
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 4 (2012) pp. 648–658
c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Enforcing regularity by means of analogy-related
proportions – A new approach to classification

Henri Prade1 Gilles Richard2 Bing Yao1

1IRIT, University of Toulouse
31062 Toulouse Cedex 9, France

prade@irit.fr

2British Institute of Technology & E-commerce
London, E7 9HZ, UK
grichard@bite.ac.uk

Abstract: When classifying a new item, it seems reasonable to
enforce a regularity principle stating, informally speaking, that
the way the new item is classified should not introduce discrep-
ancy with respect to the already classified items. In this paper,
we propose to estimate this regularity or lack of discrepancy, by
means of analogical proportions. An analogical proportion is a
statement of the form “a is to b as c is to d”, which may receive
a Boolean logic interpretation, or more generally a multiple-
valued logic interpretation. Two other related formal propor-
tions named reverse analogy (“what a is to b is the reverse of
what c is to d”), and paralogy (“what a and b have in common, c
and d have it also”) may be also used. These proportions relate
items a, b, c, and d on the basis of their differences, or of their
similarities. It provides a basis for proposing a plausible classi-
fication for an object d described in terms of a set of features,
by considering three other already classified objects, say a, b,
c, described with the same features, assuming that if some pro-
portion holds for a sufficiently large number of features, it may
hold on the allocation of the classes as well. This is the basis
of a classification method which is tested on machine learning
benchmarks for binary or multiple class problems with objects
that have numerical features. Keywords: analogical proportion;
multiple-valued logic; classification

I. Introduction

Analogical reasoning [11, 17] is generally viewed as a use-
ful heuristic way to enhance reasoning processes in problem
solving by transferring conclusions observed in a known sit-
uation to a new situation, which is only partially known, but
which can be paralleled with the previous one. For instance,
a problem prob1 has a known solution sol1, while one looks
for a solution sol2 for problem prob2. Then, one may as-
sume that sol2 is to sol1 as prob2 is to prob1 on the basis of
some similarity or partial identity between prob1 and prob2.
In the same way, an object 1 with description des1 is in class
cl1, how to classify an object 2 with description des2 close to
des1? These questions are at the basis of case-based reason-
ing [1], or of k-nearest neighbors methods [6, 14] for trans-
duction of a class for the new item, on the basis of a repertory

of known cases or examples. Then, analogy is understood as
the identity or similarity of relations or properties between
two ordered pairs, (a, b) and (c, d), as expressed in analog-
ical proportions, which are statements of the form a is to b
as c is to d, usually denoted a : b :: c : d. Thus, one may
write for instance cl2 : cl1 :: des2 : des1 (also assuming
cl2 : des2 :: cl1 : des1).
However, a more powerful use of analogical proportions
has been recently envisaged by some authors [35, 34, 4,
18], which amounts to state (des2, cl2) : (des1, cl1) ::
(des1′ , cl1′) : (des1′′ , cl1′′), where the object 2 to be clas-
sified is simultaneously paralleled with three other already
classified objects 1, 1′, and 1′′ rather than one. Intuitively, it
has the merit of relating the change or the absence of change,
in classification to the change or the absence of change in the
descriptions of various objects based on different features.
Indeed, it embeds a form of interpolation as in the following
example [23, 20] where we try to estimate if a house h2 is
cheap (ch) or not (¬ch) on the basis of the comparison with
three other houses h1, h1′ , and h1′′ that have equipment 1
(eq1) or equipment 2 (eq2), or not. Thus each house is de-
scribed here in terms of three features: presence of equip-
ment 1 (yes or no), presence of equipment 2 (yes or no),
price (cheap or not cheap). Then, if we build the analogi-
cal proportion h1 : h1′ :: h1′′ : h2, i.e., (eq1, eq2,¬ch) :
(eq1,¬eq2, ch) :: (¬eq1, eq2,¬ch) : (¬eq1,¬eq2, ?), one
may expect to conclude that the ‘?’ should be replaced by
ch. Note that here h2 is not identical to any of the three other
houses.
A key issue is then to evaluate if an analogical proportion
a : b :: c : d holds or not, or holds to some degree, in
case of binary, or more generally of multiple-valued fea-
tures. Thus, a measure of analogical dissimilarity has been
proposed [4, 18]. More recently, a propositional logic mod-
eling of analogical proportions has been developed [20, 21],
and extended to fuzzy logic for handling multiple-valued fea-
tures [26]. Moreover, it has been also pointed out that two
other types of proportion exist alongside analogical propor-
tion [25, 24], namely i) reverse analogy which focuses on
the differences between the items at hand as analogy does,
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but reverses the directions of changes, and the so-called ii)
paralogy, denoted a ; b :: c ; d which rather focuses on com-
mon properties and similarities, i.e. a ; b :: c ; d holds if the
(positive or negative) features common to a and b are also
common to c and d.
In this paper, we present and discuss a classification proce-
dure, first outlined in [27], entirely based on the use of ana-
logical proportions (or of paralogical proportions), applied in
a component-wise manner to vectors (v1, ..., vi, ..., vn, vn+1)
describing features of objects together with their class vn+1,
where each component vi for i = 1, n encodes if a binary
property Pi holds or not, or the extent to which it holds if Pi

is gradual, for the item at hand. Intuitively speaking, the idea
is that applying an analogy-related proportion on the class
attribute to a 4-tuple made of three classified items and a
new item, should echo the similarities and differences be-
tween the descriptions of these items, provided that the same
proportion holds for most of the features used in these de-
scriptions. In other words, the proportion will enforce some
regularity in prescribing a change or an identity of class (de-
pending on the situation). Obviously, our method will be
sensitive to the quality of the set of examples and it could
be useful to deal with “abnormal” cases before starting the
classification process (see [3] for a comprehensive survey of
what can be done).
The remaining of this article is organized as follows. The
next section provides the necessary background on the log-
ical modeling of the three analogy-related proportions, and
their fuzzy (i.e., graded) extensions. Section III introduces
the classification procedure, while Section IV reports results
obtained on binary classes, or multiple classes benchmark
problems with numerical features, and comments these re-
sults. In Section V, we report some other tests aiming at a
comparison with the well-known k-NN approach. It appears
that our results are not generally based on a use of the near-
est neighbors of the target data to be classified. Section VI
discusses the approach with respect to related works, while
Section VII contrasts it with respect to other classification
methods, leading to some new perspective on transduction
(i.e., classification without inductive step). This paper is a
revised and extended version of a conference paper [30].

II. Logical modeling of analogy-related pro-
portions

An analogical proportion a is to b as c is to d is viewed in the
following as a quaternary logical connective, and is shown to
be closely related to two other logical proportions [27], called
‘reverse analogy’ and ‘paralogy’ respectively. A complete
introduction to these proportions (and other related ones) can
be found in [29].

A. 3 types of proportions

Analogy, reverse analogy and paralogy are formal relations
involving 4 items a, b, c and d. A detailed investigation of
their underlying semantics has been done in [25, 24]. They
all satisfy symmetry when comparing a, b with c, d, but obey
distinct characteristic postulates (e.g. ‘central permutation’
for the analogical proportion that requires the equivalence
between a : b :: c : d and a : c :: b : d, while the two

other proportions are stable under two other permutations).
To briefly introduce the three proportions, the most suitable
starting point is to consider our items a, b, c, d as described
by sets of binary features belonging to a universe X . In that
case, each item can be viewed as a subset of X . An analogi-
cal proportion a : b :: c : d focuses on differences and should
hold when the differences between a and b and between c and
d are the same. This corresponds to the condition [21] (a \ b
denotes the set difference a ∩ b):

a \ b = c \ d and b \ a = d \ c (ASet) (1)

Reverse analogy denoted a ! b :: c ! d amounts to exchange c
and d, and expresses that the changes from a to b and from c
to d (if any) are now in opposite directions:

a \ b = d \ c and b \ a = c \ d (RSet) (2)

If instead of differences, we focus on similarities, we get a
new proportion a ; b :: c ; d called paralogy, which expresses
that what a and b have in common, c and d have it also:

a ∩ b = c ∩ d and a ∩ b = c ∩ d (PSet) (3)

B. Boolean model

A direct way to switch to the Boolean lattice B = {0, 1}
is just to translate the set operators into Boolean connec-
tors. Taking the complement of the set difference \ yields
the impli-cation→, while = is changed into ≡, ∪ into ∨, ∩
into ∧:

((a→ b) ≡ (c→ d)) ∧ ((b→ a) ≡ (d→ c)) (ABool) (4)

((a→ b) ≡ (d→ c)) ∧ ((b→ a) ≡ (c→ d)) (RBool) (5)

(a ∧ b ≡ c ∧ d) ∧ (a ∨ b ≡ c ∨ d) (PBool) (6)

In this paper, for sake of simplicity, we use the same nota-
tions for a proposition and its truth value, and for a connec-
tive and its associated truth function.
A simple, visual way to understand the difference between
analogy, reverse analogy and paralogy is to examine their
truth tables when they are considered as Boolean operators.
Table 1 provides the 6 cases where each of the above three
quaternary connectives holds true (among 16 possibilities).
Note that the tables remain the same when exchanging 0 and
1 everywhere. This expresses that these proportions do not
depend on a positive or a negative encoding of properties.
The Boolean interpretation makes clear that a : b :: b : a
is false for analogy, a ! b :: a ! b false for reverse analogy,
and a ; a :: b ; b false for paralogy, in agreement with their
intuitive meaning. Note that the three proportions validate
the pattern a : a :: a : a and two of the above patterns (e.g.,
for analogy, a : a :: b : b and a : b :: a : b hold true, which
respectively acknowledge the equivalence of identities and
of changes having the same direction).

The following property, which holds in the Boolean setting
(and thus in the set-based interpretation we start with), is easy
to check on the truth tables, and establishes a strong link be-
tween the three kinds of proportion:
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Table 1: Boolean model

Analogy Reverse Ana. Paralogy
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0

Property 1
- a ! b :: c ! d is a reverse analogy if and only if a : b :: d : c
is an analogy;
- a ; b :: c ; d is a paralogy if and only if a : d :: c : b is an
analogy.

The equations a : b :: c : x, a ! b :: c ! x, and a ; b :: c ;x have
not always a solution x ∈ {0, 1} such that the corresponding
proportion holds. For analogical proportions, the existence
condition for a solution is (a ≡ b) ∨ (a ≡ c) = 1 (which
just states that 1 : 0 :: 0 : x and 0 : 1 :: 1 : x have no
solutions). When a solution exists, it is unique and given by
x = a ≡ (b ≡ c) for the three proportions [21, 25], as first
guessed from anthropological observations by Klein [15]
(without distinguishing the three proportions).

It is worth noticing that the above logical view of analogy
departs from more established views [13], which are more
oriented towards analogy-making than towards analogy-
checking (which is our primary interest in this paper).

C. Multiple-valued models

If we consider the Boolean expression of the analogical pro-
portion given by formula (4), one may think of many possi-
ble multiple-valued extensions, depending on the operations
chosen for modeling ∧,≡, and→. Moreover, a formula such
as (4) can be written in many equivalent forms in Boolean
logic. These forms are no longer necessarily equivalent in a
non-Boolean setting (we use [0, 1] as truth space). So it is
important to make proper choices that are in agreement with
the intended meaning of the considered proportion. Some
properties seem very natural to preserve, such as
i) the independence with respect to the positive or negative
encoding of properties (one may describe a price as the extent
to which it is cheap, as well as it is not cheap), which leads
to require that ¬a : ¬b :: ¬c : ¬d holds if a : b :: c : d holds
(with ¬a = 1− a);
ii) the knowledge of a and of the differences between a and
b and between b and a, should enable us to recover b. Indeed
in the Boolean case, we have

b = (a ∧ (a→ b)) ∨ ¬(b→ a)

A careful analysis [26] of the requirements leads to choose

• i) the minimum operator for ∧;

• ii) s ≡ t = 1− |s− t|;

• iii) Lukasiewicz implication s→ t = min(1, 1−s+t).

Note also that with these choices s ≡ t = (s→ t)∧(t→ s).

This leads to the following expressions which both general-
ize the Boolean case to multiple-valued entries and introduce
a graded view of the analogy-related proportions.

For analogy, we have
a : b :: c : d =
1− | (a−b)−(c−d) | if a ≥ b & c ≥ d, or a ≤ b & c ≤ d
1−max(|a− b |,|c− d |) if a≤b & c≥d or a≥b & c≤d
Thus, a : b :: c : d is all the closer to 1 as the differences
(a − b) and (c − d) have the same sign and have similar
absolute values. Note that 1 : 0 :: c : d = 0 as soon as c ≤ d.

For reverse analogy, we have
a ! b :: c ! d =
1− | (a−b)−(d−c) | if a ≤ b & c ≥ d or a ≥ b & c ≤ d
1−max(|a− b |,|c−d |) if a≥b & c≥d, or a≤b & c≤d

The definition of paralogy does not involve any implication:
it is built upon ∧ and ¬ only (plus the operator ≡):
a; b ::c; d = min(1−|(a∧b)−(c∧d)|, 1−|(a∨b)−(c∨d)|),

with a ∨ b = 1− (1− a) ∧ (1− b). Again we take a ∧ b =
min(a, b); see [26] for justifications.

However, with the above definitions, the relation between
paralogy and analogy expressed by Property 1 is no longer
true in the multiple-valued case.
With respect to equation solving, it can be shown that it
exists x such that a : b :: c : x = 1 if and only if
x = c + b − a ∈ [0, 1], and when it exists, the solution is
unique. Similar equations may be solved as well for the two
other proportions. However, in the following the issue of
solving equations will take place only in the Boolean setting
for predicting class (a problem considered here as being of
binary nature), while the expression of multiple-valued pro-
portions will be used only for estimating to what extent the
proportion holds for the non-binary features involved in the
description of the items.

III. Classification as transduction

We consider a classification task, where each element of the
problem universe is represented by a vector of n binary, or
multiple-valued, features. Our input space is taken as X =
[0, 1]n. Thus, any numerical feature fi (e.g. a price) should
be normalized (as (fi −min{fi})/(max{fi}−min{fi})),
while binary features are encoded in {0, 1}. Many-valued
discrete features on ordered domains could be also consis-
tently accommodated by the multiple-valued connectives we
use. Moreover, each element of X (representing one or more
items of our universe) belongs to a class c ∈ C, with |C| finite
and ≥ 2. Then, we try to classify an incoming item x ∈ X
in the output space C. A set S of already classified items is
supposed to be given, which is then just a subset of X × C,
i.e., a set of labeled examples (s, cl(s)). In the following, it
is assumed that the class of an element is unique. This means
that 6 ∃(x, c) and (x, c′) ∈ S, with c 6= c′. This agrees with
the hypothesis of the existence of an underlying classifying
function cl from X to C, this function being only known for
the elements in S.
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A. General principle

The basic idea underlying transduction [32, 10] is to try to
predict the class of a new piece of data on the basis of the
previously observed data S, without any attempt at inducing
a generic model for the observed data (which would be then
applied to the new piece of data in order to determine its
class).
A simple example of transduction mechanism is the k-
Nearest Neighbors method, where the class that is the most
frequent among the k closest neighbors of x is attributed
to x, i.e., when k = 1, cl(x) = cl(argmins|(s,cl(s))∈S |
dis(x, s)), where dis is a distance. In the absence of exter-
nal knowledge, the only thing that we have at our disposal
for predicting the class of a new element x, beyond the sim-
ple exploitation of closeness relations, is the observation of
the behavior of the data at hand, trying to relate the varia-
tions of cl(x) with the variation of the features describing x.
Since analogy-based proportions estimate the equivalence of
two pairs of items on the basis of the similarities and/or the
differences observed inside each pair, this constitutes a can-
didate tool for trying to take into account these variations and
relating them to classification.
The idea is that when an analogy-related proportion holds
for some observable features describing items a, b, c, and
d, we can assume that the same proportion still holds be-
tween the other features of d, and the corresponding, observ-
able and known features of a, b, and c. Namely, assuming
that the items we are dealing with are vectors of the form
a = (a1, . . . , an, an+1, . . . , an+m) of truth values that en-
code the values of n+m features associated to an item. Con-
sider for the moment the case of Boolean truth values. Start-
ing from a 4-tuple of vectors (a, b, c, d), we consider that if
there is an analogy-related proportion T that holds between
the first n components of these vectors, then this proportion
should hold for the last m remaining components as well.
This inference principle can be stated as below:

∀i ∈ [1, n], T (ai, bi, ci, di)

∀j ∈ [n+ 1, n+m], T (aj , bj , cj , dj)

This is a generalized form of analogical reasoning, where we
transfer knowledge from some components of our vectors to
their remaining components. The fact that the proportions
are independent w.r.t. the positive or negative encoding of the
features guarantees that the same result is obtained whatever
the encoding. The above pattern can be easily extended to
graded truth values, by considering that if the proportion T
holds at degree 1 (or more generally sufficiently holds) for
the n first features, it should also hold in the same way for
the m other features.

This idea, when applied to classification, provides the ba-
sis for a transduction mechanism, already discussed in [27]
for binary classification and binary-valued features. In our
approach, given a new instance d whose class is unknown,
one looks for triples (a, b, c) of examples in the input space
S such that some logical proportion T holds simultane-
ously between the n binary description features associated
to (a, b, c, d) (i.e. T holds on the input space corresponding
to the n first features in the above pattern) in order to pre-
dict the class of d by applying the same proportion T to the

output space C, i.e. the space of classes. Through the compu-
tation of the proportions, the approach focuses on the com-
mon features where the pairs (a, b) and (c, d) differ, and put
it in relation with possible classification changes. See [27]
for a detailed discussion in the binary case. Note that the ap-
proach includes the limit case where we have to classify an
item whose representation (in the input space) is completely
similar to an already classified item (i.e. ai = bi = ci = di
for i = 1, . . . , n).

The simplest way for describing the output space is to use
a description based on m binary-valued features if there are
m possible classes. Then, given three items a, b, c different
situations may be encountered regarding the way they are
classified:

- cl(a) = cl(b) = cl(c) = cl. Thus ∃!k ∈
{1, . . . ,m} an+k = bn+k = cn+k = 1 and ∀` 6= k, an+` =
bn+` = cn+` = 0. Then, by a straightforward application of
any of the three analogy-related proportions we get dn+k = 1
and ∀` 6= k, dn+` = 0, i.e. cl(d) = cl.
- cl(a) = cl(b) = cl and cl(c) = cl′. Thus ∃!k ∈
{1, . . . ,m},∃!k′ ∈ {1, . . . ,m} an+k = bn+k = 1 and
∀` 6= k, an+` = bn+` = 0, while cn+k′ = 1 and ∀` 6=
k′, cn+` = 0. Then, we apply analogy or reverse analogy
(provided that one of these two proportions holds for all the
n description features), using the patterns 1 : /! 1 :: 0 : /! 01

and 0 : /! 0 :: 1 : /! 1 for the (n + k)th and the (n + k′)th
output features respectively, and 0 : /! 0 :: 0 : /! 0 for the
others. Thus we obtain cl(d) = cl′.

- cl(a) = cl(c) = cl and cl(b) = cl′. Thus ∃!k ∈
{1, . . . ,m},∃!k′ ∈ {1, . . . ,m} an+k = cn+k = 1 and
∀` 6= k, an+` = cn+` = 0, while bn+k′ = 1 and ∀` 6=
k′, bn+` = 0. Then, we apply analogy or paralogy (provided
that one of these two proportions holds for all the n descrip-
tion features), using the patterns 1 : /; 0 :: 1 : /; 0 and
0 :/; 1 :: 0 :/; 1 for the (n+ k)th and the (n+ k′)th output
features respectively, and 0 : /; 0 :: 0 : /; 0 for the others.
Thus we obtain cl(d) = cl′.

- cl(b) = cl(c) = cl and cl(a) = cl′. Thus ∃!k ∈
{1, . . . ,m},∃!k′ ∈ {1, . . . ,m} bn+k = cn+k = 1 and
∀` 6= k, bn+` = cn+` = 0, while an+k′ = 1 and ∀` 6=
k′, an+` = 0. Then, we apply reverse analogy or paralogy
(provided that one of these two proportions holds for all the
n description features), using the patterns 0 !/; 1 :: 1 !/; 0
and 1 !/; 0 :: 0 !/; 1 for the (n+k)th and the (n+k′)th out-
put features respectively, and 0 !/; 0 :: 0 !/; 0 for the others.
Thus we obtain cl(d) = cl′.
In fact, the above procedure amounts to apply the following
patterns

cl :/!/; cl :: cl :/!/; cl2

cl :/! cl :: cl′ :/! cl′,
cl :/; cl′ :: cl :/; cl′,
cl !/; cl′ :: cl′ !/; cl,

1 A compact notation for 1 : 1 :: 0 : 0 or 1 ! 1 :: 0 ! 0. The same kind of
notation with obvious meaning is used in the following.

2 Again a compact notation for cl : cl :: cl : cl or cl ! cl :: cl ! cl or
cl ; cl :: cl ; cl.
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to a unique multiple-valued feature corresponding to the
identifier of the class.
Now consider the situation with three different classes
cl(a) = cl, cl(b) = cl′, cl(c) = cl′′, i.e. ∃!k ∈
{1, . . . ,m},∃!k′ ∈ {1, . . . ,m},∃!k′′ ∈ {1, . . . ,m} an+k =
1 and ∀` 6= k, an+` = 0, bn+k′ = 1 and ∀` 6= k′, bn+` = 0,
and cn+k” = 1 and ∀` 6= k”, cn+` = 0. It clearly leads
to no classification solution, since the patterns (1, 0, 0, x),
(0, 1, 0, x), (0, 0, 1, x) cannot be simultaneously solved for a
unique proportion. Moreover, the result dn+k = 1, dn+k′ =
1, dn+k” = 1, dn+` = 0,∀` 6= k, k′, k” which might be ob-
tained with a mixed use of proportions, would not lead to any
classification.3

B. An analogy-based transduction procedure

In the proposed classification method, we apply a strategy
that is very different from k-NN methods. Indeed, the new
item d to be classified is not just compared with classified
items on a one-by-one basis. For the sake of uniformity, we
continue to denote d the new item to be classified: its de-
scription d is known, but its class cl(d) is unknown. First, we
look for 3-tuples (a, b, c) ∈ S3 such that the class equation
T (cl(a), cl(b), cl(c), x) = 1 has a solution with respect to
some analogy-related proportion T. This requires that cl(a),
cl(b), and cl(c) correspond to a maximum of two distinct
classes, as explained in the previous subsection. Then ei-
ther cl(d) = cl(a) = cl(b) = cl(c), or there are two distinct
classes, which we may encode by 1 and 0. Then, the corre-
sponding class equation T (cl(a), cl(b), cl(c), x) = 1 should
have a solution for the considered type T of proportion, in
order the triple (a, b, c) be retained as potentially useful. Ob-
viously the other triples (a, b, c) are useless for our objective
because, whatever the coming d, they cannot constitute a log-
ical proportion with d. This processing of the suitable set of
triples can be done offline.
Choosing a fixed proportion T , when an item d has to
be classified, we have to look, among the set of suitable
triples, for the one(s) that seem(s) the most appropriate to
predict the class cl(d). For doing this, each suitable triple
we consider is evaluated by means of the following vector
(T (a1, b1, c1, d1), . . . , T (ai, bi, ci, di), . . . , T (an, bn, cn, dn)).
Then the vectors (and thus the triples) are ordered in a lexi-
cographic decreasing order4. Then we may choose for cl(d)
the class associated to the triple having the best evaluation,
or the most frequent class among the k best triples. In this
latter case, one might also consider the different classes
as possible solutions, between which there is not enough
information for making a proper choice.
Note that it should not be considered as a problem if some
T (ai, bi, ci, di) are close to 0: indeed it should not be re-

3 However, an ordered, structured way of the set of classes may offer
more possibilities. Assume for instance, we have four classes very good,
rather good, rather bad, very bad, with the additional information
that the distances between two successive labels in this ordered list are the
same, one may then consider that an equation such that, e.g., very good :
rather bad :: rather good : x has x = very bad as a solution from an
analogy point of view. See [31] for a preliminary study of such an interpo-
lation mechanism.

4 (u1, . . . , ui, . . . , un) >lexicographic (v1, . . . , vi, . . . , vn), once
the components of each vector have been decreasingly ordered, iff ∃j <
n ∀i = 1, j ui = vi and uj+1 > vj+1.

quired that the proportion holds for all features (even approx-
imately), since some features may turn to be irrelevant for the
classification and have then no reason to exhibit any regular-
ity with respect to it.
Several remarks may lead to some potential improvements of
the basic procedure described above.

1. The evaluations T (ai, bi, ci, di) may be rounded to in-
sure that vectors are compared on the basis of significant
differences.

2. In case we use the k best evaluations for predicting the
class, with k > 1, it would make sense that the k cor-
responding evaluation vectors remain sufficiently close,
otherwise one may doubt of the meaningfulness of the
triples having the poorest evaluations among the k best
ones.

3. However, if there are not enough components in the
best evaluation vector(s) that are close to 1, one may
doubt that we have sufficient material among the avail-
able triples for predicting the class of d in a meaningful
way.

4. The lexicographic ordering presupposes that all the fea-
tures have the same importance. This may not be the
case if some are less relevant (although the considered
proportion holds for these features). Then one may
think of using the discrimin ordering [7] instead of the
leximin ordering (the components of each evaluation
vector are no longer decreasingly reordered, and the
comparison between two vectors is made on the basis
of the minimum applied to the components where the
two vectors are not equal). This is only a partial order
that refines the Pareto ordering, and one may choose the
most frequent class associated with the non dominated
triples.

IV. Experimental Results

In order to validate the basic procedure (we have not tested
any of the 4 types of refinements suggested above yet), we
have tested the previous ideas on different data sets com-
ing from the University of California, Irvine (UCI) machine
learning repository [9]. We have only chosen classification
problems where attributes are mainly quantitative (they may
be defined on continuous universes, but for some of them
(age for instance) the attribute domain is discrete). The num-
ber of attributes varies from 4 to 57. Some of the datasets
(Iris and Pima for instance) have been extensively investi-
gated, which allows us to have a clear picture of the perfor-
mance of other approaches. Obviously, we have to normalize
the attribute values to get numbers in [0, 1] and to apply the
method described at the beginning of Section III. We con-
sider the normalized value of a given attribute a as its fuzzy
truth value: we are then back to the theoretical framework
previously described. We have implemented a Java program,
without any rounding of the numbers (see remark 1 of the
previous section). At this stage, we have used a brute force
algorithm, which due to limited computation facilities, has
somewhat limited the experimentations (w.r.t. the size of the
samples). The protocol used is rather straightforward:
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• In this first experimentation, we have left out reverse
analogy and focused on the two other proportions.

• For each dataset, the classification procedure uses anal-
ogy, and then paralogy, in order to compare the respec-
tive accuracy rates.

• Depending on the size of the dataset, we experiment di-
verse sizes for the training sets.

• Given a normalized dataset S and a chosen size n, we
randomly build up 10 training sets train1, . . . , train10
with the same size n, each training set having the same
repartition in terms of classes as the whole dataset.

• With each training set, we have tested the method on
the whole dataset and we report the average accuracy
rate for these 10 training sets in the given tables.

We divide our set of experiments between binary class and
multiple-class (involving at least 3 classes) problems. Let us
start with the binary classification experiments.

A. Binary classification

The target datasets are (in alphabetic order): Blood, Diagnos-
tic (2 tasks), Pima, and Spam. We provide a brief description
of each data set below and summarize their main character-
istics in Table 2.
Blood: Data are initially coming from the Blood Transfusion
Service Center (Hsin-Chu City-Taiwan) where 748 donors
were randomly selected from the donor database. Each donor
is identified with 4 numerical parameters plus a binary vari-
able representing whether he/she donated blood (binary clas-
sification). Added to the repository in October 2008, this
set has not been extensively investigated yet. In the case of
Blood, we consider sample sets of size 50, 100 and 150. We
have 3 batches of 10 tests.
Diagnosis: This small dataset records 120 patient data, each
instance having 6 attributes, all of them being binary except
the first one, recording the temperature, which is a real num-
ber. There are 2 binary output classes: each one deciding for
one disease of the urinary system (see [5]). In our case, this
will give us 2 classification tasks (that we denote Diag1 and
Diag2), one for each disease to be predicted. Given the small
size of the dataset, we consider sample sets of size 20, 30 and
40.
Pima: Diabetes diagnosis information for native American
women of the Pima heritage. This data consists in diagnos-
tic information for 768 women; 268 of these patients tested
positive for diabetes, while 500 tested negative (binary clas-
sification). In the case of Pima, we consider sample sets of
size 50, 100 and 150.
Spam: This is a standard collection of 4601 emails, each one
identified with 57 numerical attributes and classified as spam
or ham (binary classification). In that case, we proceed as
previously with sample sets of size 50, 100 and 150. Due
to the huge number of attributes (57), we had not enough
resource to go for bigger training sets.
The results for binary classification tasks are in the corre-
sponding Figures 1, 2 3, 4 and 5.

Table 2: Data sets for binary classification

Blood Diag1 Diag2 Pima Spam
#attr. 4 6 6 8 57

#instances 748 120 120 768 4601
#classes 2 2 2 2 2

Figure. 1: Results for Blood data set
data set Blood

sample size 50 100 150
analogy 67 67 72
paralogy 67 68 70

Figure. 2: Results for Diag1 data set
data set Diag1

sample size 20 30 40
analogy 52.7 99 99.7
paralogy 89.8 98.7 98.7

Figure. 3: Results for Diag2 data set
data set Diag2

sample size 20 30 40
analogy 99.1 98.4 100
paralogy 98.9 98.6 100

Figure. 4: Results for Pima data set
data set Pima

sample size 50 100 150
analogy 66 67 70
paralogy 68 70 71

Figure. 5: Results for Spam data set
data set Spam

sample size 50 100 150
analogy 72 75 77
paralogy 73 75 76

B. Multi-class datasets

Let us consider now the multi-class problems. To start with
this category of problems, the chosen target datasets are Iris
(3 classes) and Image (7 classes). At this stage, we have not
investigated the behavior of our methods when we have more
classes.
Image: This image segmentation dataset has 2310 instances
from seven outdoor images which are the classes. Each in-
stance is described with 19 attributes. In the case of Image,
we increase the size of the sample sets taking into account
the huge size of the testing set and to have a representative
sample of the 7 classes: we go for 70, 140 and 210 instances.
Iris: The Iris plant dataset is one of the oldest and most pop-
ular datasets in classification. It contains 150 instances from
three classes: Iris-virginica (class 1), Iris-versicolor (class 2)
and Iris-setosa (class 3), 50 instances each. Each instance has
4 numeric attributes. For Iris data set, because of its small
size (150 instances) we go for sample sets of size 30, 60 and
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Table 3: Data sets for multi-class problems

Image Iris
#attr. 19 4

#instances 2310 150
#classes 7 3

Figure. 6: Results for Iris and Image data sets
data set Iris Image

sample size 30 60 90 70 140 210
analogy 94 97 99 85 88 90
paralogy 86 94 95 68 69 65

C. Comments

Whatever the data set, it is not surprising that we get better
results when we increase the size of the sample set, starting
from a relatively small one. It is amazing to observe that, on
the Spam data set, we get 78% of accuracy rate with only 150
observable instances among 4601. This makes our simple
classifier not ridiculous knowing that the best rate on this
kind of data is around 88% of accuracy.
Obviously, comparing different classifiers is not an easy task,
not only because the experimental process can significantly
differ, but also because it is not clear what has to be exactly
compared. Here, we just give a rough comparison, based on
the available figures and considering raw accuracy rates.

• Concerning the Blood data set, this is a relatively recent
data set (2008) on which there is not much information
available. Nevertheless, according to [37], the accuracy
rate seems to be around 60% and we get around 68%
(with paralogy).

• Concerning the Diagnostic dataset, we perform very
well and this could be due to the fact that only one at-
tribute is real, all the 5 remaining ones being binary. In
that case, for the binary attributes, there is no rounding
of the real number computation that we do not com-
pletely control.

• Concerning the Pima data set, the best results are around
77.7% of accuracy rate (obtained with SVM or LogDisc
algorithms), while k-NN gives a little bit less than 72%
and C4.5 decision trees gives 72%. We get 71% with
only 150 training data, i.e. 1/5 of the full testing set,
and without any optimization.

• Concerning the Spam data set, the best accuracy rates
are around 88% (see [36]) and we get 77% for analogy
and similarly for paralogy with a small training set of
only 150 emails, i.e. less than 4% of the testing set in-
cluding 4601 emails, which is quite encouraging.

• Concerning the Image data set where there are 7 classes,
the work is more of a clustering problem than a pure
classification one. We get an accuracy rate around 90%
for a sample set of 210 instances. This is largely bet-
ter than a random choice whose accuracy expectation is
around 15%.

• Concerning the Iris data set, the best accuracy rates are
around 99%, and we get this number with analogy.

It appears, on Diag1, Pima and Blood, that paralogy can from
time to time perform better than analogy, but also perform
very badly with Image where we have a loss of around 20%
in terms of accuracy rate. This is not completely surprising
because the two proportions capture different intuitions: it
remains to understand exactly why this is the case here and
if we can consider that some types of data are more suited
to paralogy than analogy. This has to be investigated in the
future. To conclude this short comparison, our proportion-
based classifier is, in the worse case, less than 10% below
the best known accuracy rates. For a preliminary test, this is
not bad when we consider the fact that no optimization has
been done, and that none of the remarks of Section III have
been taken into account.

V. Further experiments

A second batch of experiments has been done to test the vot-
ing algorithm among the k “best“ vectors, where instead of
getting the class associated to the “best” vector (k = 1), we
consider a vote among the 3 (k = 3) and 5 (k = 5) best
vectors. To remain within the limit of a realistic computation
time, we tried the smallest data set, namely Iris, using the
same sample with 30 and 60 elements. The results are shown
in Figure 7. It is not coming as a surprise that, whatever the

Figure. 7: Voting algorithm on Iris data set with n=30 and
n=60

size of sample 30 60
value of k 1 3 5 1 3 5
analogy 94 94.6 95 96.5 96 96
paralogy 86 93 94 93.8 95.3 95.5

size of the sample set (30 or 60), we improve the accuracy
by increasing the number of voters (except for analogy and
the 60 sample sets). According to Remark 2 of the previous
section, it might be interesting to implement a more clever
choice, other than the one based on a simple lexicographic
decreasing (leximin ordered) comparison.
Apart from the optimization of the basic procedure which
would be worth investigating, it remains to understand the
relationship between the approach and the well-known k-NN
approach. Both approaches rely on common sense reason-
ing and in some sense, we may think that they are somewhat
similar. Although our method does not explicitly make use
of a distance on the dataset, it might be the case that the fi-
nal classification step only considers neighbors of the target
data d to predict the class of d. If this is the case, then our
method would turn to be a simple variant of the k-NN algo-
rithm. So we have to check if it is the case in general, or not
(and explain now how we do it).
The question we want to answer is: given a target data d to be
classified, does our technique make use of the “neighbors” of
d to allocate a class to d? In other terms, if we consider our
basic implementation where the “best triple” a, b, c decides
for the class of d, do we have among the triple a, b, c, one
element or more which is/are among let us say, the “10 near-
est neighbors” of d ? To bring an answer to this question,
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we need a notion of distance on the dataset. Since we use
dataset involving mainly real valued attributes (normalized
between 0 and 1), we choose to go for the most straightfor-
ward option: the Euclidean distance. This is a natural choice
which does not take into consideration any pre-processing
allowing, for instance, to introduce different weights for the
attributes. We consider only the triple a, b, c leading to a suc-
cessful classification, i.e., such that the unique solution of the
class equation cl(a) : cl(b) :: cl(c) : x (which is exactly the
class allocated to the target data d) is the real class of d. Then
we consider the percentage of these triples which include at
least one among the k-nearest neighbors of d. We understand
that, if this percentage is high, it means that our approach can
be more or less considered as a variant of the k-NN approach.
In this experience, we consider only the nearest neighbor (i.e.
k=1) and we deal with analogical proportion.
We provide in Table 8 the percentage of successful classifi-
cations using the nearest neighbor of d among the best triple
a, b, c. Despite the fact that this should be investigated more

Figure. 8: Link with k-nn for Diag1 and Diag2
training set Diag1 Diag2

20 0 6.3
30 6.7 8
40 6.9 6.1

extensively, these first results suggest that the analogical pro-
portion approach should not be considered just as a variant
of a k-NN algorithm. This finding is consistent with observa-
tions already made in [18] for binary attributes classification
problems, where a related approach (see next section) was
able to outperform the k-NN method.

VI. Related works

The use of analogical proportions as an inferential tool for
classification or machine learning purposes has not been
considered by many researchers. As far as we know, nei-
ther the related proportions (reverse analogy and paralogy),
nor the fuzzy extensions of the three analogy-related pro-
portions have been investigated with such an aim in mind.
Nevertheless, in [4, 18], the authors have developed a bi-
nary classifier on the basis of a very interesting notion that
they call “analogical dissimilarity” and denote AD. For a
given tuple (a, b, c, d), AD(a, b, c, d) is a positive number
which is zero if and only if the proportion a : b :: c : d
holds. In fact, AD(a, b, c, d) quantifies how far is the tuple
(a, b, c, d) from building an analogical proportion. Defini-
tions of AD are available for both binary [4], and real valued
features [18]5. There is indeed some correlation between
the analogical dissimilarity and the fuzzy truth value of an
analogical proportion as defined in this paper, since when
the truth value increases AD decreases. AD is easily ex-
tended to vectors of features just by adding the dissimilari-
ties component-wise, possibly in a weighted way. The basis
of the algorithm is then, given a new data d to be classified,
to search for the triple (a, b, c) minimizing AD(a, b, c, d)

5 However, it seems that experiments with AD-based classifiers have
only been reported in the binary case, but several possible definitions exist
for AD in the real-valued case [20].

and then to allocate to d the class solution of the equation
cl(a) : cl(b) :: cl(c) : x. Roughly speaking, the authors
minimize a dissimilarity measure when we maximize a fuzzy
truth value. Their method, when conveniently tuned with at-
tribute weights and optimized with a voting algorithm to take
into account more than one triple, provides very accurate re-
sults and seems to belong to the best classifiers on binary and
nominal data sets (see [4] for comparative study). Recently
in [12], the same authors have extended the notion of analog-
ical proportion and analogical dissimilarity to tree-structures.
When a tree represents the syntactic structure of a sentence,
it is possible to predict the syntactic structure of a new sen-
tence s4, in analogical proportion with 3 other known sen-
tences s1 : s2 :: s3 : s4, assuming their associated trees are
in analogy as well. Solving the equation t1 : t2 :: t3 : x pro-
vides a solution for t4. In 82% of the cases they deal with, the
authors get an exact or almost exact restitution of the parsing
tree. At this stage, it would be interesting to make a careful
comparison, both at the theoretical and experimental levels,
between the definition of “analogical dissimilarity“ and the
fuzzy truth value of an analogical proportion as defined in
this paper. This might be also applied to the other propor-
tions.
Beyond the scope of logic, [35, 19, 2] provide a large panel
of algebraic interpretations for analogical proportions, from
semi-groups to lattices, through words over finite alphabets
and finite trees, even investigating a second order algebraic
framework as in [33]. The practicality of the approach for
natural language purpose has mainly been investigated in
[34], using analogies on words and trees. They focus on
supervised learning tasks, aimed at performing the lexical
analysis of isolated word forms in diverse languages (En-
glish, German and Dutch). Their generic analogical infer-
ence procedure has shown promising generalization perfor-
mance [34].
It is worth noticing that the proposed approach also encom-
passes the idea of mean, since the solution m of the analogi-
cal proportion a : m :: m : b should be “half-way” between a
and b. A non standard approach in machine learning [22] has
recently investigated hybrid methods for estimating software
development costs, using diverse forms of means (arithmetic,
geometric and harmonic). This suggests, beyond a compari-
son between the two approaches, to specifically study classi-
fiers where the item to be classified is considered as the mean
term of a multiple-features analogical proportion. Such clas-
sifiers would obviously have a lower complexity than the ap-
proach described above where we have to look for triples a,
b, and c.

VII. Towards a new perspective on transduc-
tion

In the machine learning literature, there is a variety of well-
known algorithms; see e.g., [8] for a detailed comparison
between diverse classification techniques (on data coming
from a real private business). Among well-established learn-
ing techniques, ranging from basic k-NN algorithms to more
sophisticated Bayesian approaches, and to SVM methods,
which provide accurate results for classification problems.
Among all these techniques, one can distinguish between
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- the ones that build a general predictive model of the data
at hand which is then applied to the new incoming data to
predict their class (this is the case for SVM, Bayesian, or
neural networks methods in particular);
- the other ones, sometimes called “lazy methods”, which
only consider the data at hand to predict the class of the
new data, without the intermediate step of building a global
model. A typical example is the k-NN algorithm which relies
on a kind of local view of the data, and considers its neigh-
bors for classifying the new piece of data.
It is outside the scope of the paper to deeply examine the dif-
ferences between these approaches and the proposed method.
Nevertheless, at least from a conceptual viewpoint, the ana-
logical method departs from the other ones in various re-
spects, since
- we do not describe the problem using an uncertainty rea-
soning perspective and there is no statistics involved;
- we do not try to separate the classes in the best manner;
- we are not confined to a simple neighborhood analysis.
At this stage, it is worth noting that the proposed method, in
its basic form, relies on simple logical computations aiming
at comparing data on a quaternary basis, where

• no parameter has to be tuned,

• no weight has to be defined,

• no threshold has to be estimated,

• and finally no global estimate has to be computed.

Still, despite its simplicity, it appears that our results are com-
parable to the ones of classical classifiers. It is also inter-
esting to note that our procedure does not need to compile
multi-class problems into binary ones: proportion-based in-
ference is naturally suitable whatever the number of classes
is.
Clearly, the optimization of our method could be done by
investigating some of the ideas previously mentioned at the
end of Section III. Let us also briefly mention how we could
integrate some numerical evaluation in our approach, lead-
ing to a completely different algorithm. Taking inspiration
from other methods (transduction with SVM for instance), it
would be possible to proceed in 2 steps (we consider a binary
classification problem):
- allocate to the new data d to be classified the class 0. Then
count the number of perfect analogical proportions we get
in that case, i.e. the number C0 of triples (a, b, c) such that
a : b :: c : d and cl(a) : cl(b) :: cl(c) : 0 hold.
- allocate to the new data d to be classified the class 1. Then
compute as previously the associate number C1 but replacing
0 by 1.

The rule to classify d would be:
if C_0==C_1 then cl(d)=undefined

else {if C_0>C_1 then cl(d)=0
else cl(d)=1;}

Obviously, this method could be extended to include paral-
ogy, i.e. instead of only counting perfect analogies, we may
count perfect analogies and perfect paralogies. It remains
to implement this way to proceed to get a clear picture of
its performance compared to our initial method. This new

method is in fact more explicitly based on a way for privi-
leging some kind of “regularity” regarding the way data are
classified, since we choose to allocate to d the class that max-
imizes regularities (i.e. valid proportions) in the universe of
data, considering proportions that hold as a pieces of evi-
dence in favor of regularity.
As it is now clear, the use of analogical proportions (or par-
alogical ones) goes far beyond the standard k-NN approach,
since similarities and differences between items take into ac-
count some regularities in the change in attribute values w.r.t.
the way the corresponding vectors are classified. So far, in
the component-wise evaluation of a 4-tuple of vectors, ana-
logical proportions consider in the same way complete (ap-
proximate) i) similarities (a:a::a:a) of the 4 attribute values,
ii) pairwise identities (a:a::b:b) and iii) identities of change
(a:b::a:b). We may think that these different patterns do not
play the same role and might be handled separately. This is
another line of research for further investigation.

VIII. Conclusion

We have introduced a simple classification procedure that
works by finding potential proportions that hold between
available data and new data to be classified. Our inference
principle is based on the assumption that a given propor-
tion, holding between many attributes, should hold between
classes. This assumption is the basis of analogical infer-
ence, and more precisely, of a proportion-based inference
which may be based on analogical, reverse analogical and
paralogical proportions. This principle, suitable for binary
and graded proportions, allows us to deal with numerical data
and multiple-class problems, without any restriction. Our ex-
periments were primarily aiming at getting a better under-
standing of the process rather than to really compete with
existing well-known classifiers. Obviously, a lot remains to
be investigated in terms of experimentation, in terms of com-
plexity optimization, and in terms of choice of the best vec-
tors, etc. Nevertheless, our preliminary tests, relying on a
basic implementation and tested on 6 standard UCI data sets,
provide results which are often better than the ones obtained
by many methods that are more sophisticated and rely on
quite different ideas. Finally, analogy-based methods can be
extended to deal with other “intelligent” tasks such as the
ones suggested in [16] for intelligent assessments, or in [28]
for automatic solving of IQ tests.
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