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Abstract: Intermittent and transient faults are the largest
source of failure for body sensor networks. In order to provide
a method for detecting permanent, intermittent and transient
faults, a distributed online solution is suggested. The diagno-
sis algorithm uses repeated testing in discrete time, and diag-
nostic messages are sent as the output of the routine tasks of
the network. This work adopts a multi-tier telemedicine system
where a star topology with the sensor nodes sending their data
to Personal Digital Assistant (PDA) for data fusion is used. The
system performs real-time analysis of sensor data and can gen-
erate warnings regarding an occurrence of fault, which allows
fault isolation and system reconfiguration.
Keywords: Online fault detection, BSNs, intermittent fault, tran-
sient fault.

I. Introduction

Recent technological advances in sensors have enabled the
design of low cost, lightweight, and intelligent physiological
sensor nodes. Human body monitoring using a network of
wireless sensors may be achieved by attaching these sensors
to the body surface as well as implanting them into tissues.
These nodes integrated into wireless body sensor networks
(BSNs) are capable of sensing and communicating vital signs
for health monitoring. These networks promise real-time
monitoring of medical records. Though a number of ongoing
research efforts are focusing on various technical issues like
sensor design, routing, security and energy but there has been
little work on fault detection and recovery. The sensors are
mostly micro-electro-mechanical systems and can have dif-
ferent type of faults. The erroneous outputs from these faulty
sensors might result in wrong interpretation or undesirable
alarms, which may lead to life-threatening events to occur.
Fault detection and recovery for BSNs present a number of
unique challenges. For a BSN, both hard and soft failures
need to be addressed by considering the presence of inter-
mittent, transient and permanent abnormalities, and the pos-
sibility of multiple and correlated failures. The hard failure
includes node failures due to faulty sensors, loss of wireless
communication or depleted battery. The soft failure is caused
by excessive noise artifact due to poor sensor contact and/or
malfunctioning of the sensor node components.

The basic principle of fault localization and analysis has been
addressed by the fault tolerance computing communities for
many years. However, These traditional threshold tests based
distributed fault detection approaches [1–4] may not be suit-
able for BSNs since fault detection in BSNs is compounded
by the complexity of heterogeneous sensing environment.
For instance, motion sensors show different readings than
ECG sensors and comparing energy of each sensor to de-
tect the faulty node may or may not be correct. To work with
traditional wireless sensor network fault detection schemes
redundant sensors must be deployed. However, deploying a
greater number of sensors may not be comfortable and inter-
ference between the greater group of the sensor nodes need
to be addressed.
In real systems, more than 80% of the faults are intermit-
tent faults [5, 6]. Intermittent faults are the special case of
transient fault where they originate from inside the system
when software or hardware is faulty. After their first appear-
ance, they usually exhibit a relatively high occurrence rate
and, eventually, tend to become permanent. On the other
hand, transient faults caused by external agents like electro-
magnetic radiation, heat, etc. and normally, their adverse ef-
fects rapidly disappear. Since most malfunctions derive from
transient faults, if they do not occur too frequently, removing
the affected sensor nodes would not be the best solution for
most systems [7]. By its nature, intermittent and transient
faults will not occur consistently, which makes its diagnosis
a probabilistic event over time [8].
The problem of transient and intermittent fault diagnosis in
BSNs has been largely overlooked. This paper attempts to
fill this research gap by developing a complete fault diag-
nosis frame work which is shown to be robust in detecting
permanent, intermittent and transient faults. Since the effect
of fault is not always present, detection of intermittent and
transient faults require repetitive testing at a discrete time
contrary to single test for permanent fault. Permanent faults
are the ones that are continuous and stable in time and pro-
duce errors when they are fully exercised. Thus, issues like
number of test required and time interval between two tests
(T ) are vital. The likelihood of detecting an intermittent and
transient fault is influenced by T . If T is too large, then prob-
ability of coincident errors within the same round increases,
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and diagnostic latency is expected to be more. If the round
length is too small, subsequently frequent sensing of data is
required, which increases the energy overhead. Further, the
human body environment requires a different type and fre-
quency of monitoring. Thus proper tuning of T is indispens-
able, which is what this work tries to achieve.
These issues motivate to explore a generic fault detection
and isolation framework for BSNs. In this work, data fu-
sion techniques have been applied to detect faulty sensors.
For instance, although being of heterogeneous nature, both
the ECG and hemodynamic signals, such as blood pressure,
has information mutually correlated due to the physiological
interrelation of the mechanical and electrical functions of the
heart [9]. This existing interconnection has been exploited in
this work for fault detection. This work is an extension of
our earlier work [10].
The remainder of the paper is organized as follows: Section
II presents related works. Section III presents system model.
Detection algorithm is investigated in Section IV. The per-
formance of the proposed algorithm is presented in Section
V and finally conclusions and future work is given in Section
VI.

II. Related Work

Fault detection and fault tolerance in wireless sensor net-
works have been studied for many years [2, 11–14]. The ex-
isting fault detection schemes for wireless sensor networks
work with the assumption that sensors from the same re-
gion should have recorded similar sensor reading. These
approaches exploit the fact that sensor faults are likely to
be stochastically unrelated, while sensor measurements are
likely to be spatially correlated. This approaches may not
be applicable in BSNs for reasons stated earlier such as: (a)
BSN constitutes of heterogeneous sensors that produce dif-
ferent data; and (b) it is impractical to use redundant sensors
for the same purpose. The performance of wireless body sen-
sor based mesh network for health application is presented by
Benjamin1 and Sankaranarayanan in [24].
In [15], an adaptive and flexible fault-tolerant communica-
tion scheme for BSNs, namely AFTCS, is proposed. AFTCS
adopts a channel bandwidth reservation strategy to provide
reliable data transmission when channel impairment occurs.
However, this paper does not discuss effects of node failure
on reliable data communication.
The issue of Identification and isolation of a faulty motion
sensor node based on the data collected in body sensor net-
works is presented by Kim et al. [16,17]. In this approach the
sensor readings of nine different locations are grouped with
six manually segmented motion groups by considering the
fact that some set of nodes on a particular motion shares sim-
ilar characteristic. This approach explores this fact by imple-
menting a history-based and non-history based fault detec-
tion using the Active Correlation Set (ACS) that dynamically
or statically binds the neighboring nodes for lookup refer-
ence of node signal comparisons. Here, a sliding window
technique is used to the segment sensor data stream to cap-
ture the motion characteristics and transform each segmented
signal into the proper data format. Singular Value Decom-
position (SVD), Power Spectral Density (PSD) and Relative
Positional are used to obtain this data format.

Zappi et al. [18] have investigated the use of sensor fusion
techniques for gesture recognition. They have investigated
the outcomes of classifier fusion in function of the number
of sensors on the recognition performance, and on the ro-
bustness to faults. They have advocated that sensor fusion
implicitly allows compensating for typical faults up to high
fault rates.
In [19], a self-healing framework for BSNs is presented,
which enables a flexible choice of components for detection
and masking of faults as well as reconfiguration of the net-
work. The authors have focused on activity recognition with
sensor information fusion to determine patterns of fault man-
agement. They have investigated the impact of errors such as
those arising from noise or drift in sensor readings.
In summary, existing fault detection schemes for BSNs work
with the assumption that sensors are either permanent faulty
or fault free. This assumption may not be true in real time
applications since in real systems, more than 80% of the
faults are intermittent or transient faults. This paper presents
a generic detection scheme which takes care of permanent,
intermittent and transient faults in BSNs.

III. System Model

A. BSN Architecture

Figure III presents multi tire architecture for BSN. Tier one
includes a number of on-body wireless medical sensor nodes.
Each sensor node can sense, sample, and process one or more
physiological signals. For example, an electrocardiogram
sensor (ECG) can be used for monitoring heart activity, a
blood pressure sensor for monitoring blood pressure, a tilt
sensor for monitoring trunk position, and motion sensors can
be used to discriminate and estimate the level of activity. Tier
two encompasses a Personal Digital Assistant (PDA), a cell
phone, or a home personal computer. The PDA is responsible
for providing an interface to the wireless medical sensors, an
interface to the user, and an interface to the medical server.
PDA is also responsible to locate faulty or malfunctioning
sensors. Tier three includes a medical server(s) accessed via
the Internet.

B. Fault model

The proposed model considers both hard and soft faults 1. If a
node is hard faulty, the sensor node is unable to communicate
with PDA. A soft faulty node continues to operate and com-
municate with altered behavior. Both the hard and soft faults
may occur intermittently. As suggested by Breuer [20], in
this work the statistics of the intermittent and transient fault
is modeled by two-state Markov chain.

C. Diagnosis Terminology

Definition III.1 Online diagnosis is the ability to execute di-
agnostic tests without interrupting system operation.
Definition III.2 A diagnosis is said to be a complete, if
within a bounded time the actual fault set can be identified.
A diagnosis is said to be a correct, if no fault-free nodes are

1Faults are classified as: crash, omission, timing, and Byzantine. Crash
faults are hard faults, and all the others can be treated as soft faults.
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Figure. 1: Multi-tire architecture for BSNs

identified as faulty and no faulty nodes are identified as fault-
free.

IV. The Detection Algorithm

This section introduces an online detection algorithm for
BSNs. One advantage of the proposed work is that diagno-
sis is not considered as an offline but as an online core fault
tolerant mechanism fully integrated in the BSN fault toler-
ant strategy. It uses error detection information derived from
mutually correlated information from multiple sensors. This
work tries to minimize the overhead in executing the diagno-
sis algorithm.

A. Permanent Fault Detection Algorithm

This algorithm assumes that only permanent fault exists in
the network. However, this assumption is relaxed in the
subsequent sections. For BSNs, the nature of faults can be
attributed to a number of sources like motion artifacts, in-
herent limitations and possible malfunctions of the sensors.
In practice, it is desirable to rely on sensors with redundant
or complementary data to maximize the information content
and reduce errors [21]. This is achieved through multi-sensor
fusion, which is concerned with the use of multiple sources
of information. This work explores the multi-sensor fusion
technique in detecting faulty sensors in the network. Figure
2 shows the flow diagram of fault detection through sensor
fusion. In this process, PDA collects information from all
sensors at each communication round. The required features
are extracted from each of the signals received and then as-
sociated. At feature level fusion stage PDA takes a decision
about each sensor and detects them either faulty or fault free.
For example, in cardiac sensing both ECG and hemodynamic
signals, such as the impedance cardiograph or blood pressure
has mutually correlated information about the heart due to
the physiological coupling of the mechanical and electrical
functions. In situations where the ECG signal is degraded

Figure. 2:

and signals from additional sensors such as the ventricular
pressure is well in its range then a decision can be taken, and
the ECG sensor detected as soft faulty. Table 1 shows the
correlation between heart rate and blood pressure for differ-
ent heart conditions. Similarly, this work explores the cor-

Table 1: Correlation between Heart Rate and Blood Pressure
[22]

Patient Condition Blood Pressure (mmHg) Heart Rate (BPM)

Healthy Heart 120/80 75
Weak Pulse 110/80 95
Tachycardia 120/105 130
Bradycardia 120/60 45

relation of ECG signal and SPO2 signal for sensor fault de-
tection. From expert clinical observation, if the heart rate is
70− 72 per minute, then cardiac output would be 5 liters per
minute where cardiac output is the amount of blood ejected
from the heart. This increases during the exercises. Consid-
ering normal beats, i.e. 72 beats/min the saturation of oxygen
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in the arterial blood (SPO2) is 100%. Now, we can determine
SPO2 as follows

SPO2 = Heart rate × 100
cardiac output

(1)

The maximum heart rate and cardiac output vary according
to the age and sex. This work calculates these parameters as
follows. From [23] the maximum heart rate can be calculated
as

HRmax = 205.8 − (0.685 × age). (2)

The cardiac output can be calculated as

Q = 2ml × Pulse Pressure × Heart rate (3)

where pulse pressure is the difference between the systolic
and the diastolic pressures. In the situation where the ECG
sensor reading and blood pressure sensor reading is well
within range and SPO2 reading deviates then SPO2 sensor
is detected as soft faulty. This work suggests the use of re-
dundant temperature sensors for fault detection since the cost
and size of such sensors are less compared to other on body
sensors.
Faults in motion sensors can be identified by considering
a maximum relative distance between neighboring nodes.
For instance, maximum distance from a left hand to a left
shoulder is fixed that the hand cannot be stretched beyond
its full length from the shoulder. Thus, it is evident that
there is a fixed range of relative distances from one joint to
another joint. At the time of sensor deployment the maxi-
mum Euclidean distance dmax between each motion sensor
is recorded in PDA. Since the accelerometer is used as the
motion sensor, accordingly the position of the motion sen-
sors can be calculated as

posi =
∫ ∫

�a dtdt (4)

where �a is the accelerometer sensor reading vector. Using
(4) the Euclidean distance between any two sensors can be
calculated as

dij =
√

pos2
i − pos2

j . (5)

At each diagnosis, round PDA calculates the Euclidean dis-
tance between each sensor. Let’s assume that there are n
number of motion sensors integrated to the BSN. Let’s say
the syndrome sij = 1 if dij > dmax. Now decision can be
made on status of each motion sensor as follows

mi =

⎧⎨
⎩

Fault free if
n−1∑

j=1,i�=j

sij ≤ Th

Soft faulty otherwise
(6)

where Th = 0.5n. The proposed work detects non reporting
sensor as hard faulty. The node mi cannot report to PDA due
to one or more of the following reason: the transceiver of m i

is faulty, battery is drained and node is completely damaged.

B. Intermittent Fault Detection Algorithm

To test for permanent faults, any particular test need only
be applied once. The only approach to test for intermittent
faults is through repeated application of tests. The repetition
of test is needed since the effect of such a fault is not always

present. Further, presence of fault may not be observed if
the duration of fault appearance is smaller than T . Thus to
diagnose the network with highest accuracy in presence of
intermittent fault, proper tuning of T is vital, which is what
the proposed work tries to achieve.

Figure. 3: Appearance and disappearance of fault

Once intermittent fault is activated in a sensor node, faults
are observable for a duration FAD (fault appearance dura-
tion) before they disappear. Eventually, errors will reappear
after FDD (fault disappearance duration) either because of
permanent faults or correlated intermittent faults. This is de-
picted in Fig.3. The behavior of the intermittent fault can be
characterized by measuring or estimating the probabilities of
error disappearance and reappearance in discrete time k×T .

Figure. 4: Analytical model for the occurrence of intermit-
tent fault

In order to analyze intermittent fault in more details the
statistics of intermittent fault modeled as a two-state Markov
model where state FA corresponds to fault appears and state
FD corresponds to fault disappears. The probabilities for go-
ing from one state at Tn to either state FA or FD at time Tn+1

depends on FDD and FAD respectively. The FAD for inter-
mittent faults is system specific, and it depends on multiple
factors such as the specific component of the sensor node be-
ing damaged or the activation patterns of the embedded soft-
ware. Intermittent fault usually exhibits a relatively high oc-
currence rate after its first appearance and eventually tends to
become permanent. Therefore, a Weibull distribution is con-
sidered for FDD with shape parameter β > 1. Without loss
of generality exponential distribution is assumed for FAD
with a constant failure rate μ = (1/mean time in FA state).
Tuning of detection parameter T has a strong impact on the
measures of interest. The longer the value of T , the higher
the diagnosis latency and shorter the value of T , more the
probability that first occurrence of fault is detected at the
first test. Further, the human body environment requires a
different type and frequency of monitoring. Thus, finding
a good trade-off between latency and number of tests be-
comes harder. To address this trade off and make the al-
gorithm adaptive to different type and frequency of moni-
toring, total health monitoring period is sampled at a rate
equals to the highest frequency of monitoring. Each node
in the network takes reading at these sample interval(s) and
sends these reading(s) to PDA at their defined time slots. For
example, heart requires frequent monitoring as compare to
body temperature. Thus, the total monitoring period is sam-
pled with a sampling rate equals to that of heart monitoring
rate. Let’s say SPO2 signal needs to be send to PDA at a rate
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three times less than that of heart monitoring rate. The SPO2
sensor node stores these data collected at three sample inter-
vals and send these data to PDA at its time slot. Similarly, all
sensors collect their data at the sample interval(s) and store
them temporarily and then send them to PDA at their respec-
tive time slots. At data fusion stage, PDA compares the read-
ings obtained at sample intervals from correlated sensors and
takes decision regarding state (faulty or fault free) of each
sensor.
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Figure. 5: Analysis of design parameter T (a) Probability
that the first occurrence of faults is detected at the first test.
(b) Detection latency (time to isolate faulty nodes)

Figure 5 depicts the sensitivity analysis of detection param-
eter T . These results are obtained for following values.
The mean value of FAD for an intermittently faulty node is
considered 500ms where FAD is exponentially distributed.
The FDD is assumed to follow a Weibull distribution with
increasing failure rate (β = 1.5) and expected value of
0.5 hour. Figure 5.(a) shows the probability (Pf ) that the
first occurrence of fault is detected at first test. As expected,
Pf decreases with an increase in T . The average latency of
isolation of faulty nodes at varying values of T is plotted in
Figure 5.(b). As anticipated, increase the length of T also in-
creases the time necessary to isolate faulty nodes. However,
The latency tends to grow much less for values of T greater
than 3500 ms.
This work advocates the value for T between 100 ms to

800 ms. The reason is that heart requires continues mon-
itoring, and the state of the ECG sensor must be continu-
ously checked. Further, the probability that the first occur-
rence of faults is detected at the first test is high (0.7-0.95)
for T = 100 − 800 ms.

C. Transient Fault Detection

If a test is applied to a node and the node fails the test, then
three conclusions can be drawn: the node is either permanent
faulty or intermittent faulty or transient faulty. A node is de-
tected as permanent (soft) faulty if the node fails consecutive
tests. Otherwise the fault may be intermittent or transient.
As discussed earlier removal of nodes with transient faults
will reduce the available resources and is not cost effective.
Thus, discrimination of transient from intermittent faults is
crucial. This section presents a threshold based scheme that
discriminate the transient from intermittent fault. As sug-
gested in Section IV-B, tests are scheduled at the periodic
time k · T (k = 1, 2, · · · ) for a fixed T . Once the fault ap-
pears and detected by the applied test pattern, the identified
node enters to observation stage. A node in observation stage
is restricted from doing any routine activities. The inter fault
appearance period Ti(i = 0, 1, 2, · · · ) is used to discrimi-
nate transient from intermittent fault. For intermittent faulty
nodes, it is expected that Ti + 1 is less than Ti. In this work
if Ti + 1 < Ti, then the algorithm increases the confidence
level of being intermittent faulty (CL) by a factor 1. On the
other hand, if Ti + 1 ≥ Ti, then the algorithm reset the con-
fidence level of being intermittent faulty to zero. The node is
isolated if the confidence level crosses a predefined threshold
Th1. A formal description of the algorithm is in Algorithm
12.

Algorithm 1

1: Test are scheduled at periodic time k · T (k = 1, 2, · · · )
for a fixed T . Upon the first appearance of a fault the
node enter to observation state.

2: if Ti + 1 < Ti then
3: CL = CL + 1
4: end if
5: if Ti + 1 ≥ Ti then
6: CL = 0
7: end if
8: if CL ≥ Th1 then
9: Node is intermittent faulty and is isolated.

10: else
11: Node is transient faulty and is reintegrated in BSN.
12: end if

V. Performance Analysis

The performance of the proposed fault diagnosis algorithm
is evaluated by computer simulation. In this simulation we
consider one ECG sensor, one EEG sensor, three temperature
sensors, one blood pressure sensor and two SPO2 sensors.
Similar to [25], we considered nine motion sensors.
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p pt = 0.0 pt = 0.05 pt = 0.05 pt = 0.15 pt = 0.20
0.05 1 1 1 1 1
0.1 1 1 1 1 1
0.15 1 1 1 1 0.8333
0.2 1 1 1 0.8571 0.7143
0.25 0.75 0.75 0.75 0.667 0.667
0.3 0.667 0.667 0.6364 0.5714 0.5455

Table 2: Detection accuracy

1) Experiment 1 (assuming only permanent faults)

In this experiment we assume that all faults in BSN are per-
manent. For better analysis we further assume that all are
soft faults as detection of hard fault is straight forward and
does not require any analysis. In this simulation the sensors
are randomly chosen to be faulty and the performance is an-
alyzed by observing the detection accuracy (DA) and false
alarm rate (FAR). DA is defined as the number of faulty sen-
sor nodes detected to the total number of faulty sensor nodes
in the network. FAR is defined as the ratio of number of fault
free sensor nodes detected as faulty to total number of fault
free nodes in the network. As depicted in Figure 6. (a), the
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Figure. 6: (a) Detection accuracy. (b) False alarm rate.

detection accuracy is well maintained upto fault probability
of 0.2. It is observed that the faults in motion sensors are
correctly detected irrespective of fault probability. The rea-
son is that the proposed algorithm fails in detecting the faults

in motion sensors only when more than half of the motion
sensors are faulty. The probability of mentioned number is
very less. In addition if any one out of ECG sensor, EEG sen-
sor, blood pressure sensor and SPO2 sensors is working then
state of others can be correctly detected. It is observed from
Figure 6. (b) that the FAR is manageably small. A fault-free
motion sensor never detected as faulty due the same afore-
mentioned reason. However, the non motion sensors may
wrongly detected as faulty if fault probability is high.

A. Experiment 2

In this experiment the assumptions made in Experiment 1 is
relaxed. We have performed simulation to estimate the per-
formance degradation due to transient faults. For this sim-
ulation, the expected time to failure for fault-free node is
taken 10 hours and the expected time to failure for intermit-
tent faulty node is taken 1 hour. The mean value of FAD is
0.5ms and T = 100ms. As shown in Figure 7, the value for
the threshold Th1 is experimentally found. In this experiment
we chose Th1 = 10 as the detection correctness is 100% for
values more than this. Table 2 and 3 shows the performance
of the detection algorithm in presence of transient faults wher
pt is the transient fault probability.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
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h1

Figure. 7: Analysis for detection correctness

VI. Conclusions

Fault detection in sparse networks is relatively more chal-
lenging. As presented in present literature, detection accu-
racy drops with network size. In BSNs smaller number of
sensor nodes are deployed for monitoring activities of daily
living since wearing redundant sensors is stressful. Another
challenge is to find the right neighbors for data validation in
order to increase detection accuracy. In this paper, we have
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p pt = 0.0 pt = 0.05 pt = 0.05 pt = 0.15 pt = 0.20
0.05 0.000 0.000 0.000 0.000 0.077
0.1 0.000 0.000 0.000 0.083 0.083
0.15 0.000 0.000 0.000 0.1538 0.1667
0.2 0.0769 0.0769 0.2308 0.2308 0.2727
0.25 0.1667 0.1667 0.2727 0.3000 0.3000
0.3 0.1818 0.1818 0.3333 0.3333 0.3750

Table 3: False alarm rate

proposed a generic detection algorithm which addresses the
fundamental problem of identifying faulty (permanent, in-
termittent and transient) nodes in a BSN. The algorithm is
simple and detects faulty sensor nodes by extracting relevant
features from sensor node data. We have shown the impact of
design parameter T on detection latency. A threshold based
approach to discriminate transient from intermittent fault is
suggested. This in turn increases the reliability.
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