interface through
which a component provides functionality to other compo-
nents or an import interface through which a component
gains services from other components. They also emphasize
the “black-box” nature of a component: that is, a component
can be incorporated in a software system without regard to
how it is implemented.
The component in its simplest form contains code that can be
executed on some platform and an interface that provides the
access to the component. A component is considered to be
a black box, i.e., its internals inaccessible to the component
user. Hence, interfaces are the only access points to the com-
ponent and the specification of the component comes down
to the specification of the component interfaces.
Specification of the component interfaces in the current
component-based systems is done only on the syntactical
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level. Provided interfaces are the one that contain opera-
tions that a component provides to other components or to
the component user, while required interfaces are the one that
contain operations used by the component. Each interface
consists of a number of operations which might have input,
output or input/output parameters.
Considering the above discussion we specify a component
as in the following structure:

component= (id, contexts),
context = (provided Interfaces, required Interfaces),
provided Interface = (provided Operations) denoted by
pIOps,
required Interface = (required Operations) denoted by
rIOps.

In Figure 1 an example of component specification is
presented. The component has two contexts with different
number of required and provided interfaces: first context has
one provided interface and two required interfaces and the
second context has two provided interfaces and one required
interface.

Figure. 1: Context component specification

Each component from the set of componentSC must satisfy
the following condition (the set of operations of provided in-
terfaces and the set of operations of required interfaces are
disjoint - for the same context):

pIOps ∩ rIOps = ∅.

Specialized components are also needed: components for
reading the input data of the problem (source components)
and components needed for displaying the output data (re-
sult) of the algorithm (destination components).
Final system requirements specification.The system we
want to build must be specified by given required operations.
Each operation is encapsulated in one required interface. The
required interface is assigned to a “fictive” destination com-
ponent.

C. Criteria discussion for component selection

The decision that has to be made during the process of com-
ponent selection may be based on different criteria: some
cost measures based on component properties or metrics for
different quality attributes or some defined component selec-
tion policy to compute automatically assembling decisions.
In a previous paper [14] the component with the maximum
number of provided operations that are needed by the final
system was considered at each step of the algorithm. It was
discussed that the final solution may be improved if the se-
lection criteria is upgraded with the cost measure of the com-

ponent. Also the dependencies between the components in-
volved in the composition (not only intern–dependencies for
each component) could be considered. In the current paper
the above stated criteria are considered.
We have developed a Greedy algorithm for Component Se-
lection Problem where the decision selection was improved
from the existing approaches ([8], [10], [11], [12]) by con-
sidering dependencies [13] between the components.

D. Component System Automatic Criteria-based Configura-
tions algorithm

The algorithm finds a component assembly starting from the
final system requirements (operations are encapsulated in re-
quired interfaces) and selecting at each step the component
with the following criteria: cost, ratio of the number of pro-
vided operations to the cost of the component, number of
provided operations. The final system is obtained when there
are no more required operations to be satisfied, i.e. the final
components added to the solution are components special-
ized in reading the input data.

Algorithm 1 CSACC algorithm (Component System Auto-
matic Criteria-based Configurations)

Input:
• the numbernoCompo of components;
• the setvalCompo of components;
• the numbernoAllReq of final requirements;
• the setvalAllReq of final requirements.
Output
• the numbernoRez of final results;
• the setvalRez of final results;
• theerrorCode for partial solution−1, if exist solution error

code is1.

Algorithm CSACC(noCompo,valCompo,noAllReq,valAllReq,
noRez,valRez,errorCode)is:
Begin
allRequiredSatisfied:=false;
existComponentsToConsider:=true;
errorCode=1;
while (not allRequiredSatisfied) and (existComponentsToCon-

sider)do
oneFinalRequired:=false;
while (not oneFinalRequired) and (existComponentsToCon-

sider)do
AddToSearch(noAllReq,valAllReq,noR,valR);
FindProvCompo(noCompo,valCompo,noR,valR,
noRez,valRez);
if (noR=0)then

oneFinalRequired:=true;
else

existComponentsToConsider:=false;
endif

endwhile
if (noAllReq=0)then

allRequiredSatisfied:=true;
endif

endwhile
if (existComponentsToConsider=false) then

errorCode:=-1;
endif
End.
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As algorithm prerequisites we must first check if it is possible
to obtain a solution:

• Each required operation (from the final system specifi-
cation) must be found as a provided operation of one of
the components from the repository.

• Each required operation (from each required interface)
must have a provided operation in one of the compo-
nents from the repository.

The result of the algorithm may be a valid solution or a partial
solution (when the set of available components is not suffi-
cient to obtain a solution). An error code is used to specify
the type of obtained result. The best solution is computed,
i.e. the one with the minimum number of used components
and with the minimum cost.
The subalgorithmAddToSearchadds the current require-
ments from the given set of final system requirements
(noAllReq, valAllReq) to a list of current requirements that
are need next to be satisfied (noR, valR).
In the proposal [14] the subalgorithmFindProvCompo
finds the component (from the set of given components
noCompo, valCompo) with maximum number of provided
operations that satisfy the current requirements, adds them to
the set of final results (noRez, valRez) and updates the set
of current requirements with the set of required operationsof
the selected component.
In the current approach the subalgorithmFindProvCompose-
lects the next component taking into considerations the fol-
lowing criteria:

• the ratio of number of requirements satisfied to the cost
of the component as a measure to maximize our heuris-
tic decision:

|SRci

⋂
RSR|/cost(ci) is maximal,

• the number of dependencies of the consideredci com-
ponentis minimal.

Example
In order to best emphasize our approach we use the following
example.
In the repository there are seven components that are speci-
fied according to Section III-B. We describe here (see Table 1
for details) only the specification for the first component (the
specification of the other components is similar). The final
system requirements are specified and each required opera-
tion is encapsulated in one required interface. The solution
described in Figure 2 is obtained running the Algorithm 1.

Table 1: ComponentC1 Contexts Specification
Component1 ProI ProOp ReqI ReqOp
Context1 1 P op1 1 R op11

2 R op12

Context2 2 P op3 3 R op13

Note that in Figure 2 the operations that are “compatible”
have the same name, except the difference between provided
and required type: for example, the fifth component has a
required operationR op32 and the seventh component has

a provided operationP op32. The compatibility of compo-
nents is not discussed here, it will be treated in a future de-
velopment.
The input of the algorithm are the set of specified compo-
nents and the set of required operations of the final system.
Each required operations is encapsulated in one required in-
terface.
For each required interface the following steps are per-
formed: find the component (or components) that provides
the required operation(s) and then update the required inter-
face by adding the required operations of the selected compo-
nent; for the new required interface (for each required oper-
ations) find again the component (or components) that offers
a maximum provided operations for the required ones and
with the minimum cost, and then update the required inter-
face; the process continues until there are no required opera-
tions to be satisfied or no solution is found (no component(s)
can provide operations for the unsatisfied remained required
operations).

Figure. 2: Obtained solution of the considered example after
applying the Component System Automatic Criteria-based
Configurations (CSACC) algorithm

The final system requirements are satisfied by all the compo-
nents from the set of components. For the given requirements
of the final system a solution is found (see Figure 2).

IV. Experiments and comparisons

A short and representative case study is presented in this sec-
tion. Starting for a set of six requirements and having a set of
ten available components and the dependencies between the
requirements of the components, the goal is to find a subset
of the given components such that all the requirements are
satisfied, a system with a minimum cost.
The set of requirementsSR = {r0, r1, r2, r3, r4, r5} and the
set of componentsSC = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9}
are given. In Table 2 the cost of each component from the set

  644 Vescan and Pop



of componentsSC is presented.

Table 2: Cost values for each component in theSC
Comp c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Cost 8 7 6 9 6 14 15 14 7 14

Table 3 contains for each component the provided services
(in terms of requirements of the final system) and Table 4
the dependencies between each requirement from the set of
requirements.

Table 3: Requirements elements of the components inSC
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

r0

√ √ √ √

r1

√ √

r2

√ √ √

r3

√ √

r4

√ √ √ √

r5

√ √ √ √

Table 4: Specification Table of the Requirements De-
pendencies

Dependencies r0 r1 r2 r3 r4 r5

r0

√

r1

r2

√ √

r3

√

r4

√

r5

√

A. Results obtained by the previous approach

In the current section we discuss the application of the CSAC
[14] algorithm. For the set of available components there are
two components that may provide the needed operations and
have no dependencies:c4 offers r1 andc8 offers the same
requirementr1 but may also provider2 if {r0, r5} will be
next provided. Using the maximal criteria of the CSAC [14]
algorithm, thec8 component is selected.
The remained set of requirements is:{r0, r2, r3, r4, r4}. The
next possible selected components that offer two require-
ments are:c0 offers {r0, r3}, componentc6 offers {r3, r5}
and componentc9 offers{r0, r5}. But, for componentc9 by
now providing{r0, r5}, thec8 component may provide also
r2, andr4 is provided byc9 (possible because is another used
context). Thec9 component is selected.
Only one requirement must be satisfied:r3. There are three
possible components that may provide it:{c5, c6, c7}. The
cost of the founded solution for each possible selection is:
35, 36 and35.

B. Results obtained by the current improved approach

In the current section we discuss the application of the
CSACC algorithm considering the ratio of number of re-
quirements satisfied to the cost of the component as a mea-
sure to maximize our heuristic decision, and the dependen-
cies between the components.
For the given requirements of the final system, the found so-
lution is presented in Figure 3.
For the set of available components there are two compo-
nents that may provide the needed operations and have no

Figure. 3: Obtained solution of the considered case study
after applying the Component System Automatic Criteria-
based Configurations (CSACC) algorithm

dependencies:c4 offers r1 and c8 offers the same require-
mentr1 but may also provider2 if {r0, r5} will be next pro-
vided. The ratio are:1/6 and2/7, thus the componentc8

being selected.
The next set of components that may provide required func-
tionalities are:c0 with the ratio2/8, componentc2 with the
ratio 1/6 and the componentc9 with the ratio3/14. The
component with the maximum ratio value isc0, thus the next
selected component, providing requirements{r0, r3}.
The set of remained requirements is:{r2, r4, r5}. The com-
ponents that may provide one of two of the requirements
are: {c6, c7, c9}. The component with the maximum ratio
is c7 (or c9). The obtained solution contains the components:
{c8, c0, c7} and the cost is 29.

C. Discussion

The two approaches find different solutions with different fi-
nal cost. Although the same solution could be found (for
a proper instance of the given set of requirements, compo-
nents and component costs and dependencies) the previous
approach finds the solution with a higher cost.

V. Conclusion and future work

CBSE is the emerging discipline of the development of soft-
ware components and the development of systems incorpo-
rating such components. A challenge in component-based
software development is how to assemble components effec-
tively and efficiently.
This paper presents the following main contributions: a pro-
posal for component selection (the component with the maxi-
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mum ratio of the number of satisfied requirements to the cost
of the component) and an algorithm namedCSACC(Com-
ponent System Automatic Criteria-based Configurations) for
automatic assembly of component systems. A real world sys-
tem application will be considered next to validate our ap-
proach.
We intend to extend our approach by specifying and proving
the compatibility between two connected components. The
protocol for each provided operations of a component have
to be specified and included into the composition process.
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